首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
P Wang  J Meijer  F P Guengerich 《Biochemistry》1982,21(23):5769-5776
Epoxide hydrolase (EC 3.3.2.3) was purified to electrophoretic homogeneity from human liver cytosol by using hydrolytic activity toward trans-8-ethylstyrene 7,8-oxide (TESO) as an assay. The overall purification was 400-fold. The purified enzyme has an apparent monomeric molecular weight of 58 000, significantly greater than the 50 000 found for human (or rat) liver microsomal epoxide hydrolase or for another TESO-hydrolyzing enzyme also isolated from human liver cytosol. Purified cytosolic TESO hydrolase catalyzes the hydrolysis of cis-8-ethylstyrene 7,8-oxide 10 times more rapidly than does the microsomal enzyme, catalyzes the hydrolysis of TESO and trans-stilbene oxide as rapidly as the microsomal enzyme, but catalyzes the hydrolysis of styrene 7,8-oxide, p-nitrostyrene 7,8-oxide, and naphthalene 1,2-oxide much less effectively than does the microsomal enzyme. Purified cytosolic TESO hydrolase does not hydrolyze benzo[a]pyrene 4,5-oxide, a substrate for the microsomal enzyme. The activities of the purified enzymes can explain the specific activities observed with subcellular fractions. Anti-human liver microsomal epoxide hydrolase did not recognize cytosolic TESO hydrolase in purified form or in cytosol, as judged by double-diffusion immunoprecipitin analysis, precipitation of enzymatic activity, and immunoelectrophoretic techniques. Cytosolic TESO hydrolase and microsomal epoxide hydrolase were also distinguished by peptide mapping. The results provide evidence that physically different forms of epoxide hydrolase exist in different subcellular fractions and can have markedly different substrate specificities.  相似文献   

2.
Rat liver cytosolic epoxide hydrolase has been purified and characterized. The enzyme was purified from tiadenol-induced rat liver 540-fold with respect to trans-stilbene oxide as a substrate. Similar purification was obtained with the substrates trans-beta-ethyl styrene oxide and styrene 7,8-oxide, the specific activities decreasing in the order trans-beta-ethyl styrene oxide greater than styrene 7,8-oxide greater than trans-stilbene oxide. The enzyme exerts highest activity at pH 7.4 Km and Vmax of the pure enzyme for trans-stilbene oxide were 1.7 microM and 205 nmol x min-1 x mg protein-1 respectively. With trans-stilbene oxide as a substrate, the inhibition by organic solvents (2.5% by vol.) increased in the order ethanol less than methanol less than acetone less than isopropanol = N,N-dimethyl formamide less than acetonitrile less than tetrahydrofuran. The native enzyme, with a molecular mass of 120 kDa, consists of two 61-kDa subunits. Digestion of rat liver cytosolic and microsomal epoxide hydrolase by three proteases resulted in markedly different peptide maps. Western-blot analysis with antiserum against rat liver cytosolic epoxide hydrolase revealed a single band with the purified enzyme, and with liver cytosol from control and clofibrate-induced rats. No cross-reactivity was observed with purified rat microsomal epoxide hydrolase or microsomes. A positive reaction at the same molecular mass was obtained with liver cytosol of mouse, guinea pig, Syrian hamster and New Zealand white rabbit but not with that of green monkey.  相似文献   

3.
Epoxide hydrolase in human adrenal gland was characterized with respect to catalytic properties and subcellular distribution. With human adrenal microsomes and the substrates styrene-7,8-oxide, cis-stilbene oxide, estroxide and androstene oxide the specific activities were between 1.9 and 19.0 nmol/min/mg protein. With styrene-7,8-oxide as substrate the apparent Km-value was 0.98 mM and the pH optimum was 9.2. Subcellular fractionation revealed that the bulk of the activity was confined to the endoplasmic reticulum. Different compounds known to influence rodent microsomal epoxide hydrolase activity were also tested on the human adrenal enzyme. 1,1,1-Trichloropropene-2,3-oxide (TCPO) and cyclohexene oxide (CHO) inhibited the activity while benzil and clotrimazole stimulated the activity. Partial purification of human adrenal epoxide hydrolase indicates that its molecular weight is about 51 000 and that its concentration relative total protein in the human adrenal microsomes is about 10%.  相似文献   

