首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gandhi NS  Coombe DR  Mancera RL 《Biochemistry》2008,47(17):4851-4862
Platelet endothelial cell adhesion molecule 1 (PECAM-1) has many functions, including its roles in leukocyte extravasation as part of the inflammatory response and in the maintenance of vascular integrity through its contribution to endothelial cell-cell adhesion. PECAM-1 has been shown to mediate cell-cell adhesion through homophilic binding events that involve interactions between domain 1 of PECAM-1 molecules on adjacent cells. However, various heterophilic ligands of PECAM-1 have also been proposed. The possible interaction of PECAM-1 with glycosaminoglycans (GAGs) is the focus of this study. The three-dimensional structure of the extracellular immunoglobulin (Ig) domains of PECAM-1 were constructed using homology modeling and threading methods. Potential heparin/heparan sulfate-binding sites were predicted on the basis of their amino acid consensus sequences and a comparison with known structures of sulfate-binding proteins. Heparin and other GAG fragments have been docked to investigate the structural determinants of their protein-binding specificity and selectivity. The modeling has predicted two regions in PECAM-1 that appear to bind heparin oligosaccharides. A high-affinity binding site was located in Ig domains 2 and 3, and evidence for a low-affinity site in Ig domains 5 and 6 was obtained. These GAG-binding regions were distinct from regions involved in PECAM-1 homophilic interactions.  相似文献   

2.
Platelet endothelial cell adhesion molecule (PECAM)-1 is a 130-kD transmembrane glycoprotein having six Ig homology domains within its extracellular domain and an immunoreceptor tyrosine-based inhibitory motif within its cytoplasmic domain. Previous studies have shown that addition of bivalent anti-PECAM-1 mAbs to the surface of T cells, natural killer cells, neutrophils, or platelets result in increased cell adhesion to immobilized integrin ligands. However, the mechanism by which this occurs is not clear, and it is possible that anti-PECAM-1 mAbs elicit this effect by simply sequestering PECAM-1, via antibody-induced patching and capping, away from stimulatory receptors that it normally regulates. To determine whether dimerization or oligomerization of PECAM-1 directly initiates signal transduction pathways that affect integrin function in an antibody-independent manner, stable human embryonic kidney-293 cell lines were produced that expressed chimeric PECAM-1 cDNAs containing one or two FK506-binding protein (FKBP) domains at their COOH terminus. Controlled dimerization initiated by addition of the bivalent, membrane-permeable FKBP dimerizer, AP1510, nearly doubled homophilic binding capacity, whereas AP1510-induced oligomers favored cis PECAM-1/PECAM-1 associations within the plane of the plasma membrane at the expense of trans homophilic adhesion. Importantly, AP1510-induced oligomerization resulted in a marked increase in both adherence and spreading of PECAM/FKBP-2-transfected cells on immobilized fibronectin, a reaction that was mediated by the integrin alpha(5)beta(1). These data demonstrate that signals required for integrin activation can be elicited by clustering of PECAM-1 from inside the cell, and suggest that a dynamic equilibrium between PECAM-1 monomers, dimers, and oligomers may control cellular activation signals that influence the adhesive properties of vascular cells that express this novel member of the immunoreceptor tyrosine-based inhibitory motif family of regulatory receptors.  相似文献   

3.
We utilized recombinant fibronectin polypeptides with cell-binding domain and heparin-binding domains (referred to as C-274 and H-271, respectively) and their fusion polypeptide (CH-271) to examine the role of sulfated polysaccharide heparin and/or the functional domains of fibronectin in modulating tumor cell behavior. Both C-274 and CH-271 polypeptides with cell-binding domains promoted the adhesion and migration of B16-BL6 melanoma cells, whereas H-271 did not. Heparin bound to the immobilized polypeptides with heparin-binding domain (H-271, CH-271, and a mixture of C-274 and H-271 or fibronectin) but did not affect the tumor cell adhesion to the substrates. At the same time, heparin or two monoclonal antibodies against the heparin-binding domain were able to inhibit the haptotactic migration to CH-271 or fibronectin, though not to C-274 or a mixture of C-274 and H-271. This suggests that although heparin did not affect tumor cell adhesion to the cell-binding domain near the heparin-binding domain in CH-271 or fibronectin, it did lead to a modulation of cell motility. It seems likely that the regulatory mechanism may depend on interaction between heparin-like molecules on the cell surface and the heparin-binding domain in fibronectin, rather than on simple steric hindrance or on the masking of the cell-binding domain caused by the binding of heparin to heparin-binding domain.  相似文献   

