首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The effects of protein phosphorylation and cation depletion on the electron transport rate and fluorescence emission characteristics of photosystem I at two stages of chloroplast development in light-grown wheat leaves are examined. The light-harvesting chlorophyll a/b protein complex associated with photosystem I (LHC I) was absent from the thylakoids at the early stage of development, but that associated with photosystem II (LHC II) was present. Protein phosphorylation produced an increase in the light-limited rate of photosystem I electron transport at the early stage of development when chlorophyll b was preferentially excited, indicating that LHC I is not required for transfer of excitation energy from phosphorylated LHC II to the core complex of photosystem I. However, no enhancement of photosystem I fluorescence at 77 K was observed at this stage of development, demonstrating that a strict relationship between excitation energy density in photosystem I pigment matrices and the long-wavelength fluorescence emission from photosystem I at 77 K does not exist. Depletion of Mg2+ from the thylakoids produced a stimulation of photosystem I electron transport at both stages of development, but a large enhancement of the photosystem I fluorescence emission was observed only in the thylakoids containing LHC I. It is suggested that the enhancement of PS I electron transport by Mg2+-depletion and phosphorylation of LHC II is associated with an enhancement of fluorescence at 77 K from LHC I and not from the core complex of PS I.  相似文献   

2.
Efficient oxygenic photosynthesis not only requires synchronous turover and operation of photosystem I (PS I) and photosystem II (PS II) but also the preferential turnover of PS I for cyclic photophosphorylation to maintain required ATP and NADPH ratio during carbon dioxide reduction. Ohe initial higher rate of turnover of PS IIin viva is accounted by the fact that (i) PS I contains only about one-third of total chlorophylls, (ii) about 90% of light harvesting a/b protein (LAC) which accounts for about 50% of the total chlorophylls, remains associated with PS II as PS II-LHC II complexes (PS IIα and (iii) the ratio of PS II/PS I is always greater than unity, in the range of 1–2 : 1 under different environmental regimes. Ohe initial preferential feeding of PS II, due to its larger antenna, is bound to result in faster rate of turn over of PS II than PS I, leading to higher rate of reduction of an intersystem carrier than the rate of its oxidation by PS I. Ohe light dependent phosphorylation of a ‘mobile’ and small pool (−20%) of LHC II of PS IIα (possibly located at the edge of appressed regions of the membranes) increases the repulsive forces of LHC II resulting in its migration to non-appressed region associating itself with PS 1. Ohe phosphorylation itself is controlled by the redox state of an intermediate of electron transport. Several experimental approaches have provided evidence which suggest that (i) phosphorylation of LAC II involves interaction of cyt b5-f complex with LAC II kinase and the interaction of QA with cyt b5-f complex and (ii) different kinases may be involved in phosphorylation of LHC IIversus PS II polypeptides. Ohe major purpose of light dependent LAC II phosphorylation and its consequent migration close to PS I appears to balance the rate of cyclicversus non-cyclic photophosphorylation. Ohe mechanism by which cyt b5-f complex controls the activation of LAC II is not known. Ohe role of membrane bound ealmodulin, electron transfer through cyt b6-f complex in activation of LAC II kinase should be explored.  相似文献   