4.
Antibodies raised to homogeneous rat liver microsomal epoxide hydrolase were used to distinguish microsomal epoxide hydrolase from epoxide hydrolase of cytosolic origin in mice and rats. Using double diffusion analysis in agarose gels, we show that anti-rat liver microsomal epoxide hydrolase forms a single precipitin line with solubilized microsomes from rat and mouse liver, but no reaction is seen with the corresponding cytosolic fractions. Rat or mouse microsomal epoxide hydrolase activity (using benzo[a]pyrene 4,5-oxide as substrate) can be completely precipitated out of solubilized preparations by the antibody, which is equipotent against rat and mouse microsomal epoxide hydrolase. No precipitation of cytosolic hydrolase activity (using trans-beta-ethyl styrene oxide as substrate) is seen with any concentration of the antibody tested. Thus, in the case of microsomal epoxide hydrolase, extensive immunological cross-reactivity exists between the two species, rat and mouse. In contrast, no cross-reactivity is detectable between cytosolic and microsomal epoxide hydrolase, even when enzymes from the same species are compared. We conclude that microsomal and cytosolic epoxide hydrolase activities represent distinct and immunologically non-cross-reactive protein species.  相似文献   

5.
Solubilized rhesus monkey liver microsomes were used as the starting material for the purification of epoxide (cis-stilbene oxide) hydrolase. Successive chromatography over DEAE-Sephacel followed by CM-cellulose resulted in two peaks of activity, CM A and CM B. Passage of these two eluates over separate hydroxyapatite columns resulted in two peaks of activity from CM A, HA A1, and HA A2, and one peak from CM B and HA B, with respective recoveries of 1, 7, and 0.2% of cis-stilbene oxide hydrolase activities. A similar recovery was found for benzo[a]pyrene-4,5-oxide hydrolase, while trans-stilbene oxide hydrolase activity coeluted only in HA A2. Fraction HA A1 was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblots of the three eluates and solubilized microsomes incubated with anti-HA A1 demonstrated a single band at 49 kDa in each fraction. The three eluates were differentially affected by the inhibitors of epoxide hydrolase, trichloropropene oxide and 4-phenylchalcone oxide, and addition of Lubrol PX and phospholipid. Immunoprecipitation of HA A2 resulted in coprecipitation of cis- and trans-stilbene oxide hydrolase activity. Upon immunoprecipitation of solubilized microsomes, all the cis-stilbene oxide and benzo[a]pyrene-4,5-oxide, but only 50-60% of trans-stilbene oxide hydrolase activity was precipitated. These studies support findings with other species that (i) an immunochemically distinct cytosolic-like epoxide hydrolase exists in microsomes, and (ii) microsomal epoxide hydrolase activity can be separated during ion-exchange chromatography giving proteins with similar molecular weights and immunochemical cross-reactivity. The precipitation of cis- and trans-stilbene oxide hydrolase activity in eluate HA A2 provides convincing evidence that these isozymes are not structurally identical.  相似文献   

6.
Microsomal epoxide hydrolase activity, determined using benzpyrene 4,5-oxide and styrene 7,8-oxide, increased in cultured hepatocytes compared to freshly isolated cells. In contrast, cytosolic epoxide hydrolase activity, assayed using trans-stilbene oxide, had decreased 80% by 24 hr and was barely detectable after 96 hr in culture. There was no difference in enzyme activity between freshly isolated hepatocytes and the two rat hepatoma cell lines McA-RH 7777 and H4-II-E, when styrene 7,8-oxide was used as substrate. However, benzpyrene 4,5-oxide hydrolase activity of the McA-RH 7777 and H4-II-E cell lines were 55 and 10%, respectively, of freshly isolated hepatocytes. These results show that hepatoma cell lines provide a suitable system for studying the regulation of both the microsomal and cytosolic epoxide hydrolase enzymes.  相似文献   

