首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An enzyme which catalyzes the transamination of L-aspartate with 2-oxoglutarate has been purified 400-fold to electrophoretic homogeneity from the unicellular green alga Chlamydomonas reinhardtii 6145c. An apparent relative molecular mass of 138,000 was estimated by gel filtration. The enzyme is a dimer consisting of two identical subunits of Mr 65,000 each as deduced from PAGE/SDS studies. A stoichiometry of two molecules pyridoxal 5-phosphate/enzyme molecule was calculated. The enzyme has an isoelectric point of 8.48 and its absorption spectrum exhibits a maximum at 412 nm which is shifted to 330 nm upon addition of L-aspartate. L-Aspartate or pyridoxal 5-phosphate, but not 2-oxoglutarate, protected the enzyme from heat inactivation. The purified enzyme was able to transaminate, although to a low extent, L-phenylalanine and L-tyrosine with 2-oxoglutarate, and L-serine, L-alanine and L-glutamine with oxaloacetate. L-Aspartate aminotransferase exhibited hyperbolic kinetics for 2-oxoglutarate and oxaloacetate, and nonhyperbolic behaviour for L-aspartate and L-glutamate. Apparent Km values were 0.55 mM for 2-oxoglutarate, 0.044 mM for oxaloacetate, 2.53 mM for L-aspartate and 3.88 mM for L-glutamate. Transamination of L-aspartate in C. reinhardtii is a bisubstrate reaction with a bi-bi ping-pong mechanism, and is not inhibited by substrates.  相似文献   

2.
A prephenate aminotransferase enzyme that produces L-arogenate was demonstrated in extracts from cultured-cell populations of Nicotiana silvestris. The enzyme was very active with low concentrations of prephenate, but required high concentrations of phenylpyruvate or 4-hydroxyphenylpyruvate to produce activity levels that were detectable. It is the most specific prephenate aminotransferase described to date from any source. Only L-glutamate and L-aspartate were effective amino-donor substrates. Prephenate concentrations greater than 1 mM produced substrate inhibition, an effect antagonized by increasing concentrations of L-glutamate cosubstrate. The enzyme was stable to storage for at least a month in the presence of pyridoxal 5'-phosphate, EDTA, and glycerol, and exhibited an unusually high temperature optimum of 70 degrees C. The identity of L-arogenate formed during catalysis was verified by high-performance liquid chromatography. DEAE-cellulose chromatography revealed two aromatic aminotransferase activities that were distinct from prephenate aminotransferase and which did not require the three protectants for stability. The aromatic aminotransferases were active with phenylpyruvate or 4-hydroxyphenylpyruvate as substrates, but not with prephenate. Both of the latter enzymes were similar in substrate specificity, and each exhibited a temperature optimum of 50 degrees C for catalysis. The primary in vivo function of the two aromatic aminotransferases is probably to transaminate between the aspartate/2-ketoglutarate and glutamate/oxaloacetate couples, since activities with the latter substrate combinations were an order of magnitude greater than with aromatic substrates. The demonstrated existence of a specific prephenate aminotransferase in N. silvestris meshes with other evidence supporting an important role for L-arogenate in tyrosine and phenylalanine biosynthesis in higher plants.  相似文献   

3.
Aspartate aminotransferases from pig heart cytosol and mitochondria, Escherichia coli B and Pseudomonas striata accepted L-cysteine sulfinate as a good substrate. The mitochondrial isoenzyme and the Escherichia enzyme showed higher activity toward L-cysteine sulfinate than toward the natural substrates, L-glutamate and L-aspartate. The cytosolic isoenzyme catalyzed the L-cysteine sulfinate transamination at 50% the rate of L-glutamate transamination. The Pseudomonas enzyme had the same reactivity toward the three substrates. Antisera against the two isoenzymes and the Escherichia enzyme inactivated almost completely cysteine sulfinate transamination activity in the crude extracts of pig heart muscle and Escherichia coli B, respectively. These results indicate that cysteine sulfinate transamination is catalyzed by aspartate aminotransferase in these cells.  相似文献   