4.
Phosphorylation of tyrosine residues on platelet-endothelial cell adhesion molecule-1 (PECAM-1), followed by signal transduction events, has been described in endothelial cells following exposure to hyperosmotic and fluid shear stress. However, it is unclear whether PECAM-1 functions as a primary mechanosensor in this process. Utilizing a PECAM-1-null EC-like cell line, we examined the importance of cellular localization and the extracellular and transmembrane domains in PECAM-1 phosphorylation responses to mechanical stress. Tyrosine phosphorylation of PECAM-1 was stimulated in response to mechanical stress in null cells transfected either with full length PECAM-1 or with PECAM-1 mutants that do not localize to the lateral cell-cell adhesion site and that do not support homophilic binding between PECAM-1 molecules. Furthermore, null cells transfected with a construct that contains the intact cytoplasmic domain of PECAM-1 fused to the extracellular and transmembrane domains of the interleukin-2 receptor also underwent mechanical stress-induced PECAM-1 tyrosine phosphorylation. These findings suggest that mechanosensitive PECAM-1 may lie downstream of a primary mechanosensor that activates a tyrosine kinase.  相似文献   

5.
Platelet endothelial cell adhesion molecule (PECAM-1), a member of the Ig superfamily, is found on endothelial cells and neutrophils and has been shown to be involved in the migration of leukocytes across the endothelium. Adhesion is mediated, at least in part, through binding interactions involving its first N-terminal Ig-like domain, but it is still unclear which sequences in this domain are required for in vivo function. Therefore, to identify functionally important regions of the first Ig-like domain of PECAM-1 that are required for the participation of PECAM-1 in in vivo neutrophil recruitment, a panel of mAbs against this region of PECAM-1 was generated and characterized in in vitro adhesion assays and in an in vivo model of cutaneous inflammation. It was observed that mAbs that disrupted PECAM-1-dependent homophilic adhesion in an L cell aggregation assay also blocked TNF-alpha-induced intradermal accumulation of neutrophils in a transmigration model using human skin transplanted onto SCID mice. Localization of the epitopes of these Abs indicated that these function-blocking Abs mapped to specific regions on either face of domain 1. This suggests that these regions of the first Ig-like domain may contain or be close to binding sites involved in PECAM-1-dependent homophilic adhesion, and thus may represent potential targets for the development of antiinflammatory reagents.  相似文献   

6.
PECAM-1/CD31 is a cell adhesion and signaling molecule that is enriched at the endothelial cell junctions. Alternative splicing generates multiple PECAM-1 splice variants, which differ in their cytoplasmic domains. It has been suggested that the extracellular ligand-binding property, homophilic versus heterophilic, of these isoforms is controlled by their cytoplasmic tails. To determine whether the cytoplasmic domains also regulate the cell surface distribution of PECAM-1 splice variants, we examined the distribution of CD31-EGFPs (PECAM-1 isoforms tagged with the enhanced green fluorescent protein) in living Chinese hamster ovary cells and in PECAM-1-deficient endothelial cells. Our results indicate that the extracellular, rather than the cytoplasmic domain, directs PECAM-1 to the cell-cell borders. Furthermore, coculturing PECAM-1 expressing and deficient cells along with transfection of CD31-EGFP cDNAs into PECAM-1 deficient cells reveal that this PECAM-1 localization is mediated by homophilic interactions. Although the integrin alphavbeta3 has been shown to interact with PECAM-1, this trans-heterophilic interaction was not detected at the borders of endothelial cells. However, based on cocapping experiments performed on proT cells, we provide evidence that the integrin alphavbeta3 associates with PECAM-1 on the same cell surface as in a cis manner.  相似文献   