7.
The influence of metyrapone, chalcone epoxide, benzil and clotrimazole on the activity of microsomal epoxide hydrolase towards styrene oxide, benzo[a]pyrene 4,5-oxide, estroxide and androstene oxide was investigated. The studies were performed using liver microsomes from rats, rabbits, mice and humans; epoxide hydrolase purified from rat liver microsomes to apparent homogeneity; and the purified enzyme incorporated into liposomes composed of egg-yolk phosphatidylcholine or total rat liver microsomal lipids. All four effectors were found to activate the hydrolysis of styrene oxide by epoxide hydrolase in situ in rat liver microsomal membranes, in agreement with earlier findings. Epoxide hydrolase activity towards styrene oxide in liver microsomes from mouse, rabbit and man was also increased by all four effectors. The most striking effect was a 680% activation by clotrimazole in rat liver microsomes. However, none of the effectors activated microsomal epoxide hydrolase more than 50% when benzo[a]pyrene 4,5-oxide, estroxide or androstene oxide was used as substrate. Indeed, clotrimazole was found to inhibit microsomal epoxide hydrolase activity towards estroxide 30-50% and towards androstene oxide 60-90%. The effects of these four compounds were found to be virtually identical in the preparations from rats, rabbits, mice and humans. The effects of metyrapone, chalcone epoxide, benzil and clotrimazole on purified epoxide hydrolase were qualitatively the same as those on epoxide hydrolase in intact microsomes, but much smaller in magnitude. These effects were increased in magnitude only slightly by incorporation of the purified enzyme into liposomes made from egg-yolk phosphatidylcholine. However, when incorporation into liposomes composed of total microsomal lipids was performed, the effects seen were essentially of the same magnitude as with intact microsomes. When the extent of activation was plotted against effector concentration, three different patterns were found with different effectors. Activation of epoxide hydrolase activity towards styrene oxide by clotrimazole was found to be uncompetitive with the substrate and highly structure specific. On the other hand, inhibition of epoxide hydrolase activity towards androstene oxide by clotrimazole was found to be competitive in microsomes. It is concluded that the marked effects of these four modulators on microsomal epoxide hydrolase activity are due to an interaction with the enzyme protein itself, but that the presence of total microsomal phospholipids allows the maximal expression leading to similar degrees of modulation as those observed in intact microsomes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Sex and species differences in hepatic epoxide hydrolase activities towards cis- and trans-stilbene oxide were examined in common laboratory animals, as well as in monkey and man. In general trans-stilbene oxide was found to be a good substrate for epoxide hydrolase activity in cytosolic fractions, whereas the cis isomer was selectively hydrated by the microsomal fraction (with the exception of man, where the cytosol also hydrated this isomer efficiently). The specific cytosolic epoxide hydrolase activity was highest in mouse, followed by hamster and rabbit. Epoxide hydrolase activity in the crude 'mitochondrial' fraction towards trans-stilbene oxide was also highest in mouse and low in all other species examined. Microsomal epoxide hydrolase activity was highest in monkey, followed by guinea pig, human and rabbit, which all had similar activities. Sex differences were generally small, but where significant, male animals had higher catalytic activities than females of the same species in most cases. Antibodies raised against microsomal epoxide hydrolase purified from rat liver reacted with microsomes from all species investigated, indicating structural conservation of this protein. Antibodies directed towards cytosolic epoxide hydrolase purified from mouse liver reacted only with liver cytosol from mouse and hamster and with the 'mitochondrial' fraction from mouse in immunodiffusion experiments. Immunoblotting also revealed reaction with rat liver cytosol. The cytosolic and 'mitochondrial' epoxide hydrolases in all three mouse strains and in both sexes for each strain were immunochemically identical. The anomalies in human liver epoxide hydrolase activities observed here indicate that no single common laboratory animal is a good model for man with regard to these activities.  相似文献   

9.
Immunochemical techniques were used to investigate the biochemical properties of human lung epoxide hydrolases. Two epoxide hydrolases with different immunoreactive properties were identified. These two epoxide hydrolases were found in both cytosolic and microsomal cell fractions. Immunotitration of enzyme activity showed that enzymes that catalyze the hydration of benzo(a)pyrene 4,5-oxide react with antiserum to rat microsomal epoxide hydrolase; those that hydrate trans-stilbene oxide do not. Immunotitration and Western blot experiments showed that microsomal and cytosolic benzo(a)pyrene 4,5-oxide hydrolases have significant structural homology. Immunohistochemical staining of human lung benzo(a)pyrene 4,5-oxide hydrolase showed that the enzyme is localized primarily in the bronchial epithelium. No cell type-specific localization was observed. An enzyme-linked immunosorbent assay was developed which allows direct quantitation of benzo(a)pyrene 4,5-oxide hydrolase protein. Levels of enzyme protein detected by this assay correlated well with enzyme levels determined by substrate conversion assays.  相似文献   