3.
4.
Using 77 K chlorophyll a (Chl a) fluorescence spectra in vivo, the development was studied of Photosystems II (PS II) and I (PS I) during greening of barley under intermittent light followed by continuous light at low (LI, 50 μmol m−2 s−1) and high (HI, 1000 μmol m−2 s−1) irradiances. The greening at HI intermittent light was accompanied with significantly reduced fluorescence intensity from Chl b excitation for both PS II (F685) and PS I (F743), in comparison with LI plants, indicating that assembly of light-harvesting complexes (LHC) of both photosystems was affected to a similar degree. During greening at continuous HI, a slower increase of emission from Chl b excitation in PS II as compared with PS I was observed, indicating a preferred reduction in the accumulation of LHC II. The following characteristics of 77 K Chl a fluorescence spectra documented the photoprotective function of an elevated content of carotenoids in HI leaves: (1) a pronounced suppression of Soret region of excitation spectra (410–450 nm) in comparison with the red region (670–690 nm) during the early stage of greening indicated a strongly reduced excitation energy transfer from carotenoids to the Chl a fluorescing forms within PS I and PS II; (2) changes in the shape of the excitation band of Chl b and carotenoids (460–490 nm) during greening under continuous light confirmed that the energy transfer from carotenoids to Chl a within PS II remained lower as compared with the LI plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The extent of mercury (Hg) toxicity in the heterocystous cyanobacterium Nostoc muscorum grown for 72 h in three different light intensities was tested for various physiological parameters viz. growth, pigment contents, photosynthesis, respiration, reactive oxygen species (ROS), malondialdehyde formation and antioxidants. A general reduction in growth and pigments, whole cell O2-evolution, photosynthetic electron transport activities and 14CO2-fixation was observed in a metal concentration–dependent manner, and this effect was more pronounced in high light (130 μmol photon m−2 s−1)–exposed cells as compared to low (10 μmol photon m−2 s−1) and normal (70 μmol photon m−2 s−1) light intensity–exposed cells; however, carotenoids and respiration showed reverse trend. Among photosynthetic electron transport activities, whole chain activity was found to be most sensitive in comparison with photosystem II (PS II) and photosystem I (PS I). Comparing the different photosynthetic processes, 14CO2-fixation was most affected in cyanobacterial cells when exposed to Hg and different light intensities. After application of various exogenous electron donors, diphenyl carbazide was found to be more effective to restore PS II activity, suggesting that site of damage lies in between oxygen evolving complex and PS II. Level of oxidative stress (superoxide radical and lipid peroxidation) was maximum at 3.0 μM of Hg when coupled with high light intensity (except hydrogen peroxide). A dose-dependent increase in enzymatic antioxidants such as superoxide dismutase, peroxidase and catalase as well as non-enzymatic antioxidants such as proline, ascorbate, cysteine (except under high light intensity) and non-protein thiols [NP-SH] was observed, which further increased with the increase in light intensity. It was noticed that Hg intoxicates N. muscorum through ROS production, which is aggravated along with the increase in light intensity. Overall results suggest that the severity of the metal stress does increase with Hg concentrations but when coupled with light, it was the light intensity that determines the extent of Hg toxicity.  相似文献   

6.
The energy distribution, state transitions and photosynthetic electron flow during photoinhibition of Chlamydomonas reinhardtii cells have been studied in vivo using photoacoustics and modulated fluorescence techniques. In cells exposed to 2500 W/m2 light at 21 °C for 90 min, 90% of the oxygen evolution activity was lost while photochemical energy storage as expressed by the parameter photochemical loss (P.L.) at 710–720 nm was not impaired. The energy storage vs. modulation frequency profile indicated an endothermic step with a rate constant of 2.1 ms. The extent of the P.L. was not affected by DCMU but was greatly reduced by DBMIB. The regulatory mechanism of the state 1 to state 2 transition process was inactivated and the apparent light absorption cross section of photosystem II increased during the first 20 min of photoinhibition followed by a significant decrease relative to that of photosystem I. These results are consistent with the inactivation of the LHC II kinase and the presence of an active cyclic electron flow around photosystem I in photoinhibited cells.Abbreviations PS I, PS II Photosystem I and Photosystem II respectively - P.L. photochemical loss - DCMU 3-(3,4-dichlorophenyl-1,1-dimethyl urea - LHC II light harvesting chlorophyll a,b-protein complex of PS II - DBMIB 2,5 dibromo-3-methyl-6-isopropyl-p-benzoquinone  相似文献   

7.
Methyl viologen (MV) is a well-known electron mediator that works on the acceptor side of photosystem I. We investigated the little-known, MV-induced inhibition of linear electron flow through photosystem II (PS II) in spinach-leaf discs. Even a low [MV] decreased the (1) average, light-adapted photochemical efficiency of PS II traps, (2) oxidation state of the primary quinone acceptor QA in PS II during illumination, (3) photochemical efficiency of light-adapted open PS II traps, (4) fraction of absorbed light energy dissipated constitutively in a light-independent manner or as chlorophyll (Chl) a fluorescence emission, (5) Chl a fluorescence yield corresponding to dark-adapted open reaction-center traps (F o) and closed reaction-center traps (F m), and (6) half-time for re-oxidation of QA in PS II after a single-turnover flash. These effects suggest that the presence of MV accelerates various “downhill” electron-transfer steps in PS II. Therefore, when using the MV to quantify cyclic electron flow, the inhibitory effect of MV on PS II should be taken into account.  相似文献   

