首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Doan L  Handa B  Roberts NA  Klumpp K 《Biochemistry》1999,38(17):5612-5619
The influenza virus RNA-dependent RNA polymerase protein complex contains an associated RNA endonuclease activity, which cleaves host mRNA precursors in the cell nucleus at defined positions 9-15 nucleotides downstream of the cap structure. This reaction provides capped oligoribonucleotides, which function as primers for the initiation of viral mRNA synthesis. The endonuclease reaction is dependent on the presence of divalent metal ions. We have used a number of divalent and trivalent metal ions alone and in combination to probe the mechanism of RNA cleavage by the influenza virus endonuclease. Virus-specific cleavage was observed with various metal ions, and maximum cleavage activity was obtained with 100 microM Mn2+ or 100 microM Co2+. This activity was about 2-fold higher than that observed with Mg2+ at the optimal concentration of 1 mM. Activity dependence on metal ion concentration was cooperative with Hill coefficients close to or larger than 2. Synergistic activation of cleavage activity was observed with combinations of different metal ions at varying concentrations. These results support a two-metal ion mechanism of RNA cleavage for the influenza virus cap-dependent endonuclease. The findings are also consistent with a structural model of the polymerase, in which the specific endonuclease active site is spatially separated from the nucleotidyl transferase active site of the polymerase module.  相似文献   

2.
A study was made of the cleavage by M1 RNA and RNase P of a non-tRNA precursor that can serve as a substrate for RNase P from Escherichia coli, namely, the precursor to 4.5 S RNA (p4.5S). The overall efficiency of cleavage of p4.5S by RNase P is similar to that of wild-type tRNA precursors. However, unlike the reaction with wild-type tRNA precursors, the reaction catalyzed by the holoenzyme with p4.5S as substrate has a much lower Km value than that catalyzed by M1 RNA with the same substrate, indicating that the protein subunit plays a crucial role in the recognition of p4.5S. A model hairpin substrate, based on the sequence of p4.5S, is cleaved with greater efficiency than the parent molecule. The 3'-terminal CCC sequence of p4.5 S may be as important for cleavage of this substrate as the 3'-terminal CCA sequence is for cleavage of tRNA precursors.  相似文献   

3.
Several modified nucleosides were introduced during in vitro RNA synthesis into a pre-tRNA(Ser). The pre-tRNAs were used as substrates for RNase P enzymes. No effects were observed with biotin-8-ATP or [alpha-S]-GPT, whereas with m7GTP, the cleavage reaction was completely inhibited. Analysis of pre-tRNAs which contained m7G at various positions has revealed a single base at the 5'-end of the acceptor stem where this modification absolutely prevents cleavage by catalytic M1 RNA, eukaryotic and prokaryotic RNase P holoenzymes. These results suggest that a critical contact must be made between pre-tRNA substrate and enzyme/ribozyme or that the approach of the potential cleaving agent (a positive magnesium ion) is made impossible by the positive charge at N-7 of the guanosine. In addition, we have shown that a pre-tRNA containing only m7G's can still form a complex with M1 RNA in a gel retardation assay.  相似文献   

4.
Lead(II)-induced cleavage can be used as a tool to probe conformational changes in RNA. In this report, we have investigated the conformation of M1 RNA, the catalytic subunit of Escherichia coli RNase P, by studying the lead(II)-induced cleavage pattern in the presence of various divalent metal ions. Our data suggest that the overall conformation of M1 RNA is very similar in the presence of Mg(2+), Mn(2+), Ca(2+), Sr(2+) and Ba(2+), while it is changed compared to the Mg(2+)-induced conformation in the presence of other divalent metal ions, Cd(2+) for example. We also observed that correct folding of some M1 RNA domains is promoted by Pb(2+), while folding of other domain(s) requires the additional presence of other divalent metal ions, cobalt(III) hexamine or spermidine. Based on the suppression of Pb(2+) cleavage at increasing concentrations of various divalent metal ions, our findings suggest that different divalent metal ions bind with different affinities to M1 RNA as well as to an RNase P hairpin-loop substrate and yeast tRNA(Phe). We suggest that this approach can be used to obtain information about the relative binding strength for different divalent metal ions to RNA in general, as well as to specific RNA divalent metal ion binding sites. Of those studied in this report, Mn(2+) is generally among the strongest RNA binders.  相似文献   