10.
Apparent Km- and Vmax-values of nuclear styrene 7,8-oxide hydrolase were determined at different protein concentrations. In the protein concentrations range used no significant differences in the apparent Km-values were observed. The influence of the incubation with different modifiers (i.e. SKF-525A, metyrapone, 1,2-epoxy-3,3,3 trichloropropane, cyclohexene oxide) at two different concentrations on this enzyme activity was also determined. Cyclohexene oxide and 1,2-epoxy-3,3,3-trichloropropane, two well known inhibitors of the microsomal epoxide hydrolase(s) caused a marked inhibition, metyrapone had a strong activating effect whereas SKF-525A had no effect. In vivo pretreatment with phenobarbital significantly induced the nuclear epoxide hydrolase whereas β-naphthoflavone caused a lower degree of induction. This pattern is quantitatively different but qualitatively very similar to the microsomal one. Moreover a toxifying to detoxifying enzymatic activity balance is attempted for the metabolization of the alkenic double bond of styrene, taking into account the ratio between the styrene monooxygenase (toxifying enzyme) and the styrene 7,8-oxide hydrolase (detoxifying enzyme) after the above mentioned pretreatments, both in the microsomal and nuclear fractions.  相似文献   

11.
Metabolism of triphenylene by liver microsomes from control, phenobarbital(PB)-treated rats and 3-methylcholanthrene(MC)-treated rats as well as by a purified system reconstituted with cytochrome P-450c in the absence or presence of purified microsomal epoxide hydrolase was examined. Control microsomes metabolized triphenylene at a rate of 1.2 nmol/nmol of cytochrome P-450/min. Treatment of rats with PB or MC resulted in a 40% reduction and a 3-fold enhancement in the rate of metabolism, respectively. Metabolites consisted of the trans-1,2-dihydrodiol as well as 1-hydroxytriphenylene, and to a lesser extent 2-hydroxytriphenylene. The (-)-1R,2R-enantiomer of the dihydrodiol predominated (70 to 92%) under all incubation conditions. Incubation of racemic triphenylene 1,2-oxide with microsomal epoxide hydrolase produced dihydrodiol which was highly enriched (80%) in the (-)-1R,2R-enantiomer. Experiments with 18O-enriched water showed that attack of water was exclusively at the allylic 2-position of the arene oxide, indicating that the 1R,2S-enantiomer of the oxide was preferentially hydrated by epoxide hydrolase. Thiol trapping experiments indicated that liver microsomes from MC-treated rats produced almost exclusively (greater than 90%) the 1R,2S-enantiomer of triphenylene 1,2-oxide whereas liver microsomes from PB-treated rats formed racemic oxide. The optically active oxide has a half-life for racemization of only approximately 20 s under the incubation conditions. This study may represent the first attempt to address stereochemical consequences of a rapidly racemizing intermediary metabolite.  相似文献   

12.
This study was performed in order to study the response of epoxide hydrolases in different subcellular compartments of mouse liver to treatment with various compounds. Male C57BL/6 mice were treated with 31 different compounds--including traditional inducers of xenobiotic-metabolizing systems, liver carcinogens, stilbene derivatives, endogenous compounds and various other drugs and xenobiotics. The effects on liver somatic index; protein contents in 'mitochondria', microsomes and cytosol prepared from the liver; epoxide hydrolase activity towards trans- or cis-stilbene oxide in these three fractions; microsomal cytochrome P-450 content; cytosolic and 'mitochondrial' glutathione transferase activity and cytosolic DT-diaphorase activity were then determined. Cytosolic epoxide hydrolase activity was induced by chlorinated paraffins, di(2-ethylhexyl)phthalate and clofibrate and depressed by alpha-naphthylisothiocyanate, 3-methylcholanthrene, benzil and quercitin. Radial immunodiffusion revealed similar changes in the amount of enzyme protein present, except for two cases, where the increase in amount was larger; and the enzyme seems to be inhibited by benzil. Microsomal epoxide hydrolase activity was induced by these same compounds and several others as well, including dibenzoylmethane, butylated hydroxyanisole and polychlorinated biphenyls. 'Mitochondrial' epoxide hydrolase activity towards trans-stilbene oxide was not affected by those compounds which induced the cytosolic enzyme, but increased about two-fold after treatment with 2-acetylaminofluorene, DL-ethionine, aflatoxin B1 and phenobarbital. There does not seem to be any co-regulation of different forms of epoxide hydrolase in mouse liver. In general small effects were observed on liver weight and protein contents in the different subcellular fractions. Polychlorinated biphenyls were the most potent of the 8 compounds which induced cytochrome P-450, while butylated hydroxyanisole induced cytosolic glutathione transferase activity to the highest extent. 'Mitochondrial' glutathione transferase activity was most induced by certain of the stilbene derivatives. The most potent inducers of DT-diaphorase activity were 3-methylcholanthrene, polychlorinated biphenyls and dinitrotoluene.  相似文献   