8.
In this study, we evaluated how cadmium inhibitory effect on photosystem II and I electron transport may affect light energy conversion into electron transport by photosystem II. To induce cadmium effect on the photosynthetic apparatus, we exposed Chlamydomonas reinhardtii 24 h to 0–4.62 μM Cd2+. By evaluating the half time of fluorescence transients O–J–I–P at different temperatures (20–30°C), we were able to determine the photosystem II apparent activation energies for different reduction steps of photosystem II, indicated by the O–J–I–P fluorescence transients. The decrease of the apparent activation energies for PSII electron transport was found to be strongly related to the cadmium-induced inhibition of photosynthetic electron transport. We found a strong correlation between the photosystem II apparent activation energies and photosystem II oxygen evolution rate and photosystem I activity. Different levels of cadmium inhibition at photosystem II water-splitting system and photosystem I activity showed that photosystem II apparent activation energies are strongly dependent to photosystem II donor and acceptor sides. Therefore, the oxido-reduction state of whole photosystem II and I electron transport chain affects the conversion of light energy from antenna complex to photosystem II electron transport.  相似文献   

9.
Submerged aquatic higher plants maintain acropetal water transport to the young leaves in active growth to satisfy their demand for nutrients and hormones derived from the roots. We here present the first measurements of hydraulic properties for a submerged plant, the monocotyledon Sparganium emersum Rehman. The hydraulic conductance per unit length, Kh, was measured in leaf segments without the leaf tip and shown to be greater in old, fully developed leaves (1.5 · 10−10 · m4 · MPa−1 · s−1) than in young leaves (1.0 · 10−10 · m4 · MPa−1 · s−1). In leaves with intact leaf tips, however, Kh was significantly greater in the youngest leaves, which suggests that the leaf tip with the hydathode influences resistance and thus flow. Microscopy confirmed that the hydathodal area, which is an apical opening, undergoes structural changes with leaf age; a matrix of microorganisms develops in the older leaves and probably restricts water flow by clogging the hydathodes. The leaf specific conductivity expressing transport capacity relative to the leaf area supplied, of S. emersum (0.1 · 10−8 to 9 · 10−8 · m2 MPa−1· s−1) was within the same range as for various species of terrestrial ferns, vines and trees. This finding does not support the traditional concept of functionally reduced vascular transport in Received: 15 July 1996 / Accepted: 30 November 1996  相似文献   

