首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The structure of the guanosine nucleotide binding site of EF-2 was studied by affinity labelling with the GTP analogue, oxidized GTP (oGTP), and by amino acid sequencing of polypeptides generated after partial degradation with trypsin and N-chlorosuccinimide. Native EF-2 contains two exposed trypsin-sensitive cleavage sites. One site is at Arg66 with a second site at Lys571/Lys572. oGTP was covalently bound to the factor between Arg66 and Lys571. After further cleavage of this fragment with the tryptophan-specific cleavage reagent N-chlorosuccinimide, oGTP was found associated with a polypeptide fragment originating from a cleavage at Trp261 and Trp343. The covalent oGTP . EF-2 complex was capable of forming a high-affinity complex with ribosomes, indicating that oGTP, in this respect, induced a conformation in EF-2 indistinguishable from that produced by GTP. Although GTP could be substituted by non-covalently linked oGTP in the factor and ribosome-dependent GTPase reaction, the factor was unable to utilize the covalently bound oGTP as a substrate. This indicates that the conformational flexibility in EF-2 required for the ribosomal activation of the GTPase was inhibited by the covalent attachment of the nucleotide to the factor. EF-2 cleaved at Arg66 were unable to form the high-affinity complex with ribosomes while retaining the ability to form the low-affinity complex and to hydrolyse GTP. The second cleavage at Lys571/Lys572 was accompanied by a total loss of both the low-affinity binding and the GTPase activity.  相似文献   

2.
The functional significance of the post-translocation interaction of eukaryotic ribosomes with EF-2 was studied using the translational inhibitor ricin. Ribosomes treated with ricin showed a decreased rate of elongation accompanied by altered proportions of the different ribosomal phases of the elongation cycle. The content of ribosome-bound EF-2 was diminished by approximately 65% while that of EF-1 was unaffected. The markedly reduced content of EF-2 was caused by an inability of the ricin-treated ribosomes to form high-affinity pre-translocation complexes with EF-2. However, the ribosomes were still able to interact with EF-2 in the form of a low-affinity post-translocation complex. Ricin-treated ribosomes showed an altered ability to stimulate the GTP hydrolysis catalysed by either EF-1 or EF-2. The EF-1-catalysed hydrolysis was reduced by approximately 70%, resulting in a decreased turnover of the quaternary EF-1 X GTP X aminoacyl-tRNA X ribosome complex. In contrast, the EF-2-catalysed hydrolysis was increased by more than 400%, despite the lack of pre-translocation complex formation. The effect was not restricted to empty reconstituted ribosomes since gently salt-washed polysomes also showed an increased rate of GTP hydrolysis. The results indicate that the EF-1- and EF-2-dependent hydrolysis of GTP was activated by a common center on the ribosome that was specifically adapted for promoting the GTP hydrolysis of either EF-1 or EF-2. Furthermore, the results suggest that the GTP hydrolysis catalysed by EF-2 occurred in the low-affinity post-translocation complex.  相似文献   

3.
Free- and EF-2-bound 80 S ribosomes, within the high-affinity complex with the non-hydrolysable GTP analog: guanylylmethylenediphosphonate (GuoPP(CH2)P), and the low-affinity complex with GDP, were treated with trypsin under conditions that modified neither their protein synthesis ability nor their sedimentation constant nor the bound EF-2 itself. Proteins extracted from trypsin-digested ribosomes were unambiguously identified using three different two-dimensional gel electrophoresis systems and 5 S RNA release was checked by submitting directly free- and EF-2-bound 80 S ribosomes, incubated with trypsin, to two-dimensional gel electrophoresis. Our results indicate that the binding of (EF-2)-GuoPP[CH2]P to 80 S ribosomes modified the behavior of a cluster of five proteins which were trypsin-resistant within free 80 S ribosomes and trypsin-sensitive within the high-affinity complex (proteins: L3, L10, L13a, L26, L27a). As for the binding of (EF-2)-GDP to 80 S ribosomes, it induced an intermediate conformational change of ribosomes, unshielding only protein L13a and L27a. Quantitative release of free intact 5 S RNA which occurred in the first case but not in the second one, should be related to the trypsinolysis of protein(s) L3 and/or L10 and/or L26. Results were discussed in relation to structural and functional data available on the ribosomal proteins we found to be modified by EF-2 binding.  相似文献   

