首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse mammary tumor virus (MMTV) is a complex retrovirus that encodes at least three regulatory and accessory proteins, including Rem. Rem is required for nuclear export of unspliced viral RNA and efficient expression of viral proteins. Our previous data indicated that sequences at the envelope-3′ long terminal repeat junction are required for proper export of viral RNA. To further map the Rem-responsive element (RmRE), reporter vectors containing various portions of the viral envelope gene and the 3′ long terminal repeat were tested in the presence and absence of Rem in transient transfection assays. A 476-bp fragment that spans the envelope-long terminal repeat junction had activity equivalent to the entire 3′-end of the mouse mammary tumor virus genome, but further deletions at the 5′- or 3′-ends reduced Rem responsiveness. RNase structure mapping of the full-length RmRE and a 3′-truncation suggested multiple domains with local base pairing and intervening single-stranded segments. A secondary structure model constrained by these data is reminiscent of the RNA response elements of other complex retroviruses, with numerous local stem-loops and long-range base pairs near the 5′- and 3′-boundaries, and differs substantially from an earlier model generated without experimental constraints. Covariation analysis provides limited support for basic features of our model. Reporter assays in human and mouse cell lines revealed similar boundaries, suggesting that the RmRE does not require cell type-specific proteins to form a functional structure.Mouse mammary tumor virus (MMTV)3 has multiple regulatory and accessory genes (1, 2). The known accessory genes specify a dUTPase (3), which is believed to be involved in retroviral replication in non-dividing cells (4), as well as superantigen (Sag). Sag is a transmembrane glycoprotein that is involved in the lymphocyte-mediated transmission of MMTV from maternal milk in the gut to susceptible epithelial cells in the mammary gland (5, 6). The Sag protein expressed by endogenous (germline) MMTV proviruses has been reported to provide susceptibility to infection by exogenous MMTVs or the bacterial pathogen, Vibrio cholerae (7). These results suggest a role for MMTV Sag in the host innate immune response.MMTV recently was shown to be a complex retrovirus (1). Complex retroviruses encode RNA-binding proteins that facilitate nuclear export of unspliced viral RNA by using a leucine-rich nuclear export sequence (8), which binds to chromosome region maintenance 1 (Crm1)(9), whereas simple retroviruses have a cis-acting constitutive transport element that directly interacts with components of the Tap/NXF1 pathway (10). Similar to other complex retroviruses, MMTV encodes a Rev-like protein, regulator of export/expression of MMTV mRNA (Rem) (1). Rem is translated from a doubly spliced mRNA into a 33-kDa protein that contains nuclear and nucleolar localization signals as well as a predicted RNA-binding motif and leucine-rich nuclear export sequence (1, 2). Our previous experiments indicated that Rem affects export of unspliced viral RNA, and a reporter vector that relies on luciferase expression from unspliced RNAs has increased activity in the presence of Rem (1). Sequences at the MMTV envelope-long terminal repeat (LTR) junction were required within the vector for Rem-induced expression, suggesting that the LTR contains all or part of the Rem-responsive element (RmRE). Very recently, Müllner et al. (11) identified a 490-nt region spanning the MMTV envelope-3′ LTR region, which was predicted to form a highly structured RNA element. This element confers Rem responsiveness on heterologous human immunodeficiency virus type 1 (HIV-1)-based plasmid constructs in transfection experiments.Experiments using other retroviral export proteins have demonstrated considerable variation in the size of the response elements. A minimal Rev-responsive element (RRE) in the human immunodeficiency virus type 1 (HIV-1) genomic RNA is 234 nt, the human T-cell leukemia virus Rex-responsive element is 205 nt (1214), whereas the Rec-responsive element (RcRE; also known as the K-RRE) of human endogenous retrovirus type K is 416 to 429 nt (15, 16). Most response elements are confined to the 3′-end of their respective retroviral genomes (either to the envelope or LTR regions) (14, 15), but 5′ Rev-response elements also have been identified (17). Studies indicate that the secondary structure is a critical factor for proper function of retroviral response elements (18), and that multiple stem-loops are required. Export proteins multimerize on these elements to allow activity (19).In the current study, we have used deletion mutations within a reporter vector based on the 3′-end of the MMTV genome to define a 476-nt element necessary for maximum Rem responsiveness. This element spans the envelope-LTR junction of the MMTV genome as previously reported (1). However, a secondary structure model generated using digestions of the RmRE by RNases V1, T1, and A as experimental constraints differs significantly from the published structure (11) and more closely resembles complex retroviral response elements. Transfection experiments indicated that the MMTV RmRE could function in both mouse and human cells, suggesting that conserved cellular proteins interact with Rem.  相似文献   

2.
