首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
Pluripotent or multipotent stem cells are involved in development and tissue homeostasis;they have the ability to self-renew and differentiate into various types of functional cells.To maintain these properties,stem cells must undergo sustained or unlimited proliferation that requires the stabilization of telomeres,which are essential for chromosome end protection.Telomerase,an RNA-dependent DNA polymerase,synthesizes telomeric DNA.Through the lengthening of telomeres the lifespans of cells are extended,or indefinite proliferation is conferred;this is intimately associated with stem cell phenotype.This review highlights our current understanding of telomerase as a"stemness"enzyme and discusses the underlying implications.  相似文献   

2.
Phosphoenolpyruvate carboxykinase (PCK) reversibly catalyzes the carboxylation of phosphoenolpyruvate to oxaloacetate. Carbon dioxide, and not bicarbonate ion, is the substrate utilized. Assays of the carboxylation reaction show that initial velocities are 7.6-fold higher when CO(2) is used instead of HCO(3)(-). Two Escherichia coli PCK-CO(2) crystal structures are presented here. The location of CO(2) is the same for both structures; however the orientation of CO(2) is significantly different, likely from the presence of a manganese ion in one of the structures. PCK and the other three known protein-CO(2) crystal structure complexes have been compared; all have CO(2) hydrogen bonding with a basic amino acid side chain (Arg65 or Lys213 in PCK), likely to polarize CO(2) to make the central carbon atom more electrophilic and thus more reactive. Kinetic studies found that the PCK mutant Arg65Gln increased the K(M) for substrates PEP and oxaloacetate but not for CO(2). The unchanged K(M) for CO(2) can be explained since the Arg65Gln mutant likely maintains a hydrogen bond to one of the oxygen atoms of carbon dioxide.  相似文献   

3.
4.
Multicellularity has evolved several times during the evolution of eukaryotes. One evolutionary pressure that permits multicellularity relates to the division of work, where one group of cells functions as nutrient providers and the other in specialized roles such as defence or reproduction. This requires signalling systems to ensure harmonious development of multicellular structures. Here, we show that NADPH oxidases are specifically present in organisms that differentiate multicellular structures during their life cycle and are absent from unicellular life forms. The biochemical properties of these enzymes make them ideal candidates for a role in intercellular signalling.  相似文献   

5.
6.
Barley leaf ADP-glucose pyrophosphorylase (AGPase), a key enzyme of starch synthesis in the chloroplast stroma, was analysed, in both directions of the reaction, with respect to details of its regulation by 3-phosphoglycerate (PGA) and inorganic phosphate (Pi) which serve as activator and inhibitor, respectively. AGPase was found to catalyse a close-to-equilibrium reaction, with the K(eq) value of approximately 0.5, i.e. slightly favouring the pyrophosphorolytic direction. When the enzyme was analysed by substrate kinetics, PGA acted either as a linear (hyperbolic response) 'non-competitive' activator (forward reaction) or a linear near-'competitive' activator (reverse reaction). When the activation and inhibition patterns with PGA and Pi, respectively, were studied in detail by Dixon plots, the response curves to effectors also followed hyperbolic kinetics, with the experimentally determined K(a) and K(i) values on the order of micromolar. The results suggest that the regulation of AGPase proceeds via a non-cooperative mechanism, where neither of the effectors, when considered separately, induces any allosteric response. The evidence, discussed in terms of an overall kinetic mechanism/regulation of leaf AGPase, prompts caution in classifying the protein as an 'allosteric enzyme'.  相似文献   

7.
Conventionally, asthma is defined as involving both airway inflammation and airway smooth muscle hyper-responsiveness. However, Que and coworkers have recently uncoupled these concepts, showing that mice lacking an S-nitrosothiol reductase have allergen-induced airway inflammation but do not have airway hyper-responsiveness. These data are consistent with recent clinical evidence that: (i) S-nitrosothiol signaling is abnormal in human asthma, (ii) nitric oxide in exhaled air might be only a biomarker for the metabolism of more physiologically relevant nitrogen oxides and (iii) the biochemical response to airway inflammation is central to asthma pathophysiology.  相似文献   