10.
By recording leaf transmittance at 820 nm and quantifying the photon flux density of far red light (FRL) absorbed by long-wavelength chlorophylls of Photosystem I (PS I), the oxidation kinetics of electron carriers on the PS I donor side was mathematically analyzed in sunflower (Helianthus annuus L.), tobacco (Nicotiana tabacum L.) and birch (Betula pendula Roth.) leaves. PS I donor side carriers were first oxidized under FRL, electrons were then allowed to accumulate on the PS I donor side during dark intervals of increasing length. After each dark interval the electrons were removed (titrated) by FRL. The kinetics of the 820 nm signal during the oxidation of the PS I donor side was modeled assuming redox equilibrium among the PS I donor pigment (P700), plastocyanin (PC), and cytochrome f plus Rieske FeS (Cyt f + FeS) pools, considering that the 820 nm signal originates from P700+ and PC+. The analysis yielded the pool sizes of P700, PC and (Cyt f + FeS) and associated redox equilibrium constants. PS I density varied between 0.6 and 1.4 μmol m−2. PS II density (measured as O2 evolution from a saturating single-turnover flash) ranged from 0.64 to 2.14 μmol m−2. The average electron storage capacity was 1.96 (range 1.25 to 2.4) and 1.16 (range 0.6 to 1.7) for PC and (Cyt f + FeS), respectively, per P700. The best-fit electrochemical midpoint potential differences were 80 mV for the P700/PC and 25 mV for the PC/Cyt f equilibria at 22 °C. An algorithm relating the measured 820 nm signal to the redox states of individual PS I donor side electron carriers in leaves is presented. Applying this algorithm to the analysis of steady-state light response curves of net CO2 fixation rate and 820 nm signal shows that the quantum yield of PS I decreases by about half due to acceptor side reduction at limiting light intensities before the donor side becomes oxidized at saturating intensities. Footnote: This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Unlike northern hemisphere conifer families, the southern family, Podocarpaceae, produces a great variety of foliage forms ranging from functionally broad-, to needle-leaved. The production of broad photosynthetic surfaces in podocarps has been linked qualitatively to low-light-environments, and we undertook to assess the validity of this assumption by measuring the light response of a morphologically diverse group of podocarps. The light response, as apparent photochemical electron transport rate (ETR), was measured by modulated fluorescence in ten species of this family and six associated species (including five Cupressaceae and one functionally needle-leaved angiosperm) all grown under identical glasshouse conditions. In all species, ETR was found to increase as light intensity increased, reaching a peak value (ETRmax) at saturating quantum flux (PPFDsat), and decreasing thereafter. ETRmax ranged from 217 μmol electrons · m−2 · s−1 at a PPFDsat of 1725 μmol photons · m−2 · s−1 in Actinostrobus acuminatus to an ETR of 60 μmol electrons · m−2 · s−1 at a PPFDsat of 745 μmol electrons · m−2 · s−1 in Podocarpus dispermis. Good correlations were observed between ETRmax and both PPFDsat and maximum assimilation rate measured by gas-exchange analysis. The effective quantum yield at light saturation remained constant in all species with an average value of 0.278 ± 0.0035 determined for all 16 species. Differences in the shapes of light response curves were related to differences in the response of non-photochemical quenching (q n), with q n saturating faster in species with low PPFDsat. Amongst the species of Podocarpaceae, the log of average shoot width was well correlated with PPFDsat, wider leaves saturating at lower light intensities. This suggests that broadly flattened shoots in the Podocarpaceae are an adaptation to low light intensity. Received: 15 April 1996 / Accepted: 30 September 1996  相似文献   

12.
In white light of 33.2 μmol . m?2 . s?1 oxygen evolution of Chlorella kessleri is about 30 % higher after growth in blue light than after growth in red light of the same quantum fluence rate. When determined by the light-induced absorbance change at γ 820 nm, blue light-adapted cells possess about 60% more reaction centres per total chlorophyll in photosystem II. Correspondingly, the cells exhibit about 30% more Hill activity of PS II. Conversely, red light-adapted cells contain relatively more reaction centres and higher electron flow capacities of photosystem I. The distribution of total chlorophyll among the pigment-protein complexes, CPI, CPIa, CPa, and LHC II, corresponds to these data. There is more chlorophyll associated with the light-harvesting complex of PS II, LHC II, in cells under blue light conditions, but more chlorophyll bound to both complexes of PS I, CPI and CPIa, in cells under red light conditions. The respective ratios of chlorophyll a/chlorophyll b of all complexes are identical for blue and red light-adapted cells. This results in a higher relative amount of chlorophyll b in blue light-adapted cells. Total carotenoids per total chlorophyll are increased by 20% in red light-adapted cells. Their distribution among the pigment-protein complexes is unknown, however the ratios of lutein, neoxanthin and violaxanthin extractable from LHC II are different in blue (32.1:35.9:32.0) and in red (51.4:26.7:21.9) light-adaptod cells.  相似文献   

13.
Styrene-maleic acid copolymer was used to effect a non-detergent partial solubilization of thylakoids from spinach. A high density membrane fraction, which was not solubilized by the copolymer, was isolated and was highly enriched in the Photosystem (PS) I-light-harvesting chlorophyll (LHC) II supercomplex and depleted of PS II, the cytochrome b6/f complex, and ATP synthase. The LHC II associated with the supercomplex appeared to be energetically coupled to PS I based on 77 K fluorescence, P700 photooxidation, and PS I electron transport light saturation experiments. The chlorophyll (Chl) a/b ratio of the PS I-LHC II membranes was 3.2 ± 0.9, indicating that on average, three LHC II trimers may associate with each PS I. The implication of these findings within the context of higher plant PS I antenna organization is discussed.  相似文献   