5.
Like protein enzymes, catalytic RNAs contain conserved structure motifs important for function. A universal feature of the catalytic domain of ribonuclease P RNA is a bulged-helix motif within the P1-P4 helix junction. Here, we show that changes in bulged nucleotide identity and position within helix P4 affect both catalysis and substrate binding, while a subset of the mutations resulted only in catalytic defects. We find that the proximity of the bulge to sites of metal ion coordination in P4 is important for catalysis; moving the bulge distal to these sites and deleting it had similarly large effects, while moving it proximal to these sites had only a moderate effect on catalysis. To test whether the effects of the mutations are linked to metal ion interactions, we used terbium-dependent cleavage of the phosphate backbone to probe metal ion-binding sites in the wild-type and mutant ribozymes. We detect cleavages at specific sites within the catalytic domain, including helix P4 and J3/4, which have previously been shown to participate directly in metal ion interactions. Mutations introduced into P4 cause local changes in the terbium cleavage pattern due to alternate metal ion-binding configurations with the helix. In addition, a bulge deletion mutation results in a 100-fold decrease in the single turnover cleavage rate constant at saturating magnesium levels, and a reduced affinity for magnesium ions important for catalysis. In light of the alternate terbium cleavage pattern in P4 caused by bulge deletion, this decreased ability to utilize magnesium ions for catalysis appears to be due to localized structural changes in the ribozyme's catalytic core that weaken metal ion interactions in P4 and J3/4. The information reported here, therefore, provides evidence that the universal conservation of the P4 structure is based in part on optimization of metal ion interactions important for catalysis.  相似文献   

6.
We have studied an interaction, the "73/294-interaction", between residues 294 in M1 RNA (the catalytic subunit of Escherichia coli RNase P) and +73 in the tRNA precursor substrate. The 73/294-interaction is part of the "RCCA-RNase P RNA interaction", which anchors the 3' R(+73)CCA-motif of the substrate to M1 RNA (interacting residues underlined). Considering that in a large fraction of tRNA precursors residue +73 is base-paired to nucleotide -1 immediately 5' of the cleavage site, formation of the 73/294-interaction results in exposure of the cleavage site. We show that the nature/orientation of the 73/294-interaction is important for cleavage site recognition and cleavage efficiency. Our data further suggest that this interaction is part of a metal ion-binding site and that specific chemical groups are likely to act as ligands in binding of Mg(2+) or other divalent cations important for function. We argue that this Mg(2+) is involved in metal ion cooperativity in M1 RNA-mediated cleavage. Moreover, we suggest that the 73/294-interaction operates in concert with displacement of residue -1 in the substrate to ensure efficient and correct cleavage. The possibility that the residue at -1 binds to a specific binding surface/pocket in M1 RNA is discussed. Our data finally rationalize why the preferred residue at position 294 in M1 RNA is U.  相似文献   

7.
8.
The 5'-terminal guanylate residue (G-1) of mature Escherichia coli tRNA(His) is generated as a result of an unusual cleavage by RNase P (Orellana, O., Cooley, L., and S?ll, D. (1986) Mol. Cell. Biol. 6, 525-529). We have examined the importance of the unique acceptor stem structure of E. coli tRNA(His) in determining the specificity of RNase P cleavage. Mutant tRNA(His) precursors bearing substitutions of the normal base G-1 or the opposing, potentially paired base, C73, can be cleaved at the +1 position, in contrast to wild-type precursors which are cut exclusively at the -1 position. These data indicate that the nature of the base at position -1 is of greater importance in determining the site of RNase P cleavage than potential base pairing between nucleotides -1 and 73. In addition, processing of the mutant precursors by M1-RNA or P RNA under conditions of ribozyme catalysis yields a higher proportion of +1-cleaved products in comparison to the reaction catalyzed by the RNase P holoenzyme. This lower sensitivity of the holoenzyme to alterations in acceptor stem structure suggests that the protein moiety of RNase P may play a role in determining the specificity of the reaction and implies that recognition of the substrate involves additional regions of the tRNA. We have also shown that the RNase P holoenzyme and tRNA(His) precursor of Saccharomyces cerevisiae, unlike their prokaryotic counterparts, do not possess these abilities to carry out this unusual reaction.  相似文献   