7.
A laminin-binding peptide (peptide G), predicted from the cDNA sequence for a 33-kDa protein related to the 67-kDa laminin receptor, specifically inhibits binding of laminin to heparin and sulfatide. Since the peptide binds directly to heparin and inhibits interaction of another heparin-binding protein with the same sulfated ligands, this inhibition is due to direct competition for binding to sulfated glycoconjugates rather than an indirect effect of interaction with the binding site on laminin for the 67-kDa receptor. Direct binding of laminin to the peptide is also inhibited by heparin. This interaction may result from contamination of the laminin with heparan sulfate, as binding is enhanced by the addition of substoichiometric amounts of heparin but inhibited by excess heparin and two heparin-binding proteins. Furthermore, laminin binds more avidly to a heparin-binding peptide derived from thrombospondin than to the putative receptor peptide. Adhesion of A2058 melanoma cells on immobilized peptide G is also heparin-dependent, whereas adhesion of the cells on laminin is not. Antibodies to the beta 1-integrin chain or laminin block adhesion of the melanoma cells to laminin but not to peptide G. Thus, the reported inhibition of melanoma cell adhesion to endothelial cells by peptide G may result from inhibition of binding of laminin or other proteins to sulfated glycoconjugate receptors rather than from specific inhibition of laminin binding to the 67-kDa receptor.  相似文献   

8.
Platelet endothelial cell adhesion molecule-1 (PECAM-1; CD31) is a 130-kDa transmembrane glycoprotein that is expressed on the surfaces of platelets, endothelial cells, and certain leukocyte subsets. The extracellular region of PECAM-1 contains six immunoglobulin homology domains, two of which (domains 1 and 2) mediate PECAM-1 homophilic interactions. Recent evidence suggests that a major function of the extracellular region of PECAM-1 is to determine its localization within the plane of the plasma membrane. The cytoplasmic domain of PECAM-1 contains an immunoreceptor tyrosine-based inhibitory motif that, upon tyrosine phosphorylation, supports recruitment of the Src homology 2 domain-containing protein tyrosine phosphatase, SHP-2. However, neither the targets of this PECAM-1/SHP-2 complex nor the significance of localizing SHP-2 to the borders of opposing PECAM-1-expressing cells is yet known. As a first step in addressing these issues, we designed a cDNA encoding a chimeric protein composed of the PECAM-1 extracellular domain fused to the phosphatase domain of SHP-2, which we call PECAM-1/PhD2. When immunopurified from stably transfected HEK293 cell lines expressing this recombinant protein, PECAM-1/PhD2 was found to possess constitutive enzymatic activity and appropriate border localization. This constitutively active chimeric protein will be useful in future studies designed to define the components of signal transduction pathways modulated by PECAM-1/SHP-2 signaling complexes.  相似文献   

9.
Platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31) is a member of the immunoglobulin superfamily present on platelets, endothelial cells, and leukocytes that may function as a vascular cell adhesion molecule. The purpose of this study was to examine the role of the cytoplasmic domain in PECAM-1 function. To accomplish this, wild- type and mutated forms of PECAM-1 cDNA were transfected into murine fibroblasts and the functional characteristics of the cells analyzed. Wild-type PECAM-1 localized to the cell-cell borders of adjacently transfected cells and mediated heterophilic, calcium-dependent L-cell aggregation that was inhibitable by a polyclonal and two monoclonal anti-PECAM-1 antibodies. A mutant protein lacking the entire cytoplasmic domain did not support aggregation or move to cell-cell borders. In contrast, both forms of PECAM-1 with partially truncated cytoplasmic domains (missing either the COOH-terminal third or two thirds of the cytoplasmic domain) localized to cell-cell borders in 3T3 cells in a manner analogous to the distribution seen in cultured endothelial cells. L-cells expressing these mutants demonstrated homophilic, calcium-independent aggregation that was blocked by the polyclonal anti-PECAM-1 antibody, but not by the two bioactive monoclonal antibodies. Although changes in the cytoplasmic domain of other receptors have been shown to alter ligand-binding affinity, to our knowledge, PECAM-1 is the first example of a cell adhesion molecule where changes in the cytoplasmic domain result in a switch in the basic mechanism of adhesion leading to different ligand-binding specificity. Variations in the cytoplasmic domain could thus be a potential mechanism for regulating PECAM-1 activity in vivo.  相似文献   