4.
Clinical isolates of Neisseria gonorrhoeae are commonly subject to growth inhibition by phenylpyruvate or by L-phenylalanine. A blockade of tyrosine biosynthesis is indicated since inhibition is reversed by either L-tyrosine or 4-hydroxyphenylpyruvate. Phenylalanine-resistant (PheR) and phenylalanine-sensitive (PheS) isolates both have a single 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase that is partially inhibited by L-phenylalanine (80%). However, PheS and PheR isolates differ in that the ratio of phenylpyruvate aminotransferase to 4-hydroxyphenylpyruvate aminotransferase is distinctly greater in PheS isolates than in PheR isolates. A mechanism for growth inhibition is proposed in which phenylalanine exerts two interactive effects. (i) Phenylalanine decreases precursor flow to 4-hydroxyphenylpyruvate through its controlling effect upon DAHP synthase; and (ii) phenylalanine is largely transaminated to phenylpyruvate, which saturates both aminotransferases, preventing transamination of an already limited supply of 4-hydroxyphenylpyruvate to L-tyrosine.  相似文献   

5.
Five synthetic, conformationally restricted alpha-ketoglutarate analogues were tested as substrates of a variety of dehydrogenases and aminotransferases. The compounds were found not to be detectable substrates of glutamate dehydrogenase, L-leucine dehydrogenase, L-phenylalanine dehydrogenase, lactate dehydrogenase, malate dehydrogenase, glutamine transaminase K, aspartate aminotransferase, alanine aminotransferase, and alpha-ketoglutarate dehydrogenase complex. However, two thermostable aminotransferases were identified that catalyze transamination between several L-amino acids (e.g., phenylalanine, glutamate) and the alpha-ketoglutarate analogues of interest. Transamination between L-glutamate (or L-phenylalanine) and the alpha-ketoglutarate analogues was found to be 0.13 to 1.08 micromol/h/mg at 45 degrees C. The products resulting from transamination between L-phenylalanine and the alpha-ketoglutarate analogues were separated by reverse-phase HPLC, and the newly formed amino acid analogues were analyzed by LC-MS in an ion selective mode. In each case, the ions obtained were consistent with the expected product and a representative example is provided. The possibility existed that although the alpha-ketoglutarate analogues are not substrates of the dehydrogenases and most of the aminotransferases investigated, they might be good inhibitors. Weak inhibition of aminotransferases and glutamate dehydrogenase was found with some of the alpha-ketoglutarate analogues. The newly available thermostable aminotransferases may have general utility in the synthesis of bulky L-amino acids from the corresponding alpha-keto acids.  相似文献   

6.
The kinetic behaviour of chicken liver and turkey liver aspartate aminotransferases (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1) was studied. Steady-state data were obtained from a wide range of concentrations of substrates and product L-glutamate. The data were fitted by rational functions of degree 1:1, 1:2 and 2:2 with respect to substrates and 0:1, 1:1, 0:2 and 1:2 with regard to product (L-glutamate), by using a non-linear regression program that guarantees the fit. The goodness of fit was improved by the use of a computer program that combines model discrimination parameter refinement and sequential experimental design. It was concluded that aspartate aminotransferase requires a minimum velocity equation of degree 2:2 for L-aspartate, 2:2 for 2-oxoglutarate and 1:2 for L-glutamate. Finally, a plausible kinetic mechanism that justifies these experimental results is proposed.  相似文献   

7.
The phototrophic bacterium Rhodobacter capsulatus utilizes the aromatic amino acids L-phenylalanine and L-tyrosine as nitrogen source. L-Phenylalanine is hydroxylated to L-tyrosine, which is further converted into p-hydroxyphenyl pyruvate (pHPP) by a transamination reaction. The bacterium is unable to grow at the expense of these amino acids as the sole carbon source, although it is able to degrade them to homogentisate, probably by unspecific hydroxylation reactions. Metabolization of L-phenylalanine or L-tyrosine as nitrogen source requires phototrophic growth conditions and does not produce free ammonium inside the cells. A low aminotransferase activity with 2-oxoglutarate and L-tyrosine as substrates can be detected in crude extracts of R. capsulatus. Uptake of both amino acids by R. capsulatus was completely inhibited by ammonium addition, which also prevents aminotransferase induction. Received: 21 July 1998 / Accepted: 19 August 1998  相似文献   