8.
The properties and application of l-methionine γ-lyase [methioninase, l-methionine methanethiol-lyase (deaminating), EC 4.4.1.11], a pyridoxal 5′-phosphate enzyme, purified from Pseudomonas putida and Aeromonas sp. are presented. The enzyme has multicatalytic functions: it catalyses α,γ-elimination and γ-replacement reactions of l-methionine and its analogues (e.g. ethionine, homocysteine, O-acetylhomoserine and selenomethionine), α,β-elimination and β-replacement reactions of l-cysteine and its analogues (e.g. S-methylcysteine, O-acetylserine and Se-methylselenocysteine), deamination and γ-addition of vinylglycine, and deuterium labelling at the α and β positions of l-methionine and other straight-chain l-amino acids. These reactions are applicable to the synthesis of various optically active sulphur and selenium amino acids, preparation of deuterium or tritium labelled l-amino acids, and determination of sulphur amino acids. In addition, the enzyme shows potent anti-neoplastic activity.  相似文献   

9.
Summary Distribution of succinate dehydrogenase activity along muscle fibres has been studied qualitatively by histochemistry on single microdissected rat muscle fibres and quantitatively by comparative kinetic microphotometry on longitudinal muscle sections. Qualitative staining reactions showed no appreciable variations in enzyme activity along the fibres regardless of fibre type. By quantitative assessment, minor variations were found along fibres but were within the range of the experimental error. These variations are of the same magnitudes as those observed in enzyme activities of pieces of the same fibre by means of quantitative microchemical methods performed in our laboratory (Spamer and Pette 1979; Nemeth et al. 1980a, b). Our results provide evidence that the enzyme levels are the same along the course of a muscle fibre.  相似文献   

10.
Several analogs of aristolochic acids were isolated and derivatized into their lactam derivatives to study their inhibition in CDK2 assay. The study helped to derive some conclusions about the structure–activity relation around the phenanthrin moiety. Semi-synthetic aristolactam 21 showed good activity with inhibition IC50 of 35 nM in CDK2 assay. The activity of this compound was comparable to some of the most potent synthetic compounds reported in the literature.  相似文献   

11.
12.
AMP-deaminase (EC 3.5.4.6) is a key enzyme of nucleotide breakdown involved in regulation of adenine nucleotide pool in the liver. Mechanisms regulating activity of the enzyme are not completely elucidated, till now. In this paper experimental data indicating on the potential regulatory significance of changes in oligomeric structure of the enzyme are presented. SDS-PAG electrophoresis of human liver AMP-deaminase revealed the presence of three enzyme fragments. Only largest of them (the protein fragments weighing 68 kDa) reacted immunologically with monoclonal anti- (human liver) AMP-deaminase antibodies. At physiological pH 7.0, in the absence of regulatory ligands, reaction catalysed by human liver AMP-deaminase was strongly dependent on enzyme concentration used, with half-saturation constant (S0.5) values increasing significantly with the degree of enzyme dilution. Preincubation with activated long-chain fatty acids – substances promoting dissociation of oligomeric enzymes, inhibited the activity of AMP-deaminase studied nearly completely. Gel filtration on Sepharose CL-6B column demonstrated existence of at least three active oligomeric forms of human liver AMP-deaminase. We postulate that oligomeric structure of the enzyme is a factor determining regulatory profile of AMP-deaminase studied.  相似文献   

13.
14.
The purpose of this study was to identify the seleno-l-methionine (l-SeMet) α,γ-elimination enzyme that catalyzes l-SeMet to generate methylselenol (CH3SeH), a notable intermediate for the metabolism of selenium compounds, in mammalian tissues. The enzyme purified from ICR mouse liver was separated by one-dimensional gel electrophoresis, and the specific band was subjected to in-gel trypsin digestion followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometric analysis. In the peptide mass fingerprinting search, the mass numbers of 14 peptides produced by tryptic digestion of the enzyme were consistent with the theoretical mass numbers calculated from the amino acid sequence of murine cystathionine γ-lyase (E.C. 4.4.1.1). The peptide sequence tags search was also performed to obtain the amino acid sequence data of five tryptic peptides. These peptides were significantly identical to the partial amino acid sequences of cystathionine γ-lyase. This enzyme was clearly shown to catalyze the α, γ-elimination reaction of l-cystathionine by the enzymological research. The K m value for the catalysis of l-cystathionine was 0.81 mM and V max was. 0.0013 unit/mg protein. These results suggested that cystathionine γ-lyase catalyzes l-SeMet to generate CH3SeH by its α,γ-elimination reaction.  相似文献   