10.
Aortic endothelial cells adhere to the core protein of murine perlecan, a heparan sulfate proteoglycan present in endothelial basement membrane. We found that cell adhesion was partially inhibited by beta 1 integrin-specific mAb and almost completely blocked by a mixture of beta 1 and alpha v beta 3 antibodies. Furthermore, adhesion was partially inhibited by a synthetic peptide containing the perlecan domain III sequence LPASFRGDKVTSY (c-RGD) as well as by GRGDSP, but not by GRGESP. Both antibodies contributed to the inhibition of cell adhesion to immobilized c-RGD whereas only beta 1-specific antibody blocked residual cell adhesion to proteoglycan core in the presence of maximally inhibiting concentrations of soluble RGD peptide. A fraction of endothelial surface-labeled detergent lysate bound to a core affinity column and 147-, 116-, and 85-kD proteins were eluted with NaCl and EDTA. Polyclonal anti-beta 1 and anti-beta 3 integrin antibodies immunoprecipitated 116/147 and 85/147 kD surface-labeled complexes, respectively. Cell adhesion to perlecan was low compared to perlecan core, and cell adhesion to core, but not to immobilized c-RGD, was selectively inhibited by soluble heparin and heparan sulfates. This inhibition by heparin was also observed with laminin and fibronectin and, in the case of perlecan, was found to be independent of heparin binding to substrate. These data support the hypothesis that endothelial cells interact with the core protein of perlecan through beta 1 and beta 3 integrins, that this binding is partially RGD- independent, and that this interaction is selectively sensitive to a cell-mediated effect of heparin/heparan sulfates which may act as regulatory ligands.  相似文献   

11.
Thrombospondin (TSP) mediates sickle erythrocyte adhesion to endothelium, but the mechanism remains unknown. Since TSP is comprised of heterogeneously distinct domains, this adhesion may depend on the interaction of specific regions of TSP with different cell surface receptors. To examine the mechanisms of interaction of TSP with human umbilical vein endothelial cells (HUVEC), we performed binding studies using soluble [125I]TSP. Our data showed that (i) monoclonal antibodies (MoAbs) against cell surface heparan sulfate (HS) or the heparin-binding domain of TSP, or cleavage of HS on HUVEC by heparitinase reduced TSP binding by 28–40%, (ii) the RGD peptide or MoAbs against integrin αvβ3 or the calcium binding region of TSP inhibited binding by 18–28%, and (iii) a MoAb against the cell-binding domain of TSP inhibited binding by 36%. Unmodified heparin inhibited the binding of TSP to endothelial cells by 70% and did so far more effectively than selectively desulfated heparins, HS or chondroitin sulfate. Heparin inhibited TSP binding to HUVEC at much lower concentrations than were required to inhibit TSP binding to sickle erythrocytes. Unmodified heparin effectively inhibited the TSP-mediated adhesion of sickle erythrocytes to HUVEC. These data imply that cell surface HS-mediated mechanisms play a key role in TSP-mediated sickle erythrocyte adhesion to endothelium, and heparin may be of use for inhibition of this adhesion.  相似文献   

12.
Human neutrophil-specific CD177 (NB1 and PRV-1) has been reported to be up-regulated in a number of inflammatory settings, including bacterial infection and granulocyte-colony-stimulating factor application. Little is known about its function. By flow cytometry and immunoprecipitation studies, we identified platelet endothelial cell adhesion molecule-1 (PECAM-1) as a binding partner of CD177. Real-time protein-protein analysis using surface plasmon resonance confirmed a cation-dependent, specific interaction between CD177 and the heterophilic domains of PECAM-1. Monoclonal antibodies against CD177 and against PECAM-1 domain 6 inhibited adhesion of U937 cells stably expressing CD177 to immobilized PECAM-1. Transendothelial migration of human neutrophils was also inhibited by these antibodies. Our findings provide direct evidence that neutrophil-specific CD177 is a heterophilic binding partner of PECAM-1. This interaction may constitute a new pathway that participates in neutrophil transmigration.  相似文献   