13.
4'-Phenylchalcones, chalcone oxides, and related compounds were synthesized and tested as inhibitors of cytosolic epoxide hydrolase, microsomal epoxide hydrolase, and glutathione S-transferases from mouse and rat liver. Several compounds were more potent inhibitors of the cytosolic epoxide hydrolase than the parent 4'-phenylchalcone oxide while large substituents in the 4- and especially the 2-position caused a reduction in inhibition. The chalcone oxides showed selectivity as inhibitors of the cytosolic epoxide hydrolase acting on trans-stilbene oxide, while chalcones were inhibitors of cytosolic glutathione S-transferase acting on cis-stilbene oxide. Data are consistent with the hypothesis that much of the inhibition of the glutathione S-transferase is caused by the glutathione conjugate of the chalcone.  相似文献   

14.
Trans-stilbene oxide, trans-β-methylstyrene, 7,8-oxide, trans-β-ethylstyrene, 7,8-oxide, trans-β-propylstyrene 7,8-oxide and 4-fluorochalcone oxide were investigated for genotoxic activity in bacterial and mammalian cells, in the absence of external xenobiotic-metabolising systems. All compounds strongly enhanced the frequency of sister-chromatid exchanges (SCE) in cultured human lymphocytes. None of them was mutagenic in Salmonella typhimurium (reversion of the his strains TA98, TA100 and TA104). The limit of detection was 1/20,000 to 1/106 of the activity of the positive control, benzo[a]pyrene 4,5-oxide, depending on the compound and the bacterial strain. Trans-β-methylstyrene 7,8-oxide and 4-fluorochalcone oxide were additionally tested for induction of SCE and gene mutations in the same target cells, namely Chinese hamster V79 cells. Their influence on the level of SCE was similar to that observed in human lymphocytes, whilst gene mutations (at the hprt locus) were not induced. The four investigated styrene oxide derivatives are known to be excellent substrates for a mammalian enzyme, cytosolic epoxide hydrolase (cEH). 4-Fluorochalcone oxide is a potent selective inhibitor of this enzyme and is structurally similar to the investigated styrene oxide derivatives. These properties of the test compounds however cannot explain the observed discrepancies in the results, since the genetic end point (SCE versus gene mutations) was decisive, and SCE were induced in cEH-proficient human lymphocytes as well as in cEH-deficient V79 cells.  相似文献   

15.
Nuclear enzymes were found to develop earlier than the corresponding microsomal activities. In fact styrene monooxygenase enzymatic activity at 18 days gestational age reached about half the values of adult animals, whereas fetal microsomal activity was only about 120 the adult level at the same age. In microsomes and nuclei the ontogenic development of epoxide hydrolase is slightly slower than styrene monooxygenase. This suggests that fetuses and newborn animals are exposed to higher risk of accumulation of styrene-7,8-oxide, a toxic and possibly teratogenic product of styrene monooxygenase.  相似文献   

16.
The subcellular and organ distributions of microsomal epoxide hydrolases measured with cis-stilbene oxide and cholesterol 5,6 alpha-epoxide as substrates have been investigated. These two enzyme activities were found to have essentially the same subcellular distribution, with the highest total and specific activities localized in rough and smooth endoplasmic reticulum. Among the tissues studied (i.e., liver, kidney, lung, testis, spleen, brain and intestinal epithelium), the highest specific activities were recovered in liver microsomes, where the activities were at least 5-fold greater than in any of the other microsomal preparations.  相似文献   

17.
An affinity purification procedure was developed for the cytosolic epoxide hydrolase based upon the selective binding of the enzyme to immobilized methoxycitronellyl thiol. Several elution systems were examined, but the most successful system employed selective elution with a chalcone oxide. This affinity system allowed the purification of the cytosolic epoxide hydrolase activity from livers of both control and clofibrate-fed mice. A variety of biochemical techniques including pH dependence, substrate preference, kinetics, inhibition, amino acid analysis, peptide mapping, Western blotting, analytical isoelectric focusing, and gel permeation chromatography failed to distinguish between the enzymes purified from control and clofibrate-fed animals. The quantitative removal of the cytosolic epoxide hydrolase acting on trans-stilbene oxide from 100,000g supernatants, allowed analysis of remaining activities acting differentially on cis-stilbene oxide and benzo[a]pyrene 4,5-oxide. Such analysis indicated the existence of a novel epoxide hydrolase activity in the cytosol of mouse liver preparations.  相似文献   