8.
Protein TT0402 from Thermus thermophilus HB8 exhibits about 30-35% sequence identity with proteins belonging to subgroup IV in the aminotransferase family of the fold-type I pyridoxal 5'-phosphate (PLP)-dependent enzymes. In this study, we determined the crystal structure of TT0402 at 2.3 A resolution (R(factor) = 19.9%, R(free) = 23.6%). The overall structure of TT0402 exhibits the fold conserved in aminotransferases, and is most similar to that of the Escherichia coli phosphoserine aminotransferase, which belongs to subgroup IV but shares as little as 13% sequence identity with TT0402. Kinetic assays confirmed that TT0402 has higher transamination activities with the amino group donor, L-glutamate, and somewhat lower activities with L-aspartate. These results indicate that TT0402 is a subgroup IV aminotransferase for the synthesis/degradation of either L-aspartate or a similar compound.  相似文献   

9.
1. A reversible transamination reaction between L-glutamate and pyruvate, or L-alanine and 2-oxoglutarate, takes place in the mitochondrial and cell sap fractions of rat brain. 2. The maximum rate of the transamination reaction in both subfractions was observed in the presence of a keto- substrate concentration of 2.5 mM only, but an amino- donor concentration of 20 mM. 3. The apparent Menten-Michaelis constants for pyruvate and 2-oxoglutarate were of a 10(-4) M and for L-glutamate and L-alanine of a 10(-3) M order and were approximately the same for both fractions. 4. The ratio of the initial rate of the L-alanine + 2-oxoglutarate to the L-glutamate + pyruvate transamination reaction in the cell sap and mitochondrial fractions amounted to up to 2. 5. The apparent equilibrium constant derived from the Haldane equation was 7.01 for cell sap alanine aminotransferase and 4 for the mitochondrial enzyme. 6. Increasing pyridoxal-5'-phosphate concentrations in the incubation medium were accompanied by only non-significant stimulation of alanine aminotransferase activity in the mitochondrial and cell sap fractions. 7. A comparison of the kinetic data obtained on mitochondrial and cell sap alanine aminotransferases in vitro with the actual substrate concentrations in the transamination reaction in nervous tissue in vivo indicates that the direction of the transamination reaction in situ seems to be determined simply by compartmentation and by dynamic changes in amino- and keto- substrates in the mitochondrial and cell sap spaces.  相似文献   

10.
Enzymes of Erwinia carotovora that transaminate phenylpyruvate were isolated, purified, and characterized. Two aromatic aminotransferases (PAT1 and PAT2) and an aspartic aminotransferase (PAT3) were found. According to gel filtration, these enzymes have molecular weights of 76, 75, and 78 kDa. The enzymes consist of two identical subunits of molecular weights of 31.4, 31, and 36.5 kDa, respectively. The isoelectric points of PAT1, PAT2, and PAT3 were determined as 3.6, 3.9, and 4.7, respectively. The enzyme preparations considerably differ in substrate specificity. All three of the enzymes productively interacted with the following amino acids: L-aspartic acid, L-leucine (except PAT3), L-isoleucine (except PAT3), L-serine, L-methionine, L-cysteine, L-phenylalanine, L-tyrosine, and L-tryptophane. The aromatic aminotransferases display higher specificity to the aromatic amino acids and the leucine-isoleucine pair, whereas the aspartic aminotransferase displays higher specificity to L-aspartic acid and relatively low specificity to the aromatic amino acids. The aspartic aminotransferase does not use L-leucine or L-isoleucine as a substrate. PAT1, PAT2, and PAT3 show the highest activity at pH 8.9 and at 48, 53, and 58°C, respectively.  相似文献   