9.
We suggested previously that a purine at the discriminator base position in a tRNA precursor interacts with the well-conserved U294 in M1 RNA, the catalytic subunit of Escherichia coli RNase P. Here we investigated this interaction and its influence on the kinetics of cleavage as well as on cleavage site selection. The discriminator base in precursors to tRNA(Tyr)Su3 and tRNA(Phe) was changed from A to C and cleavage kinetics were studied by wild-type M1 RNA and a mutant M1 RNA carrying the compensatory substitution of a U to a G at position 294 in M1 RNA. Our data suggest that the discriminator base interacts with the residue at position 294 in M1 RNA. Although product release is a rate-limiting step both in the absence and in the presence of this interaction, its presence results in a significant reduction in the rate of product release. In addition, we studied cleavage site selection on various tRNA(His) precursor derivatives. These precursors carry a C at the discriminator base position. The results showed that the mutant M1 RNA harboring a G at position 294 miscleaved a wild-type tRNA(His) precursor and a tRNA(His) precursor carrying an inosine at the cleavage site. The combined data suggest a functional interaction between the discriminator base and the well-conserved U294 in M1 RNA. This interaction is suggested to play an important role in determining the rate of product release during multiple turnover cleavage of tRNA precursors by M1 RNA as well as in cleavage site selection.  相似文献   

10.
Lead cleavage sites in the core structure of group I intron-RNA.   总被引:5,自引:4,他引:1       下载免费PDF全文
Self-splicing of group I introns requires divalent metal ions to promote catalysis as well as for the correct folding of the RNA. Lead cleavage has been used to probe the intron RNA for divalent metal ion binding sites. In the conserved core of the intron, only two sites of Pb2+ cleavage have been detected, which are located close to the substrate binding sites in the junction J8/7 and at the bulged nucleotide in the P7 stem. Both lead cleavages can be inhibited by high concentrations of Mg2+ and Mn2+ ions, suggesting that they displace Pb2+ ions from the binding sites. The RNA is protected from lead cleavage by 2'-deoxyGTP, a competitive inhibitor of splicing. The two major lead induced cleavages are both located in the conserved core of the intron and at phosphates, which had independently been demonstrated to interact with magnesium ions and to be essential for splicing. Thus, we suggest that the conditions required for lead cleavage occur mainly at those sites, where divalent ions bind that are functionally involved in catalysis. We propose lead cleavage analysis of functional RNA to be a useful tool for mapping functional magnesium ion binding sites.  相似文献   

11.
The hairpin ribozyme is a small catalytic RNA that achieves an active configuration by docking of its two helical domains in an antiparallel fashion. Both docking and subsequent cleavage are dependent on the presence of divalent metal ions, such as magnesium, but there is no evidence to date for direct participation of such ions in the chemical cleavage step. We show that aminoglycoside antibiotics inhibit cleavage of the hairpin ribozyme in the presence of metal ions with the most effective being 5-epi-sisomicin and neomycin B. In contrast, in the absence of metal ions, a number of aminoglycoside antibiotics at 10 mM concentration promote hairpin cleavage with rates only 13-20-fold lower than the magnesium-dependent reaction. We show that neomycin B competes with metal ions by ion replacement with the postively charged amino groups of the antibiotic. In addition, we show that the polyamine spermine at 10 mM promotes efficient hairpin cleavage with rates similar to the magnesium-dependent reaction. Low concentrations of either spermine or the shorter polyamine spermidine synergize with 5 mM magnesium ions to boost cleavage rates considerably. In contrast, at 500 microM magnesium ions, 4 mM spermine, but not spermidine, boosts the cleavage rate. The results have significance both in understanding the role of ions in hairpin ribozyme cleavage and in potential therapeutic applications in mammalian cells.  相似文献   

12.
The bacterial RNase P ribozyme can accept a hairpin RNA with CCA-3' tag sequence as well as a cloverleaf pre-tRNA as substrate in vitro, but the details are not known. By switching tRNA structure using an antisense guide DNA technique, we examined the Escherichia coli RNase P ribozyme specificity for substrate RNA of a given shape. Analysis of the RNase P reaction with various concentrations of magnesium ion revealed that the ribozyme cleaved only the cloverleaf RNA at below 10 mM magnesium ion. At 10 mM magnesium ion or more, the ribozyme also cleaved a hairpin RNA with a CCA-3' tag sequence. At above 20 mM magnesium ion, cleavage site wobbling by the enzyme in tRNA-derived hairpin occurred, and the substrate specificity of the enzyme became broader. Additional studies using another hairpin substrate demonstrated the same tendency. Our data strongly suggest that raising the concentration of metal ion induces a conformational change in the RNA enzyme.  相似文献   