13.
Platelet endothelial cell adhesion molecule (PECAM-1), a transmembrane glycoprotein, has been implicated in angiogenesis, with recent evidence indicating the involvement of PECAM-1 in endothelial cell motility. The cytoplasmic domain of PECAM-1 contains two tyrosine residues, Y663 and Y686, that each fall within an immunoreceptor tyrosine-based inhibitory motif (ITIM). When phosphorylated, these residues together mediate the binding of the protein tyrosine phosphatase SHP-2. Because SHP-2 has been shown to be involved in the turnover of focal adhesions, a phenomenon required for efficient cell motility, the association of this phosphatase with PECAM-1 via its ITIMs may represent a mechanism by which PECAM-1 might facilitate cell migration. Studies were therefore done with cell transfectants expressing wild-type PECAM or mutant PECAM-1 in which residues Y663 and Y686 were mutated. These mutations eliminated PECAM-1 tyrosine phosphorylation and the association of PECAM-1 with SHP-2 but did not impair the ability of the molecule to localize at intercellular junctions or to bind homophilically. However, in vitro cell motility and tube formation stimulated by the expression of wild-type PECAM-1 were abrogated by the mutation of these tyrosine residues. Importantly, during wound-induced migration, the number of focal adhesions as well as the level of tyrosine phosphorylated paxillin detected in cells expressing wild-type PECAM-1 were markedly reduced compared with control cells or transfectants with mutant PECAM-1. These data suggest that, in vivo, the binding of SHP-2 to PECAM-1, via PECAM-1’s ITIM domains, promotes the turnover of focal adhesions and, hence, endothelial cell motility. platelet endothelial cell adhesion molecule-1; endothelial cells; angiogenesis  相似文献   

14.
The unfolding tale of PECAM-1   总被引:12,自引:0,他引:12  
Jackson DE 《FEBS letters》2003,540(1-3):7-14
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a member of the immunoglobulin (Ig) superfamily that has distinctive features of an immunoreceptor based upon its genomic structure and the presence of intrinsic immunoreceptor tyrosine inhibitory motifs (ITIMs) in its ligand binding polypeptide. This has lead to its subclassification into the Ig-ITIM superfamily. Its amino-terminal Ig-like domain of PECAM-1 is necessary for its homophilic binding, which plays an important role in cell–cell interactions. Its intracellular ITIMs serve as scaffolds for recruitment of signalling molecules including protein-tyrosine phosphatases to mediate its inhibitory co-receptor activity. Increasing evidence has implicated PECAM-1 in a plethora of biological phenomena, including modulation of integrin-mediated cell adhesion, transendothelial migration, angiogenesis, apoptosis, cell migration, negative regulation of immune cell signalling, autoimmunity, macrophage phagocytosis, IgE-mediated anaphylaxis and thrombosis. In this review, we discuss some of the new developments attributed to this molecule and its unique roles in biology.  相似文献   

15.
Secreted modular calcium-binding proteins 1 and 2 (SMOC-1 and SMOC-1) are extracellular calcium- binding proteins belonging to the BM-40 family of proteins. In this work we have identified a highly basic region in the extracellular calcium-binding (EC) domain of the SMOC-1 similar to other known glycosaminoglycan-binding motifs. Size-exclusion chromatography shows that full length SMOC-1 as well as its C-terminal EC domain alone bind heparin and heparan sulfate, but not the related chondroitin sulfate or dermatan sulfate glycosaminoglycans. Intrinsic tryptophan fluorescence measurements were used to quantify the binding of heparin to full length SMOC-1 and the EC domain alone. The calculated equilibrium dissociation constants were in the lower micromolar range. The binding site consists of two antiparallel alpha helices and mutagenesis experiments have shown that heparin-binding residues in both helices must be replaced in order to abolish heparin binding. Furthermore, we show that the SMOC-1 EC domain, like the SMOC-2 EC domain, supports the adhesion of epithelial HaCaT cells. Heparin-binding impaired mutants failed to support S1EC-mediated cell adhesion and together with the observation that S1EC in complex with soluble heparin attenuated cell adhesion we conclude that a functional and accessible S1EC heparin-binding site mediates adhesion of epithelial cells to SMOC-1.  相似文献   