We have analyzed the binding of recombinant human immunodeficiency virus type 1 nucleocapsid protein (NC) to very short oligonucleotides by using surface plasmon resonance (SPR) technology. Our experiments, which were conducted at a moderate salt concentration (0.15 M NaCl), showed that NC binds more stably to runs of d(G) than to other DNA homopolymers. However, it exhibits far more stable binding with the alternating base sequence d(TG)n than with any homopolymeric oligodeoxyribonucleotide; thus, it shows a strong sequence preference under our experimental conditions. We found that the minimum length of an alternating d(TG) sequence required for stable binding was five nucleotides. Stable binding to the tetranucleotide d(TG)2 was observed only under conditions where two tetranucleotide molecules were held in close spatial proximity. The stable, sequence-specific binding to d(TG)n required that both zinc fingers be present, each in its proper position in the NC protein, and was quite salt resistant, indicating a large hydrophobic contribution to the binding. Limited tests with RNA oligonucleotides indicated that the preferential sequence-specific binding observed with DNA also occurs with RNA. Evidence was also obtained that NC can bind to nucleic acid molecules in at least two distinct modes. The biological significance of the specific binding we have detected is not known; it may reflect the specificity with which the parent Gag polyprotein packages genomic RNA or may relate to the functions of NC after cleavage of the polyprotein, including its role as a nucleic acid chaperone.A single protein species, the Gag polyprotein, is sufficient for assembly of retrovirus particles. Since this process includes the selective encapsidation of viral RNA, this protein is evidently capable of specific interactions with nucleic acids. The nature of these interactions is not well understood as yet. After the virion is released from the cell, the polyprotein is cleaved by the virus-encoded protease; one of the cleavage products, termed the nucleocapsid protein (NC), then binds to the genomic RNA, forming the ribonucleoprotein core of the mature particle (21, 35, 41).The interaction between Gag and the genomic RNA is known to involve the NC domain of the polyprotein, since mutants within this domain of Gag are defective in RNA packaging (e.g., references 2, 16, 17, 2427, 31, 36, 37, and 39) and since the specificity of encapsidation tends to be determined by the NC domain in chimeric Gag molecules (9, 18, 49). However, NC is a basic protein and has frequently been described as binding to single-stranded DNA or RNA in a sequence-independent manner. Indeed, it is probably capable of binding to any single-stranded nucleic acid under appropriate conditions. This binding activity appears to be crucial at several stages of virus replication (13, 19, 28, 46).In the experiments described here, we have analyzed the binding of recombinant human immunodeficiency virus type 1 (HIV-1) NC to short oligonucleotides. These studies were performed at moderate ionic strengths, at which the nonspecific electrostatic interaction between NC and nucleic acids is minimized. We find that under these conditions, the protein exhibits profound sequence preferences. This sequence-specific binding is dependent upon the zinc fingers of the protein and has a strong hydrophobic component. The biological significance of this sequence specificity is not clear at present, but the results suggest that studies with very short oligonucleotides may provide important insights into NC function and perhaps functions of Gag as well.  相似文献   

3.
4.
5.
6.
7.