4.
The effect of the protein synthesis inhibitor II from barley seeds (Hordeum sp.) on protein synthesis was studied in rabbit reticulocyte lysates. Inhibitor treatment of the lysates resulted in a rapid decrease in amino acid incorporation and an accumulation of heavy polysomes, indicating an effect of the inhibitor on polypeptide chain elongation. The protein synthesis inhibition was due to a catalytic inactivation of the large ribosomal subunit with no effect on the small subparticle. The inhibitor-treated ribosomes were fully active in participating in the EF-1-dependent binding of [14C]phenylalanyl-tRNA to poly(U)-programmed ribosomes in the presence of GTP and the binding of radioactively labelled EF-2 in the presence of GuoPP[CH2]P. Furthermore, the ribosomes were still able to catalyse peptide-bond formation. However, the EF-1- and ribosome-dependent hydrolysis of GTP was reduced by more than 40% in the presence of inhibitor-treated ribosomes, while the EF-2- and ribosome-dependent GTPase remained unaffected. This suggests that the active domains involved in the two different GTPases are non-identical. Treatment of reticulocyte lysates with the barley inhibitor resulted in a marked shift of the steady-state distribution of the ribosomal phases during the elongation cycle as determined by the ribosomal content of elongation factors. Thus, the content of EF-1 increased from 0.38 mol/mol ribosome to 0.71 mol/mol ribosome, whereas the EF-2 content dropped from 0.20 mol/mol ribosome at steady state to 0.09 mol/mol ribosome after inhibitor treatment. The data suggest that the inhibitor reduces the turnover of ribosome-bound ternary EF-1 X GTP X aminoacyl-tRNA complexes during proof-reading and binding of the cognate aminoacyl-tRNA by inhibiting the EF-1-dependent GTPase.  相似文献   

5.
The present study has examined the requirements for the binding of rabbit reticulocyte elongation factor 1 (EF-1) to ribosomes under different assay conditions. When a centrifugation procedure was used to separate the ribosome EF-1 complex, the binding of EF-1 to ribosomes required GTP and Phe-tRNA, but not poly(U). The results suggested that undr these conditions a ternary complex, EF-1 . GTP . aminoacyl-tRNA, is necessary for the formation of a ribosome . EF-1 complex. However, when gel filtration was used to isolate the ribosome . EF-1 complex, only template and tRNA were required. These studie emphasize the fact that the procedure used to isolate the ribosome . EF-1 complex determines the requirements for stable complex formation. EF-1 can also interact with nucleic acids such as 28 S and 18 S rRNA, messenger RNA and DNA. In contrast to the binding to ribosomes, EF-1 binding to nucleic acids requires only Mg2+.  相似文献   

6.
The L8 protein complex consisting of L7/L12 and L10 in Escherichia coli ribosomes is assembled on the conserved region of 23 S rRNA termed the GTPase-associated domain. We replaced the L8 complex in E. coli 50 S subunits with the rat counterpart P protein complex consisting of P1, P2, and P0. The L8 complex was removed from the ribosome with 50% ethanol, 10 mM MgCl(2), 0.5 M NH(4)Cl, at 30 degrees C, and the rat P complex bound to the core particle. Binding of the P complex to the core was prevented by addition of RNA fragment covering the GTPase-associated domain of E. coli 23 S rRNA to which rat P complex bound strongly, suggesting a direct role of the RNA domain in this incorporation. The resultant hybrid ribosomes showed eukaryotic translocase elongation factor (EF)-2-dependent, but not prokaryotic EF-G-dependent, GTPase activity comparable with rat 80 S ribosomes. The EF-2-dependent activity was dependent upon the P complex binding and was inhibited by the antibiotic thiostrepton, a ligand for a portion of the GTPase-associated domain of prokaryotic ribosomes. This hybrid system clearly shows significance of binding of the P complex to the GTPase-associated RNA domain for interaction of EF-2 with the ribosome. The results also suggest that E. coli 23 S rRNA participates in the eukaryotic translocase-dependent GTPase activity in the hybrid system.  相似文献   