14.
Fast cyclic electron transport (CET) around photosystem I (PS I) was observed in sunflower (Helianthus annuus L.) leaves under intense far-red light (FRL) of up to 200 μmol quanta m−2 s−1. The electron transport rate (ETR) through PS I was found from the FRL-dark transmittance change at 810 and 950 nm, which was deconvoluted into redox states and pool sizes of P700, plastocyanin (PC) and cytochrome f (Cyt f). PC and P700 were in redox equilibrium with K e = 35 (ΔE m = 90 mV). PS II ETR was based on O2 evolution. CET [(PS I ETR) − (PS II ETR)] increased to 50–70 μmol e m−2 s−1 when linear electron transport (LET) under FRL was limited to 5 μmol e m−2 s−1 in a gas phase containing 20–40 μmol CO2 mol−1 and 20 μmol O2 mol−1. Under these conditions, pulse-saturated fluorescence yield F m was non-photochemically quenched; however, F m was similarly quenched when LET was driven by low green or white light, which energetically precluded the possibility for active CET. We suggest that under FRL, CET is rather not coupled to transmembrane proton translocation than the CET-coupled protons are short-circuited via proton channels regulated to open at high ΔpH. A kinetic analysis of CET electron donors and acceptors suggests the CET pathway is that of the reversed Q-cycle: Fd → (FNR) → Cyt cn → Cyt bh → Cyt bl → Rieske FeS → Cyt f → PC → P700 →→ Fd. CET is activated when PQH2 oxidation is opposed by high ΔpH, and ferredoxin (Fd) is reduced due to low availability of e acceptors. The physiological significance of CET may be photoprotective, as CET may be regarded as a mechanism of energy dissipation under stress conditions.  相似文献   

15.
 The impact of ozone fumigation on chlorophyll a fluorescence parameters and chlorophyll content of birch trees grown at high and low fertilization were studied for 6-, 8-, and 12-week old leaves. Fluorescence parameters were measured with a portable fluorometer with its fibre optics tightly inserted in a gas exchange cuvette at light intensities from 0 to 220 μmol photons m−2 s−1. Ozone caused significant changes of primary photosynthetic reactions: a decrease of the quantum yield of photosystem II and an increase of non-photochemical quenching. In all leaves a biphasic light response of non-photochemical quenching was observed. Ozone fumigation shifted the onset of the second phase from a PFD of about 60 μmol m−2 s−1 to about 30 μmol m−2 s−1. While the fertilizer concentration had no influence on this character, high fertilization supply of plants partially reduced O3-induced damage. The light responses of Ft, Fm′ and NPQ observed in birch leaves grown in O3-free air indicate the existence of at least two different processes governing energy conversion of the photosynthetic apparatus at PS II in the range of PFD 0–200 μmol photons m−2 s−1. The first phase was attributed to a rather slowly relaxing type of non-photochemical quenching, which, at least at low PFD, is thought to be related to a state 1–2 transition. The further changes of the fluorescence parameters studied at higher PFD might be explained by an increase of energy-dependent quenching, connected with the energization of the thylakoid membrane and zeaxanthin synthesis. A major effect of ozone treatment was a lowering of PS II quantum yield. This reflects a reduction of PS II electron transport and corresponds to the reduction of CO2-fixation observed in ozonated leaves. Received: 24 September 1996 / Accepted: 27 January 1999  相似文献   