13.
Independently folded domains in RNAs frequently adopt identical tertiary structures regardless of whether they are in isolation or are part of larger RNA molecules. This is exemplified by the P15 domain in the RNA subunit (RPR) of the universally conserved endoribonuclease P, which is involved in the processing of tRNA precursors. One of its domains, encompassing the P15 loop, binds to the 3'-end of tRNA precursors resulting in the formation of the RCCA-RNase P RNA interaction (interacting residues underlined) in the bacterial RPR-substrate complex. The function of this interaction was hypothesized to anchor the substrate, expose the cleavage site and result in re-coordination of Mg(2+) at the cleavage site. Here we show that small model-RNA molecules (~30 nt) carrying the P15-loop mediated cleavage at the canonical RNase P cleavage site with significantly reduced rates compared to cleavage with full-size RPR. These data provide further experimental evidence for our model that the P15 domain contributes to both substrate binding and catalysis. Our data raises intriguing evolutionary possibilities for 'RNA-mediated' cleavage of RNA.  相似文献   

14.
Gel retardation analysis of E. coli M1 RNA-tRNA complexes.   总被引:5,自引:0,他引:5       下载免费PDF全文
We have analyzed complexes between tRNA and E. coli M1 RNA by electrophoresis in non-denaturing polyacrylamide gels. The RNA subunit of E. coli RNase P formed a specific complex with mature tRNA molecules. A derivative of the tRNA(Gly), endowed with the intron of yeast tRNA(ile) (60 nt), was employed to improve separation of complexed and unbound M1 RNA. Binding assays with tRNA(Gly) and intron-tRNA(Gly) as well as analysis of intron-tRNA/M1 RNA complexes on denaturing gels showed that one tRNA is bound per molecule of M1 RNA. A tRNA carrying a truncation as small as the 5'-nucleotide had a strongly reduced affinity to M1 RNA and was also a weak competitor in the cleavage reaction, suggesting that nucleotide +1 is a major determinant of tRNA recognition and that the thermodynamically stable tRNA-M1 RNA complex is relevant for enzyme function. Binding was shown to be dependent on the M1 RNA concentration in a cooperative fashion. Only a fraction of M1 RNAs (50-60%) readily formed a complex with intron-tRNA(Gly), indicating that distinct conformational subpopulations of M1 RNA may exist. Formation of the M1 RNA-tRNA(Gly), complex was very similar at 100 mM Mg++ and Ca++, corroborating earlier data that Ca++ is competent in promoting M1 RNA folding and tRNA binding. Determination of apparent equilibrium constants (app Kd) for tRNA(Gly) as a function of the Mg++ concentration supports an uptake of at least two additional Mg++ ions upon complex formation. At 20-30 mM Mg++, highest cleavage rates but strongly reduced complex formation were observed. This indicates that tight binding of the tRNA to the catalytic RNA at higher magnesium concentrations retards product release and therefore substrate turnover.  相似文献   

15.
The role of 2'-hydroxyl groups in a model substrate for RNase P from Escherichia coli was studied using mixed DNA/RNA derivatives of such a substrate. The presence of the 2'-hydroxyl groups of nucleotides at positions -1 and -2 in the leader sequence and at position 1, as well as at the first C in the 3'-terminal CCA sequence, are important but not absolutely essential for efficient cleavage of the substrate by RNase P or its catalytic RNA subunit, M1 RNA. The 2'-hydroxyl groups in the substrate that are important for efficient cleavage also participate in the binding of Mg2+. An all-DNA external guide sequence (EGS) can efficiently render a potential substrate, derived from the model substrate, susceptible to cleavage by the enzyme or its catalytic RNA subunit. Furthermore, both DNA and RNA EGSs turn over during the reaction with RNase P in vitro. The identity of the nucleotide at position 1 in the substrate, the adjacent Mg(2+)-binding site in the leader sequence, and the junction of the single and double-stranded regions are the important elements in the recognition of model substrates, as well as in the identification of the sites of cleavage in those model substrates.  相似文献   