7.
The biological activity of elongation factor 2 (EF-2) following NAD+ - and diphtheria-toxin-dependent ADP-ribosylation was studied (i) in translation experiments using the reticulocyte lysate system and (ii) in ribosomal binding experiments using either reconstituted empty rat liver ribosomes or programmed reticulocyte polysomes. Treatment of the lysates with toxin and NAD+ at a NAD+/ribosome ratio of 4 resulted in a 90% inhibition of the amino acid incorporation rate. The inhibition was overcome by the addition of native EF-2. At this level of inhibition more than 90% of the EF-2 present in the lysates was ADP-ribosylated and the total ribosome association of EF-2 was reduced by approx. 50%. All of the remaining unmodified factor molecules were associated with the ribosomes, whereas only about 3% of the ribosylated factor was ribosome-associated. The nucleotide requirement for the binding of EF-2 to empty reconstituted rat liver ribosomes and programmed reticulocyte polysomes was studied together with the stability of the resulting EF-2 X ribosome complexes using purified 125I-labelled rat liver EF-2. With both types of ribosomes, the complex formation was strictly nucleotide-dependent. Stable, high-affinity complexes were formed in the presence of the non-hydrolysable GTP analogue guanosine 5'-(beta, gamma-methylene)triphosphate (GuoPP[CH2]P). In contrast to the reconstituted ribosomes, GTP stimulated the formation of high-affinity complexes in the presence of polysomes, albeit at a lower efficiency than GuoPP[CH2]P. The formation of high-affinity complexes was restricted to polysomes in the pretranslocation phase of the elongation cycle. Low-affinity post-translocation complexes, demonstrable after fixation, were formed in the presence of GTP, GuoPP[CH2]P and GDP. In polysomes, these complexes involved a different population of particles than did the high-affinity complexes. In the binding experiments using reconstituted or programmed ribosomes, the pretranslocation binding of EF-2 observed in the presence of GuoPP[CH2]P was reduced by approx. 50% after ADP-ribosylation, whereas the post-translocation binding in the presence of GDP was unaltered. The data indicate that the inhibition of translocation caused by diphtheria toxin and NAD+ is mediated through a reduced affinity of the ADP-ribosylated EF-2 for binding to ribosomes in the pretranslocation state.  相似文献   

8.
The effect of ADP-ribosylation on the function of eukaryotic elongation factor 2 (EF-2) was investigated by kinetic analysis of the EF-2-catalyzed hydrolysis of GTP in the presence of ribosomes and by direct determination of the affinity of the modified factor for the ribosome. Under conditions where the concentration of EF-2 was rate-limiting, the ADP-ribosylation reduced the maximum rate of GTP hydrolysis and the second order rate constant Kcat/Km by approximately 50%. A similar decrease in Kcat and Kcat/Km was observed when the concentration of ribosomes were kept rate-limiting. The affinity of EF-2 for the pretranslocation type of ribosomes was reduced by 2 orders of magnitude after ADP-ribosylation. No effect was observed in the interaction with the post-translocation type of ribosomes, the ribosomal conformation responsible for activation of the EF-2-dependent GTPase. We conclude that the ADP-ribosylation affects both the association of the modified factor with pretranslocation ribosomes and the hydrolytic capacity of the factor.  相似文献   