18.
A coupled assay was devised for the assay of liver microsomal epoxide hydratase using the ability of alcohol dehydrogenase to transfer electrons from diols to NAD+: epoxide hydratase activity was continuously monitored at 340 nm. Rates of hydrolysis of octene-1,2-oxide and styrene-7,8-oxide measured utilizing this assay were similar to those determined using gas-liquid chromatography and radiometric thin-layer chromatography, respectively. The assay was used to examine the ability of rat liver microsomes and highly purified rat liver microsomal epoxide hydratase fractions to hydrolyze 15 other epoxides.  相似文献   

19.
We have characterized certain catalytic properties of cytosolic epoxide hydrolases purified from untreated and clofibrate-treated mouse liver. The enzyme activity was found to be sensitive to oxygen, but nitrogen-saturated buffers containing dithiothreitol maintained high activity for at least 12 h at 0 degrees C. Linearity of the hydration of trans-stilbene oxide with time and protein was established, the pH optimum was broad (6.5 to 7.4) and the temperature optimum was close to 50 degrees C for both forms. The activity was independent of ionic strength, with the exception of the control form in the absence of dithiothreitol, where a lower activity was observed at low ionic strength. The activity decreased when ethanol was replaced by acetone or acetonitrile as solvent for the substrate. Tetrahydrofuran was found to be highly inhibitory, while dimethylsulfoxide had less pronounced effects. The apparent Km values were 4.9 microM, 73 microM and 1980 microM for the control form with trans-stilbene oxide, cis-stilbene oxide and styrene oxide as substrates, respectively. The Km values for the enzyme from clofibrate-treated mice were in the same range, although the V values were higher for all three substrates with this form. The highest turnover was found for trans-beta-propylstyrene oxide as substrate, followed by trans-beta-ethylstyrene oxide. Little or no activity was observed with benzo[a]pyrene 4,5-oxide or cholesterol 5,6 alpha-oxide. The enzymes were found to be sensitive to 5,5'-dithiobis(2-nitrobenzoic acid) and a phenylmercuric salt. alpha-Naphthoflavone, beta-naphthoflavone and chalcone derivatives also inhibited the activity, while none of the compounds known to activate microsomal epoxide hydrolase activated the cytosolic forms.  相似文献   

20.
Metabolism of trans-7,8-dihydroxy-7,8-dihydro-6-fluorobenzo(a)pyrene by liver microsomes from 3-methylcholanthrene-treated rats and by a highly purified monooxygenase system, reconstituted with cytochrome P-450c, has been examined. Although both the fluorinated and unfluorinated 7,8-dihydrodiol formed from benzo(a)pyrene by liver microsomes share (R,R)-absolute configuration, the fluorinated dihydrodiol prefers the conformation in which the hydroxyl groups are pseudodiaxial due to the proximate fluorine. The fluorinated 4,5- and 9,10-dihydrodiols are also greater than 97% the (R,R)-enantiomers. For benzo(a)pyrene, metabolism of the (7R,8R)-dihydrodiol to a bay-region 7,8-diol-9,10-epoxide in which the benzylic hydroxyl group and epoxide oxygen are trans constitutes the only known pathway to an ultimate carcinogen. With the microsomal and the purified monooxygenase system, this pathway accounts for 76-82% of the total metabolites from the 7,8-dihydrodiol. In contrast, only 32-49% of the corresponding diol epoxide is obtained from the fluorinated dihydrodiol and this fluorinated diol epoxide has altered conformation in that its hydroxyl groups prefer to be pseudodiaxial. Much smaller amounts of the diastereomeric 7,8-diol-9,10-epoxides in which the benzylic hydroxyl groups and the epoxide oxygen are cis are formed from both dihydrodiols. As the fluorinated diol epoxides are weaker mutagens toward bacteria and mammalian cells relative to the unfluorinated diol epoxides, conformation appears to be an important determinant in modulating the biological activity of diol epoxides. One of the more interesting metabolites of 6-fluorinated 7,8-dihydrodiol was a relatively stable arene oxide, probably the 4,5-oxide, which is resistant to the action of epoxide hydrolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号