16.
Metal ions are essential cofactors for precursor tRNA (ptRNA) processing by bacterial RNase P. The ribose 2'-OH at nucleotide (nt) -1 of ptRNAs is known to contribute to positioning of catalytic Me2+. To investigate the catalytic process, we used ptRNAs with single 2'-deoxy (2'-H), 2'-amino (2'-N), or 2'-fluoro (2'-F) modifications at the cleavage site (nt -1). 2' modifications had small (2.4-7.7-fold) effects on ptRNA binding to E. coli RNase P RNA in the ground state, decreasing substrate affinity in the order 2'-OH > 2'-F > 2'-N > 2'-H. Effects on the rate of the chemical step (about 10-fold for 2'-F, almost 150-fold for 2'-H and 2'-N) were much stronger, and, except for the 2'-N modification, resembled strikingly those observed in the Tetrahymena ribozyme-catalyzed reaction at corresponding position. Mn2+ rescued cleavage of the 2'-N but also the 2'-H-modified ptRNA, arguing against a direct metal ion coordination at this location. Miscleavage between nt -1 and -2 was observed for the 2'-N-ptRNA at low pH (further influenced by the base identities at nt -1 and +73), suggesting repulsion of a catalytic metal ion due to protonation of the amino group. Effects caused by the 2'-N modification at nt -1 of the substrate allowed us to substantiate a mechanistic difference in phosphodiester hydrolysis catalyzed by Escherichia coli RNase P RNA and the Tetrahymena ribozyme: a metal ion binds next to the 2' substituent at nt -1 in the reaction catalyzed by RNase P RNA, but not at the corresponding location in the Tetrahymena ribozyme reaction.  相似文献   

17.
Divalent metal ions are absolutely required for the structure and catalytic activities of ribosomes. They are partly coordinated to highly structured RNA, which therefore possesses high-affinity metal ion binding pockets. As metal ion induced RNA cleavages are useful for characterising metal ion binding sites and RNA structures, we analysed europium (Eu3+) induced specific cleavages in both 16S and 23S rRNA of E. coli. The cleavage sites were identified by primer extension and compared to those previously identified for calcium, lead, magnesium, and manganese ions. Several Eu3+ cleavage sites, mostly those at which a general metal ion binding site had been already identified, were identical to previously described divalent metal ions. Overall, the Eu3+ cleavages are most similar to the Ca2+ cleavage pattern, probably due to a similar ion radius. Interestingly, several cleavage sites which were specific for Eu3+ were located in regions implicated in the binding of tRNA and antibiotics. The binding of erythromycin and chloramphenicol, but not tetracycline and streptomycin, significantly reduced Eu3+ cleavage efficiencies in the peptidyl transferase center. The identification of specific Eu3+ binding sites near the active sites on the ribosome will allow to use the fluorescent properties of europium for probing the environment of metal ion binding pockets at the ribosome's active center.  相似文献   

18.
Synthetic metallonucleases are versatile metal ion catalysts that use multiple catalytic strategies for the cleavage of RNA. Recent work in the design of more active metallonucleases combines a single metal ion with functional groups that interact with RNA, including amino acid fragments or additional metal ions. Rate enhancements by multifunctional catalysts for cleavage of simple model substrates with good leaving groups are as high as 10(6) but somewhat lower (10(5)) for real RNA. However, cleavage of RNA substrates is complicated by different binding modes and steric interactions that can interfere with catalysis. Antisense oligonucleotides, peptides and small molecules that act as RNA recognition agents increase the strength of substrate binding, but not necessarily the catalytic rate constant. In general, catalytic strategies used by synthetic metallonucleases are probably not optimized. A better grasp of the mechanism of RNA cleavage by metal ions and more effort on positioning the metal ion complex with respect to the cleavage site may lead to improved catalysts.  相似文献   

19.
The ribonuclease P ribozyme (RNase P RNA), like other large ribozymes, requires magnesium ions for folding and catalytic function; however, specific sites of metal ion coordination in RNase P RNA are not well defined. To identify and characterize individual nucleotide functional groups in the RNase P ribozyme that participate in catalytic function, we employed self-cleaving ribozyme-substrate conjugates that facilitate measurement of the effects of individual functional group modifications. The self-cleavage rates and pH dependence of two different ribozyme-substrate conjugates were determined and found to be similar to the single turnover kinetics of the native ribozyme. Using site-specific phosphorothioate substitutions, we provide evidence for metal ion coordination at the pro-Rp phosphate oxygen of A67, in the highly conserved helix P4, that was previously suggested by modification-interference experiments. In addition, we detect a new metal ion coordination site at the pro-Sp phosphate oxygen of A67. These findings, in combination with the proximity of A67 to the pre-tRNA cleavage site, support the conclusion that an important role of helix P4 in the RNase P ribozyme is to position divalent metal ions that are required for catalysis.  相似文献   

20.
Catalysis by the RNA subunit of RNase P--a minireview   总被引:2,自引:0,他引:2  
RNase P, an enzyme that contains both RNA and protein components, cleaves tRNA precursors to generate mature 5' termini. The catalytic activity of RNase P resides in the RNA component, with the protein cofactor affecting the rate of the cleavage reaction. The reaction is also influenced by the nature of the tRNA substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号