9.
The accessibility of three amino acids of EF-2, located within highly conserved regions near the N- and C-terminal extremities of the molecule (the E region and the ADPR region, respectively) to modifying enzymes has been compared within nucleotide-complexed EF-2 and ribosomal complexes that mimic the pre- and posttranslocational ones: the high-affinity complex (EF-2)-nonhydrolysable GTP analog GuoPP[CH2]P ribosome and the low-affinity (EF-2)-GDP-ribosome complex, EF-2 and ribosomes being from rat liver. We studied the reactivity of two highly conserved residues diphthamide-715 and Arg-66, to diphtheria-toxin-dependent ADP-ribosylation and trypsin attack, and of a threonine that probably lies between residues 51 and 60, to phosphorylation by a Ca2+/calmodulin-dependent protein kinase. Diphthamide 715 and this threonine residue were unreactive within the high-affinity complex but seemed fully reactive in the low-affinity complex. Arg-66 was resistant to trypsin in both complexes. The possible involvement of the E and ADPR regions of EF-2 in the interaction with ribosome in the two complexes is discussed.  相似文献   

10.
Role of yeast elongation factor 3 in the elongation cycle   总被引:7,自引:0,他引:7  
Investigation of the role of the polypeptide chain elongation factor 3 (EF-3) of yeast indicates that EF-3 participates in the elongation cycle by stimulating the function of EF-1 alpha in binding aminoacyl-tRNA (aa-tRNA) to the ribosome. In the yeast system, the binding of the ternary complex of EF-1 alpha.GTP.aa-tRNA to the ribosome is stoichiometric to the amount of EF-1 alpha. In the presence of EF-3, EF-1 alpha functions catalytically in the above mentioned reaction. The EF-3 effect is manifest in the presence of ATP, GTP, or ITP. A nonhydrolyzable analog of ATP does not replace ATP in this reaction, indicating a role of ATP hydrolysis in EF-3 function. The stimulatory effect of EF-3 is, in many respects, distinct from that of EF-1 beta. Factor 3 does not stimulate the formation of a binary complex between EF-1 alpha and GTP, nor does it stimulate the exchange of EF-1 alpha-bound GDP with free GTP. The formation of a ternary complex between EF-1 alpha.GTP.aa-tRNA is also not affected by EF-3. It appears that the only reaction of the elongation cycle that is stimulated by EF-3 is EF-1 alpha-dependent binding of aa-tRNA to the ribosome. Purified elongation factor 3, isolated from a temperature-sensitive mutant, failed to stimulate this reaction after exposure to a nonpermissive temperature. A heterologous combination of ribosomal subunits from yeast and wheat germ manifest the requirement for EF-3, dependent upon the source of the "40 S" ribosomal subunit. A combination of 40 S subunits from yeast and "60 S" from wheat germ showed the stimulatory effect of EF-3 in polyphenylalanine synthesis (Chakraburtty, K., and Kamath, A. (1988) Int. J. Biochem. 20, 581-590). However, we failed to demonstrate the effect of EF-3 in binding aa-tRNA to such a heterologous combination of the ribosomal subunits.  相似文献   