Previous studies have shown that in addition to its function in specific RNA encapsidation, the human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) is required for efficient virus particle assembly. However, the mechanism by which NC facilitates the assembly process is not clearly established. Formally, NC could act by constraining the Pr55gag polyprotein into an assembly-competent conformation or by masking residues which block the assembly process. Alternatively, the capacity of NC to bind RNA or make interprotein contacts might affect particle assembly. To examine its role in the assembly process, we replaced the NC domain in Pr55gag with polypeptide domains of known function, and the chimeric proteins were analyzed for their abilities to direct the release of virus-like particles. Our results indicate that NC does not mask inhibitory domains and does not act passively, by simply providing a stable folded monomeric structure. However, replacement of NC by polypeptides which form interprotein contacts permitted efficient virus particle assembly and release, even when RNA was not detected in the particles. These results suggest that formation of interprotein contacts by NC is essential to the normal HIV-1 assembly process.Human immunodeficiency virus type 1 (HIV-1) encodes three major genes, gag, pol, and env, which are commonly found in all mammalian retroviruses. It also encodes accessory genes whose protein products are important for regulation of its life cycle (6, 30, 35). However, of all the genes encoded by HIV-1, only the protein product of the gag gene has been found to be necessary and sufficient for the assembly of virus-like particles (11, 13, 17, 22, 32, 33). The HIV-1 Gag protein initially is expressed as a 55-kDa polyprotein precursor (Pr55gag), but during or shortly after particle release, Pr55gag ordinarily is cleaved by the viral protease (PR). The products of the protease action are the four major viral proteins matrix (MA), capsid (CA), nucleocapsid (NC), and p6, and the two spacer polypeptides p2 and p1, which represent sequences between CA and NC and between NC and p6, respectively (15, 19, 23, 30).The HIV-1 nucleocapsid proteins have two Cys-X2-Cys-X4-His-X4-Cys (Cys-His) motifs, reminiscent of the zinc finger motifs found in many DNA binding proteins, and NC has been shown to facilitate the specific encapsidation of HIV-1 genomic RNAs. In addition to its encapsidation function, NC influences virus particle assembly (7, 10, 17, 21, 40). In particular, Gag proteins lacking the NC domain fail to assemble virus particles efficiently. Nevertheless, some chimeric Gag proteins which carry foreign sequences in place of NC have been shown to assemble and release virus particles at wild-type (wt) levels (2, 37, 40). Thus, it appears that in some circumstances, the role that NC plays in virus particle assembly can be replaced. To date, it is not clear how NC affects particle assembly, although several possibilities might be envisioned. One possibility is that deletion of NC unmasks inhibitory sequences in p2 or the C terminus of CA. Alternatively, NC may simply provide a stable monomeric folded structure which locks CA or other Gag domains into an assembly-competent conformation. Another possibility is that NC facilitates assembly by forming essential protein-protein contacts between neighbor Prgag molecules, as suggested in cross-linking studies (21). Finally, the assembly role of NC may stem from its RNA binding capabilities, a hypothesis supported by studies of Campbell and Vogt (5), which have shown that RNA facilitates the in vitro assembly of retroviral Gag proteins into higher-order structures.To distinguish among possible mechanisms by which NC facilitates HIV-1 assembly, we replaced NC with polypeptides having known structural characteristics and examined particle assembly directed by these chimeric proteins. Using this approach, we have found that NC does not play a passive role in HIV-1 assembly as either a mask to assembly inhibitor domains or a nonspecific, stably folded structure. Rather, sequences known to form strong interprotein contacts were observed to enhance assembly, suggesting a similar role for the NC domain itself. With several assembly-competent chimeric proteins, we detected no particle-associated RNAs. These results suggest that while RNA may be essential to virus assembly in the context of the wt Pr55gag protein, it is dispensable for formation of virus-like particles from chimeric proteins.  相似文献   

8.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

9.
10.
11.
12.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号