11.
Twenty putative aminotransferase (AT) proteins of Corynebacterium glutamicum, or rather pyridoxal-5'-phosphate (PLP)-dependent enzymes, were isolated and assayed among others with L-glutamate, L-aspartate, and L-alanine as amino donors and a number of 2-oxo-acids as amino acceptors. One outstanding AT identified is AlaT, which has a broad amino donor specificity utilizing (in the order of preference) L-glutamate > 2-aminobutyrate > L-aspartate with pyruvate as acceptor. Another AT is AvtA, which utilizes L-alanine to aminate 2-oxo-isovalerate, the L-valine precursor, and 2-oxo-butyrate. A second AT active with the L-valine precursor and that of the other two branched-chain amino acids, too, is IlvE, and both enzyme activities overlap partially in vivo, as demonstrated by the analysis of deletion mutants. Also identified was AroT, the aromatic AT, and this and IlvE were shown to have comparable activities with phenylpyruvate, thus demonstrating the relevance of both ATs for L-phenylalanine synthesis. We also assessed the activity of two PLP-containing cysteine desulfurases, supplying a persulfide intermediate. One of them is SufS, which assists in the sulfur transfer pathway for the Fe-S cluster assembly. Together with the identification of further ATs and the additional analysis of deletion mutants, this results in an overview of the ATs within an organism that may not have been achieved thus far.  相似文献   

12.
Two aminotransferases from Escherichia coli were purified to homogeneity by the criterion of gel electrophoresis. The first (enzyme A) is active on L-aspartic acid, L-tyrosine, L-phenylalanine, and L-tryptophan; the second (enzyme B) is active on the aromatic amiono acids. Enzyme A is identical in substrate specificity with transaminase A and is mainly an aspartate aminotransferase; enzyme B has never been described before and is an aromatic amino acid aminotransferase. The two enzymes are different in the Vmax and Km values with their common substrates and pyridoxal phosphate, in heat stability (enzyme A being heat-stable and enzyme B being heat-labile at 55 degrees) and in pH optima with the amino acid substrates. They are similar in their amino acid composition, each enzyme appears to consist of two subunits, and enzyme B may be converted to enzyme A by controlled proteolysis with subtilsin. The conversion was detected by the generation of new aspartate aminotransferase activity from enzyme B and was further verified by identification by acrylamide gel electrophoresis of the newly formed enzyme A. The two enzymes appear to be products of two genes different in a small, probably terminal, nucleotide sequence.  相似文献   

13.
Photooxidation of a histidine residue in aspartate transaminase leads to proportionate loss of the enzyme activity in reactions with L-aspartate and L-phenylalanine. Modification of two arginine residues by 1,2-cyclohexanedione strongly inhibits transamination of aspartate but, in contrast, slightly increases the rate of phenylalanine transamination. A stimulatory effect of a number of aromatic and aliphatic monocarboxylate anions on the rate of alanine transamination in the active site was observed. Indolylbutyrate was the most effective compound among those tested. Indolylbutyrate and indolylacetate act as competitive inhibitors in the case of transamination of phenylalanine or aspartate. The results were interpreted as indicating the presence in the active center of transaminase of a hydrophobic subsite participating in the binding of aromatic aminoacids.  相似文献   

14.
A subfamily I aminotransferase gene homologue containing an open reading frame encoding 381 amino acid residues (Mr=42,271) has been identified in the process of the genome project of an extremely thermophilic bacterium, Thermus thermophilus HB8. Alignment of the predicted amino acid sequence using FASTA shows that this protein is a member of aminotransferase subfamily Igamma. The protein shows around 40% identity with both T. thermophilus aspartate aminotransferase [EC 2.6.1.1] and mammalian glutamine:phenylpyruvate aminotransferase [EC 2.6.1.64]. The recombinant protein expressed in Escherichia coli is a homodimer with a subunit molecular weight of 42,000, has one pyridoxal 5'-phosphate per subunit, and is highly active toward glutamine, methionine, aromatic amino acids, and corresponding keto acids, but has no preference for alanine and dicarboxylic amino acids. These substrate specificities are similar to those described for mammalian glutamine: phenylpyruvate aminotransferase. This is the first enzyme reported so far that has the glutamine aminotransferase activity in non-eukaryotic cells. As the presence of aromatic amino acid:2-oxoglutarate aminotransferase [EC 2.6.1.57] has not been reported in T. thermophilus, this enzyme is expected to catalyze the last transamination step of phenylalanine and tyrosine biosynthesis. It may also be involved in the methionine regeneration pathway associated with polyamine biosynthesis. The enzyme shows a strikingly high pKa value (9.3) of the coenzyme Schiff base in comparison with other subfamily I aminotransferases. The origin of this unique pKa value and the substrate specificity is discussed based on the previous crystallographic data of T. thermophilus and E. coli aspartate aminotransferases.  相似文献   