11.
J A Langer  F Jurnak  J A Lake 《Biochemistry》1984,23(25):6171-6178
A complex between elongation factor Tu (EF-Tu), GTP, phenylalanyl-tRNA (Phe-tRNA), oligo(uridylic acid) [oligo(U)], and the 30S ribosomal subunit of Escherichia coli has been formed and isolated. Binding of the EF-Tu complex appears to be at the functionally active 30S site, by all biochemical criteria that were examined. The complex can be isolated with 0.25-0.5 copy of EF-Tu bound per ribosome. The binding is dependent upon the presence of both the aminoacyl-tRNA and the cognate messenger RNA. Addition of 50S subunits to the preformed 30S-EF-Tu-GTP-Phe-tRNA-oligo(U) complex ("30S-EF-Tu complex") causes a rapid hydrolysis of GTP. This hydrolysis is coordinated with the formation of 70S ribosomes and the release of EF-Tu. Both the release of EF-Tu and the hydrolysis of GTP are stoichiometric with the amount of added 50S subunits. 70S ribosomes, in contrast to 50S subunits, neither release EF-Tu nor rapidly hydrolyze GTP when added to the 30S-EF-Tu complexes. The inability of 70S ribosomes to react with the 30S-EF-Tu complex argues that the 30S-EF-Tu complex does not dissociate prior to reaction with the 50S subunit. The requirements of the 30S reaction for Phe-tRNA and oligo(U) and the consequences of the addition of 50S subunits resemble the reaction of EF-Tu with 70S ribosomes, although EF-Tu binding to isolated 30S subunits does not occur during the elongation microcycle. This suggests that the EF-Tu ternary complex binds to isolated 30S subunits at the same 30S site that is occupied during ternary complex interaction with the 70S ribosome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
During the translocation of the nascent peptide chain from the ribosomal aminoacyl-site to the peptidyl-site, GTP is hydrolyzed by a mechanism dependent on both ribosomes and the elongation factor EF-2. For insight into the mechanism of GTP hydrolysis, we studied the ability of the GTP analogue 5′-p-fluorosulfonylbenzoylguanosine (FSO2BzGuo) to act as an affinity label of the guanine-specific site. Pre-incubation of EF-2 with FSO2BzGuo at increasing concentrations progressively inactivated the EF-2 and ribosome-dependent GTPase activity. Up to 0.5 mM FSO2BzGuo, the inactivation of the GTPase activity was stoichiometrically correlated with the covalent binding of [3H]FSO2BzGuo. Thus, one molecule of covalently bound FSO2BzGuo completely inactivated the GTPase activity of EF-2. Ribosomes or 60-S ribosomal subunits pre-incubated with FSO2BzGuo were not inactivated, consistent with the idea that the GTP hydrolysis involved in the ribosomal translocation takes place on EF-2.  相似文献   

13.
The GTPase activity of purified EF-1 alpha from calf brain has been studied under various experimental conditions and compared with that of EF-Tu. EF-1 alpha displays a much higher GTPase turnover than EF-Tu in the absence of aminoacyl-tRNA (aa-tRNA) and ribosomes (intrinsic GTPase activity); this is due to the higher exchange rate between bound GDP and free GTP. Also the intrinsic GTPase of EF-1 alpha is enhanced by increasing the concentration of monovalent cations, K+ being more effective than NH+4. Differently from EF-Tu, aa-tRNA is much more active than ribosomes in stimulating the EF-1 alpha GTPase activity. However, ribosomes strongly reinforce the aa-tRNA effect. In the absence of aa-tRNA the rate-limiting step of the GTPase turnover appears to be the hydrolysis of GTP, whereas in its presence the GDP/GTP exchange reaction becomes rate-limiting, since addition of EF-1 beta enhances turnover GTPase activity. Kirromycin moderately inhibits the intrinsic GTPase of EF-1 alpha; this effect turns into stimulation when aa-tRNA is present. Addition of ribosomes abolishes any kirromycin effect. The inability of kirromycin to affect the EF-1 alpha/guanine-nucleotide interaction in the presence of ribosomes shows that, differently from EF-Tu, the EF-1 alpha X GDP/GTP exchange reaction takes place on the ribosome.  相似文献   

14.
Elongation factor 1 (EF-1) from the silk gland of Bombyx mori consists of four subunits: alpha (51 kDa), beta (26 kDa), gamma (49 kDa), and delta (33 kDa). The EF-1alpha subunit catalyzes the binding of aminoacyl-tRNA to the ribosome concomitant with the hydrolysis of GTP. The EF-1alpha-bound GDP is then exchanged for GTP by the EF-1betagammadelta complex. To facilitate analysis of the roles of the individual EF-1beta, gamma, and delta subunits in GDP/GTP exchange on EF-1alpha, we cloned the cDNAs for these subunits and expressed them in Escherichia coli. EF-1beta, EF-1gamma, and the carboxyl-terminal half of EF-1delta were expressed, purified, and examined for protein:protein interactions by gel filtration chromatography and by a quartz-crystal microbalance method. An 80-kDa species containing EF-1beta and gamma subunits in a 1:1 molar ratio was detected by gel filtration. A higher molecular weight species containing an excess of EF-1gamma relative to EF-1beta was also detected. The amino-terminal region of EF-1beta (amino acid residues 1-129) was sufficient for binding to EF-1gamma. The carboxyl-terminal half of EF-1delta did not appear to form a complex with EF-1gamma.  相似文献   