15.
Membranes from Paracoccus halodenitrificans contain an ATPase that is most active in the absence of NaCl. The most unusual characteristic of the enzyme is its pattern of sensitivity to various inhibitors. Azide and rhodamine 6G, inhibitors of F1F0-ATPases, inhibit ATP hydrolysis as do bafilomycin A1, concanamycin A (folimycin), N-ethylmaleimide, and p-chloromercuriphenylsulfonate which are inhibitors of vacuolar ATPases. This indiscriminate sensitivity suggests that this ATPase may be a hybrid and that caution should be exercised when using inhibition as a diagnostic for distinguishing between F1F0-ATPases and vacuolar ATPases.  相似文献   

16.
A recent report by M. Gregoriou, I. P. Trayer, and A. Cornish-Bowden (1986, Eur. J. Biochem. 161, 171-176) showed that the mechanism for rat skeletal muscle hexokinase contains two allosteric sites: one for ATP and one for glucose 6-phosphate. In this report, we show that the allosteric mechanism is at variance with a large amount of kinetic data for the skeletal muscle hexokinase reaction in the literature. In addition, the allosteric mechanism conflicts with isotope exchange at chemical equilibrium data reported by M. Gregoriou, I. P. Trayer, and A. Cornish-Bowden (1983, Eur. J. Biochem. 134, 283-288).  相似文献   

17.
γ-Secretase is essential for the generation of the neurotoxic 42-amino acid amyloid β-peptide (Aβ(42)). The aggregation-prone hydrophobic peptide, which is deposited in Alzheimer disease (AD) patient brain, is generated from a C-terminal fragment of the β-amyloid precursor protein by an intramembrane cleavage of γ-secretase. Because Aβ(42) is widely believed to trigger AD pathogenesis, γ-secretase is a key AD drug target. Unlike inhibitors of the enzyme, γ-secretase modulators (GSMs) selectively lower Aβ(42) without interfering with the physiological function of γ-secretase. The molecular target(s) of GSMs and hence the mechanism of GSM action are not established. Here we demonstrate by using a biotinylated photocross-linkable derivative of highly potent novel second generation GSMs that γ-secretase is a direct target of GSMs. The GSM photoprobe specifically bound to the N-terminal fragment of presenilin, the catalytic subunit of γ-secretase, but not to other γ-secretase subunits. Binding was differentially competed by GSMs of diverse structural classes, indicating the existence of overlapping/multiple GSM binding sites or allosteric alteration of the photoprobe binding site. The β-amyloid precursor protein C-terminal fragment previously implicated as the GSM binding site was not targeted by the compound. The identification of presenilin as the molecular target of GSMs directly establishes allosteric modulation of enzyme activity as a mechanism of GSM action and may contribute to the development of therapeutically active GSMs for the treatment of AD.  相似文献   

18.
19.
The restriction endonuclease EcoRII requires the cooperative interaction with two copies of the sequence 5'CCWGG for DNA cleavage. We found by limited proteolysis that EcoRII has a two-domain structure that enables this particular mode of protein-DNA interaction. The C-terminal domain is a new restriction endonuclease, EcoRII-C. In contrast to the wild-type enzyme, EcoRII-C cleaves DNA specifically at single 5'CCWGG sites. Moreover, substrates containing two or more cooperative 5'CCWGG sites are cleaved much more efficiently by EcoRII-C than by EcoRII. The N-terminal domain binds DNA specifically and attenuates the activity of EcoRII by making the enzyme dependent on a second 5'CCWGG site. Therefore, we suggest that a precursor EcoRII endonuclease acquired an additional DNA-binding domain to enable the interaction with two 5'CCWGG sites. The current EcoRII molecule could be an evolutionary intermediate between a site-specific endonuclease and a protein that functions specifically with two DNA sites such as recombinases and transposases. The combination of these functions may enable EcoRII to accomplish its own propagation similarly to transposons.  相似文献   

20.
Inspired by a recent article by Prinz, suggesting that Hill coefficients, obtained from four parameter logistic fits to dose–response curves, represent a parameter allowing distinction between a general allosteric denaturing process and real single site enzyme inhibition, Hill coefficients of a number of selected dietary polyphenol enzyme inhibitions were compiled from the available literature. From available literature data, it is apparent that the majority of polyphenol enzyme interactions reported lead to enzyme inhibition via allosteric denaturing rather than single site inhibition as judged by their reported Hill coefficients. The results of these searches are presented and their implications discussed leading to the suggestion of a novel hypothesis for polyphenol biological activity termed the insect swarm hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号