15.
The aromatic amino acid aminotransferase was purified to a homogenous state from a gramicidin S-producing strain of Bacillus brevis. The enzyme shows a molecular weight of about 71,000 on gel-filtration. The subunit molecular weight is about 35,000 as determined by sodium dodecyl sulfate gel electrophoresis, indicating that the enzyme is a dimer. The enzyme exhibits absorption maxima near 425 and 330 nm at neutral pH. One mole of pyridoxal phosphate is bound per subunit. The enzyme has amino donor specificity for aromatic amino acids, L-phenylalanine, L-tyrosine, and L-tryptophan, and utilizes 2-oxoglutarate as the amino acceptor. This enzyme activity was separated from both the aspartate aminotransferase activity and the branched chain amino acid aminotransferase activity by chromatography on DEAE-Sephadex.  相似文献   

16.
Abstract— Mitochondrial and cytoplasmic forms of aspartate aminotransferase were purified from rat brain homogenates and tested for their ability to catalyze transamination of various aromatic amino acids. The mitochondrial enzyme exhibited activity toward tyrosine and phenylalanine with 2-oxoglutar-ate as acceptor, although the specific activities were less than 1% of the corresponding aspartate activity when all substrates were 10 mM. Even less activity was seen with DOPA, 5-hydroxytryptophan and tryptophan. The cytoplasmic aspartate aminotransferase was active toward tryptophan, 5-hydroxytryptophan and DOPA, but these transaminations were favored by pyruvate or oxaloacetate rather than 2-oxoglutarate as keto acid. Based on co-migration of aromatic activities with the respective aspartate aminotransferases during isoelectric focusing and based on equal sensitivities of aromatic transamination and aspartate transamination to inhibition by vinylglycine, it was concluded that all activities resided in the aspartate aminotransferase enzymes. Some doubt exists, however, as to the physiological significance of these alternate activities in view of the requirement that aromatic amino acids must compete with aspartate for transamination by these enzymes.  相似文献   

17.
1H-NMR was used to follow the aspartate aminotransferase-catalysed exchange of the alpha-protons of aspartate and glutamate. The effect of the concentrations of both the amino acids and the cognate keto acids on exchange rates was determined for wild-type and the R386A and R292V mutant forms of aspartate aminotransferase. The wild-type enzyme is found to be highly stereospecific for the exchange of the alpha-protons of L-aspartate and L-glutamate. The R386A mutation which removes the interaction of Arg-386 with the alpha-carboxylate group of aspartate causes an approximately 10,000-fold decrease in the first order exchange rate of the alpha-proton of L-aspartate. The R292V mutation which removes the interaction of Arg-292 with the beta-carboxylate group of L-aspartate and the gamma-carboxylate group of L-glutamate causes even larger decreases of 25,000- and 100,000-fold in the first order exchange rate of the alpha-proton of L-aspartate and L-glutamate respectively. Apparently both Arg-386 and Arg-292 must be present for optimal catalysis of the exchange of the alpha-protons of L-aspartate and L-glutamate, perhaps because the interaction of both these residues with the substrate is essential for inducing the closed conformation of the active site.  相似文献   