15.
The ribosome biogenesis GTPase A protein RbgA is involved in the assembly of the large ribosomal subunit in Bacillus subtilis, and homologs of RbgA are implicated in the biogenesis of mitochondrial, chloroplast, and cytoplasmic ribosomes in archaea and eukaryotes. The precise function of how RbgA contributes to ribosome assembly is not understood. Defects in RbgA give rise to a large ribosomal subunit that is immature and migrates at 45 S in sucrose density gradients. Here, we report a detailed biochemical analysis of RbgA and its interaction with the ribosome. We found that RbgA, like most other GTPases, exhibits a very slow k(cat) (14 h(-1)) and has a high K(m) (90 μM). Homology modeling of the RbgA switch I region using the K-loop GTPase MnmE as a template suggested that RbgA requires K(+) ions for GTPase activity, which was confirmed experimentally. Interaction with 50 S subunits, but not 45 S intermediates, increased GTPase activity by ~55-fold. Stable association with 50 S subunits and 45 S intermediates was nucleotide-dependent, and GDP did not support strong interaction with either of the subunits. GTP and guanosine 5'-(β,γ-imido)triphosphate (GMPPNP) were sufficient to promote association with the 45 S intermediate, whereas only GMPPNP was able to support binding to the 50 S subunit, presumably due to the stimulation of GTP hydrolysis. These results support a model in which RbgA promotes a late step in ribosome biogenesis and that one role of GTP hydrolysis is to stimulate dissociation of RbgA from the ribosome.  相似文献   

16.
At low NH4-+ concentrations, 50S ribosomal subunits from E. coli were fully active in the absence of 30S ribosomal subunits, in forming a complex with the polypeptide chain elongation factor G (EF-G) and guanine nucleotide (ternary complex formation), and also in supporting EF-G dependent hydrolysis of GTP (uncoupled GTPase reaction). However, both activities were markedly inhibited on increasing the concentration of the monovalent cation, and at 160 mM NH4-+, the optimal concentration for polypeptide synthesis in a cell-free system, almost no activity was observed with 50S ribosomes alone. It was found that the inhibitory effect of NH4-+ was reversed by addition of 30S subunits. Thus, at 160 mM NH4-+, only 70S ribosomes were active in supporting the above two EF-G dependent reactions, whereas at 20 mM NH4-+, 50S ribosomes were almost as active as 70S ribosomes. Kinetic studies on inhibition by NH4-+ of the formation of 50S ribosome-EF-G-guanine nucleotide complex, indicated that the inhibition was due to reduction in the number of active 50S ribosomes which were capable of interacting with EF-G and GTP at higher concentrations of NH4-+. The inhibitory effects of NH4-+ on ternary complex formation and the uncoupled GTPase reaction were markedly influenced by temperature, and were much greater at 0 degrees than at 30 degrees. A conformational change of 50S subunits through association with 30S subunits is suggested.  相似文献   