16.
Recent studies using solid-phase-binding assays and electron microscopy suggested the presence of a heparin-binding domain between the inner globule of a lateral short arm and the cross region of laminin. Using the information from the amino acid sequence of the B1 chain of laminin, several peptides were synthesized from areas with a low hydropathy index and a high density of lysines and/or arginines. One of these, peptide F-9 (RYVVLPRPVCFEKGMNYTVR), which is derived from the inner globular domain of the lateral short arm, demonstrated specific binding to heparin. This was tested in direct solid-phase binding assays by coating the peptide either on nitrocellulose or on polystyrene and in indirect competition assays where the peptide was in solution and either laminin or heparin was immobilized on a solid support. The binding of [3H]heparin to peptide F-9 was dramatically reduced when heparin but not other glycosaminoglycans other than heparin (dextran sulfate, dermatan sulfate) were used in competition assays. Modification of the free amino groups of peptide F-9 by acetylation abolished its ability to inhibit the binding of [3H]heparin to laminin on polystyrene surfaces. Peptide F-9 promoted the adhesion of various cell lines (melanoma, fibrosarcoma, glioma, pheochromocytoma) and of aortic endothelial cells. Furthermore, when peptide F-9 was present in solution, it inhibited the adhesion of melanoma cells to laminin-coated substrates. These findings suggest that peptide F-9 defines a novel heparin-binding and cell adhesion-promoting site on laminin.  相似文献   

17.
Thrombospondin is an inhibitor of angiogenesis that modulates endothelial cell adhesion, proliferation, and motility. Synthetic peptides from the second type I repeat of human thrombospondin containing the consensus sequence -Trp-Ser-Pro-Trp- and a recombinant heparin binding fragment from the amino-terminus of thrombospondin mimic several of the activities of the intact protein. The peptides and heparin-binding domain promote endothelial cell adhesion, inhibit endothelial cell chemotaxis to basic fibroblast growth factor (bFGF), and inhibit mitogenesis and proliferation of aortic and corneal endothelial cells. The peptides also inhibit heparin-dependent binding of bFGF to corneal endothelial cells. The antiproliferative activities of the peptides correlate with their ability to bind to heparin and to inhibit bFGF binding to heparin. Peptides containing amino acid substitutions that eliminate heparin-binding do not alter chemotaxis or proliferation of endothelial cells. Inhibition of proliferation by the peptide is time-dependet and reversible. Thus, the antiproliferative activities of the thrombospondin peptides and recombinant heparin-binding domain result at least in part from competition with heparin-dependent growth factors for binding to endothelial cell proteoglycans. These results suggest that both the Trp-Ser-Xaa-Trp sequences in the type I repeats and the amino-terminal domain play roles in the antiproliferative activity of thrombospondin.  相似文献   

18.
Heparin and HS (heparan sulfate) exert their wide range of biological activities by interacting with extracellular protein ligands. Among these important protein ligands are various angiogenic growth factors and cytokines. HS binding to VEGF (vascular endothelial growth factor) regulates multiple aspects of vascular development and function through its specific interaction with HS. Many studies have focused on HS-derived or HS-mimicking structures for the characterization of VEGF165 interaction with HS. Using a heparinase 1-prepared small library of heparin-derived oligosaccharides ranging from hexasaccharide to octadecasaccharide, we systematically investigated the heparin-specific structural features required for VEGF binding. We report the apparent affinities for the association between the heparin-derived oligosaccharides with both VEGF165 and VEGF55, a peptide construct encompassing exclusively the heparin-binding domain of VEGF165. An octasaccharide was the minimum size of oligosaccharide within the library to efficiently bind to both forms of VEGF and a tetradecasaccharide displayed an effective binding affinity to VEGF165 comparable to unfractionated heparin. The range of relative apparent binding affinities among VEGF and the panel of heparin-derived oligosaccharides demonstrate that the VEGF binding affinity likely depends on the specific structural features of these oligosaccharides, including their degree of sulfation, sugar-ring stereochemistry and conformation. Notably, the unique 3-O-sulfo group found within the specific antithrombin binding site of heparin is not required for VEGF165 binding. These findings afford new insight into the inherent kinetics and affinities for VEGF association with heparin and heparin-derived oligosaccharides with key residue-specific modifications and may potentially benefit the future design of oligosaccharide-based anti-angiogenesis drugs.  相似文献   