16.
The protective role of co-solutes (glycinebetaine and sucrose) against photodamage in isolated Photosystem (PS) I submembrane particles illuminated (2000 μE m−2 s−1) for various time periods at 4 °C was studied. The photochemical activity of PS I in terms of electron transport measured as oxygen uptake and P700 photooxidation was significantly protected. A photoinduced enhancement of oxygen uptake observed during the first hours of strong light illumination attributed to denaturation or dissociation of membrane-bound superoxide dismutase [Rajagopal et al. (2003) Photochem. Photobiol 77: 284–291] was also retarded by glycinebetaine and sucrose. Chlorophyll photobleaching resulting in a decrease of absorbance and a blue-shift of the absorbance maximum in the red was greatly delayed in the presence of co-solutes. This phenomenon was also observed in the chlorophyll-protein (CP) complexes of PS I particles exposed to strong illumination separated on non-denaturing poly-acrylamide gels. In this case, a decrease in the absorbance of the CP1b band coinciding with an increase of CP1a during the course of illumination and ascribed to oxidative cross-linking (Rajagopal et al. 2003) was also retarded. Our results, thus, clearly demonstrated for the first time that co-solutes could minimize the alteration of photochemical activity and chlorophyll-protein complexes against photodamage of PS I submembranes particles. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The effect of cumulative over-saturating pulses (OSP) of white light (1 s, >10 000 μmol photons m−2 s−1), applied every 20 min on pea leaves, was investigated during a complete diurnal cycle of 24 h. In dark-adapted leaves, this treatment leads to a progressive decline of the optimum Photosystem II (PS II) quantum yield. Continuous low background light (except far-red light) had a protective effect against this OSP-induced photoinactivation. The lack of far-red effect could be due to its absorption mainly in PS I and not in PS II, but could be also due to the general low absorption in this wavelength region. The photoinactivation was enhanced in leaves that had been previously infiltrated with chloramphenicol. The quantum yield of CO2 assimilation, but not its maximal capacity, was inhibited by the OSP treatment. The most spectacular effects observed, in addition to an irreversible quenching of Fm, was a strong inhibition of QA reoxidation revealed by a large increase in the Fs level and consequently by a decrease of ΔF/Fm′. Under such conditions, we observed that the electron flow deduced from ΔF/Fm′ underestimated the real electron flow to CO2. Time-resolved Chlorophyll a fluorescence measurements showed that the reduced capacity of QA reoxidation in OSP treated leaves was accompanied by the appearance of a 4.7 ns component attributed to PS II charge recombination. We suggest that a modification at the QB site may influence the redox potential of QA/QA , facilitating the reversion of the primary charge separation. In addition, a 1.2 ns fluorescence component accumulated, which appeared to be responsible for the underestimation of PS II electron flow. The observed photoinactivation seemed to be different from the photoinhibition often described in the literature, which occurs under continuous light. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The light harvesting and photosynthetic characteristics of a chlorophyll-deficient mutant of cowpea (Vigna unguilata), resulting from a single nuclear gene mutation, are examined. The 40% reduction in total chlorophyll content per leaf area in the mutant is associated with a 55% reduction in pigment-proteins of the light harvesting complex associated with Photosystem II (LHC II), and to a lesser extent (35%) in the light harvesting complex associated with Photosystem I (LHC I). No significant differences were found in the Photosystem I (PS I) and Photosystem II (PS II) contents per leaf area of the mutant compared to the wildtype parent. The decreases in the PS I and PS II antennae sizes in the mutant were not accompanied by any major changes in quantum efficiencies of PS I and PS II in leaves at non-saturating light levels for CO2 assimilation. Although the chlorophyll deficiency resulted in an 11% decrease in light absorption by mutant leaves, their maximum quantum yield and light saturated rate of CO2 assimilation were similar to those of wildtype leaves. Consequently, the large and different decreases in the antennae of PS II and PS I in the mutant are not associated with any loss of light use efficiency in photosynthesis.Abbreviations LHC I, LHC II light harvesting chlorophyll a/b protein complexes associated with PS I and PS II - A820 light-induced absorbance change at 820 nm - øPS I, øPS II relative quantum efficiencies of PS I and PS II photochemistry  相似文献   