17.
The translocation of ribosomes on mRNA is carried out by cellular machinery that has been extremely well conserved across the entire spectrum of living species. This process requires elongation factor G (EF-G, or EF-2 in archaebacteria and eukaryotes), which is a member of the GTPase superfamily. Using genetic techniques, we have identified a series of mutated alleles of fusA (the Escherichia coli gene that encodes EF-G) that were unable to support protein synthesis in vivo. These alleles encode proteins with point mutations at codons 495 (a variant with a Q-to-P change at codon 495 [Q495P]), 502 (G502D), and 563 (G563D) and a nonsense mutation at codon 608. Biochemical analyses demonstrated that EF-G Q495P, G502D, and delta 608-703 were not disrupted in guanine nucleotide binding but were deficient in ribosome-dependent GTP hydrolysis and guanine nucleotide-dependent ribosome association. We propose that all of these mutations are present in a domain that is essential for ribosome association and that GTP hydrolysis was deficient as a secondary consequence of impaired binding to 70S ribosomes.  相似文献   

18.
We have analyzed the interactions between the signal recognition particle (SRP), the SRP receptor (SR), and the ribosome using GTPase assays, biosensor experiments, and ribosome binding assays. Possible mechanisms that could contribute to an enhanced affinity between the SR and the SRP-ribosome nascent chain complex to promote protein translocation under physiological ionic strength conditions have been explored. Ribosomes or 60S large ribosomal subunits activate the GTPase cycle of SRP54 and SRalpha by providing a platform for assembly of the SRP-SR complex. Biosensor experiments revealed high-affinity, saturable binding of ribosomes or large ribosomal subunits to the SR. Remarkably, the SR has a 100-fold higher affinity for the ribosome than for SRP. Proteoliposomes that contain the SR bind nontranslating ribosomes with an affinity comparable to that shown by the Sec61 complex. An NH2-terminal 319-residue segment of SRalpha is necessary and sufficient for binding of SR to the ribosome. We propose that the ribosome-SR interaction accelerates targeting of the ribosome nascent chain complex to the RER, while the SRP-SR interaction is crucial for maintaining the fidelity of the targeting reaction.  相似文献   

19.
Three elongation factors, EF-1 alpha, EF-1 beta gamma and EF-2, have been isolated from wheat germ. EF-1 alpha and EF-2 are single polypeptides with molecular weights of approximately 52,000 and 102,000, respectively. The most highly purified preparations of EF-1 beta gamma contain four polypeptides with molecular weights of approximately 48,000, 46,000 and 36,000, 34,000. EF-1 alpha supports poly(U)-directed binding of Phe-tRNA to wheat germ ribosomes and catalyzes the hydrolysis of GTP in the presence of ribosomes, poly(U), and Phe-tRNA. EF-2 catalyzes the hydrolysis of GTP in the presence of ribosomes alone and is ADP-ribosylated by diphtheria toxin to the extent of 0.95 mol of ADP-ribose/mol of EF-2. EF-1 beta gamma decreases the amount of EF-1 alpha required for polyphenylalanine synthesis about 20-fold. EF-1 beta gamma enhances the ability to EF-1 alpha to support the binding of Phe-tRNA to the ribosomes and enhances the GTPase activity of EF-1 alpha. Wheat germ EF-1 alpha, EF-1 beta gamma, and EF-2 support polyphenylalanine synthesis on rabbit reticulocyte ribosomes as well as on yeast ribosomes.  相似文献   

20.
Thallium acetate (TIOAc) effectively stimulates poly(U)-directed Phe-tRNA binding to mouse ascitic tumour ribosomes under conditions when other ribosomal functions are completely blocked. The TI+ optimum is about 200 mM. The reaction is stimulated by EF-1, but not significantly by GTP. EF-1-dependent ribosomal GTPase is inhibited by T1+. The isolated Phe-tRNA . ribosome complex is relatively stable. The bound Phe-tRNA does not react with puromycin in the presence of 175 mM KCl. The complex formed in the presence of 90-100 mM TlOAc can, after isolation, be directly utilized for polyphenylalanine synthesis. The complex formed at 200 mM TlOAc is less active, apparently because of damage to the 60-S subunits. TlOAc at low concentrations (8 mM) stimulates K+ -containing poly(U)-translating systems, probably by stabilizing the translation complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号