19.
Temperature-dependent regulation of affinity binding between bioactive ligands and their cell membrane receptors is an attractive approach for the dynamic control of cellular adhesion, proliferation, migration, differentiation, and signal transduction. Covalent conjugation of bioactive ligands onto thermoresponsive poly(N-isopropylacrylamide) (PIPAAm)-grafted surfaces facilitates the modulation of one-on-one affinity binding between bioactive ligands and cellular receptors by changing temperature. For the dynamic control of the multivalent affinity binding between heparin and heparin-binding proteins, thermoresponsive cell culture surface modified with heparin, which interacts with heparin-binding proteins such as basic fibroblast growth factor (bFGF), has been proposed. Heparin-functionalized thermoresponsive cell culture surface induces (1) the multivalent affinity binding of bFGF in active form and (2) accelerating cell sheet formation in the state of shrunken PIPAAm chains at 37°C. By lowering temperature to 20°C, the affinity binding between bFGF and immobilized heparin is reduced with increasing the mobility of heparin and the swollen PIPAAm chains, leading to the detachment of cultured cells. Therefore, heparin-functionalized thermoresponsive cell culture surface was able to enhance cell proliferation and detach confluent cells as a contiguous cell sheet by changing temperature. A cell cultivation system using heparin-functionalized thermoresponsive cell culture surface is versatile for immobilizing other heparin-binding proteins such as vascular endothelial growth factor, fibronectin, antithrombin III, and hepatocyte growth factor, etc. for tuning the adhesion, growth, and differentiation of various cell species.  相似文献   

20.
Platelet/endothelial cell adhesion molecule (PECAM-1) is a cell adhesion molecule of the immunoglobulin superfamily that plays a role in a number of vascular processes including leukocyte transmigration through endothelium. The presence of a specific 19– amino acid exon within the cytoplasmic domain of PECAM-1 regulates the binding specificity of the molecule; specifically, isoforms containing exon 14 mediate heterophilic cell–cell aggregation while those variants missing exon 14 mediate homophilic cell–cell aggregation. To more precisely identify the region of exon 14 responsible for ligand specificity, a series of deletion mutants were created in which smaller regions of exon 14 were removed. After transfection into L cells, they were tested for their ability to mediate aggregation. For heterophilic aggregation to occur, a conserved 5–amino acid region (VYSEI in the murine sequence or VYSEV in the human sequence) in the mid-portion of the exon was required. A final construct, in which this tyrosine was mutated into a phenylalanine, aggregated in a homophilic manner when transfected into L cells. Inhibition of phosphatase activity by exposure of cells expressing wild type or mutant forms of PECAM-1 to sodium orthovanadate resulted in high levels of cytoplasmic tyrosine phosphorylation and led to a switch from heterophilic to homophilic aggregation. Our data thus indicate either loss of this tyrosine from exon 14 or its phosphorylation results in a change in ligand specificity from heterophilic to homophilic binding. Vascular cells could thus determine whether PECAM-1 functions as a heterophilic or homophilic adhesion molecule by processes such as alternative splicing or by regulation of the balance between tyrosine phosphorylation or dephosphorylation. Defining the conditions under which these changes occur will be important in understanding the biology of PECAM-1 in transmigration, angiogenesis, development, and other processes in which this molecule plays a role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号