19.
The mechanism of transbranchial excretion of total ammonia of brackish-water acclimated shore crabs, Carcinus maenas was examined using isolated, perfused gills. Applying physiological gradients of NH4Cl (100–200 μmol · l−1) directed from the haemolymph space to the bath showed that the efflux of total ammonia consisted of two components. The saturable component (excretion of NH4 +) greatly exceeded the linear component (diffusion of NH3). When an outwardly directed gradient (200 μmol · l−1) was applied, total ammonia in the perfusate was reduced by more than 50% during a single passage of saline through the gill. Effluxes of ammonia along the gradient were sensitive to basolateral dinitrophenol, ouabain, and Cs+ and to apical amiloride. Acetazolamide (1 mmol · l−1 basolateral) or Cl-free conditions had no substantial effects on ammonia flux, which was thus independent of both carbonic anhydrase mediated pH regulation and osmoregulatory NaCl uptake. When an inwardly directed gradient (200 μmol · l−1) was employed, influx rates were about 10-fold smaller and unaffected by basolateral ouabain (5 mmol · l−1) or dinitrophenol (0.5 mmol · l−1). Under symmetrical conditions (100 μmol · l−1 NH4Cl on both sides) ammonia was actively excreted against the gradient of total ammonia, which increased strongly during the experiment and against the gradient of the partial pressure of NH3. The active excretion rate was reduced to 7% of controls by basolateral dinitrophenol (0.5 mmol · l−1), to 44% by basolateral ouabain (5 mmol · l−1), to 46% by Na+-free conditions and to 42% by basolateral Cs+ (10 mmol · l−1), indicating basolateral membrane transport of NH4 + via the Na+/K+-ATPase and K+-channels and a second active, apically located, Na+ independent transport mechanism of NH4 +. Anterior gills, which are less capable of active ion uptake than posterior gills, exhibited even increased rates of active excretion of ammonia. We conclude that, under physiological conditions, branchial excretion of ammonia is a directed process with a high degree of effectiveness. It even allows active extrusion against an inwardly directed gradient, if necessary. Accepted: 11 March 1998  相似文献   

20.
The vertebrate renin-angiotensin system controls cardiovascular, renal and osmoregulatory functions. Angiotensin II (ANG II) is the most potent hormone of the RAS but in some vertebrate animals angiotensin III (Val4-ANG III) may be a hormone. We studied the effects of some angiotensins and mammalian ANG II receptor antagonists on nasal salt gland function and arterial blood pressure in conscious white Pekin ducks. Nasal salt gland fluid secretion (NFS) was induced by a 10 ml · kg−1 bw i.v. injection of a NaCl solution (1000 mosmol · kg−1 H2O) and maintained by a continuous i.v. infusion of the same solution at a rate of 0.97 ml · min−1. There was a positive linear correlation between nasal fluid [Na+] and osmolality, between [Na+] and [K+], and also between the rate of NFS and [Na+] and [K+]. [Asp1,Val5]-ANG II (1 nmol · kg−1 i.v.) inhibited NFS but did not change ionic concentrations. Val4-ANG III (1 or 5 nmol · kg−1) and ANG I (1-7) (20 nmol · kg−1) had no effect on NFS. [Sar1, Ile8]-ANG II (SARILE) acted as an ANG II receptor agonist and resulted in a prolonged and complete inhibition of NFS. The AT1 receptor antagonist, losartan (DuP 753) and the AT2 receptor antagonist, PD 123319 both failed to block the inhibitory effect of [Asp1, Val5]-ANG II on the nasal salt glands. [Asp1,Val5]-ANG II (2 nmol · kg−1 i.v.) increased mean arterial blood pressure (MABP), whereas the same dose of [Asn1,Val5]-ANG II (teleost) had only 30% of the pressor potency of the avian ANG II. Neither 1 nor 5 nmol · kg−1 of Val4-ANG III i.v. nor 20 nmol · kg−1 of ANG I (1-7) had any measurable effect on MABP. SARILE blocked completely the pressor response to [Asp1,Val5]-ANG II but the AT1 antagonists losartan and CGP 48933 and the AT2 antagonist PD 123319 all failed to block the pressor response to [Asp1,Val5]-ANG II. These results have substantiated an important role of the nasal salt gland in potassium regulation and highlighted a pharmacological dimorphism of saralasin, namely agonist and antagonist to angiotensin II-mediated inhibition of nasal salt gland function and pressor response, respectively. Using specific nonpeptidergic angiotensin II receptor antagonists, we have confirmed the distinct pharmacology of the avian angiotensin II receptors in a nongallinaceous species and the absence of significant angiotensin I (1-7) and angiotensin II effects on the cardiovascular system and nasal salt gland. Accepted: 6 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号