18.
The conjoint substitution of three active-site residues in aspartate aminotransferase (AspAT) of Escherichia coli (Y225R/R292K/R386A) increases the ratio of L-aspartate beta-decarboxylase activity to transaminase activity >25 million-fold. This result was achieved by combining an arginine shift mutation (Y225R/R386A) with a conservative substitution of a substrate-binding residue (R292K). In the wild-type enzyme, Arg(386) interacts with the alpha-carboxylate group of the substrate and is one of the four residues that are invariant in all aminotransferases; Tyr(225) is in its vicinity, forming a hydrogen bond with O-3' of the cofactor; and Arg(292) interacts with the distal carboxylate group of the substrate. In the triple-mutant enzyme, k(cat)' for beta-decarboxylation of L-aspartate was 0.08 s(-1), whereas k(cat)' for transamination was decreased to 0.01 s(-1). AspAT was thus converted into an L-aspartate beta-decarboxylase that catalyzes transamination as a side reaction. The major pathway of beta-decarboxylation directly produces L-alanine without intermediary formation of pyruvate. The various single- or double-mutant AspATs corresponding to the triple-mutant enzyme showed, with the exception of AspAT Y225R/R386A, no measurable or only very low beta-decarboxylase activity. The arginine shift mutation Y225R/R386A elicits beta-decarboxylase activity, whereas the R292K substitution suppresses transaminase activity. The reaction specificity of the triple-mutant enzyme is thus achieved in the same way as that of wild-type pyridoxal 5'-phosphate-dependent enzymes in general and possibly of many other enzymes, i.e. by accelerating the specific reaction and suppressing potential side reactions.  相似文献   

19.
A pattern of allosteric control for aromatic biosynthesis in cyanobacteria relies upon early-pathway regulation as the major control point for the entire branched pathway. In Synechococcus sp. strain PCC6301 (Anacystis nidulans), two enzymes which form precursors for L-phenylalanine biosynthesis are subject to control by feedback inhibition. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (first pathway enzyme) is feedback inhibited by L-tyrosine, whereas prephenate dehydratase (enzyme step 9) is feedback inhibited by L-phenylalanine and allosterically activated by L-tyrosine. Mutants lacking feedback inhibition of prephenate dehydratase excreted relatively modest quantities of L-phenylalanine. In contrast, mutants deregulated in allosteric control of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase excreted large quantities of L-phenylalanine (in addition to even greater quantities of L-tyrosine). Clearly, in the latter mutants, the elevated levels of prephenate must overwhelm the inhibition of prephenate dehydratase by L-phenylalanine, an effect assisted by increased intracellular L-tyrosine, an allosteric activator. The results show that early-pathway flow regulated in vivo by 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase is the dominating influence upon metabolite flow-through to L-phenylalanine. L-Tyrosine biosynthesis exemplifies such early-pathway control even more simply, since 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase is the sole regulatory enzyme subject to end-product control by L-tyrosine.  相似文献   

20.
The enzyme L-phenylalanine ammonia-lyase was purified from leaves of Phaseolus vulgaris by Sephacryl S-200 gel filtration and Sepharose-4-B--succinyl-aminoethyl-L-phenylalanine affinity chromatography. L-Phenylalanine ammonia-lyase was specifically eluted from the affinity matrix with its substrate L-phenylalanine at 20-25 degrees C. The purified enzyme was shown to be homogeneous by gel electrophoresis both in presence and absence of SDS. Its Mr, determined by gel filtration and non-denaturing gel electrophoresis, was 320,000 +/- 9000 and 330,000 +/- 4000 respectively. After SDS electrophoresis only one band of Mr 83,000 +/- 4000 was detected, indicating that the enzyme is an oligomer containing four subunits. The pH optimum of enzyme activity was 8.8-9.2. Ampholyte isoelectrofocusing in polyacrylamide demonstrated the presence of a single charged species at pH 4.2. The homogeneous enzyme catalyzed the deamination of L-phenylalanine to trans-cinnamate but did not catalyze the transamination of L-phenylalanine to L-phenylpyruvate. The enzyme showed Km 1.25 mM for L-phenylalanine. Antibodies to homogeneous L-phenylalanine ammonia-lyase recognised specific epitopes on L-phenylalanine aminotransferase as demonstrated by immunoaffinity purification and immunoblotting. The induction of L-phenylalanine ammonia-lyase activity during phaseollin biosynthesis in the Phaseolus vulgaris--Colletotrichum lindemuthianum interaction was regulated by an increase in enzyme concentration resulting from an increase in de novo synthesis of L-phenylalanine ammonia-lyase protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号