首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
It has been observed that each strain of the Pseudomonas aeruginosa species harbours the so-called polyagglutinable antigen (PA). Some strains may produce it in a form which is linked to the core moiety of lipopolysaccharide (LPS) and this type of PA can thus be detected by passive haemagglutination using the isolated LPS as coating antigen. Other strains synthesize PA exclusively in a free form, which is also coextractable with LPS, its presence can, however, be demonstrated by the haemagglutination inhibition test. From a polyagglutinable strain of P. aeruginosa an R-type LPS was isolated having the core-linked PA. This LPS preparation was highly immunogenic with regard to its PA moiety. The core-bound PA seems to exert an immunosuppression on the core region, hence, the polyagglutinable strains isolated from cystic fibrosis patients only engender anti-PA antibodies, whereas antibodies against both, side chain and core region of LPS, are not engendered. The mucoid exopolysaccharide also contains the PA which could possibly play an important role in the patient by protecting P. aeruginosa cells against anti-PA antibodies.  相似文献   

2.
Abstract Pseudomonas aeruginosa strains isolated from cystic fibrosis patients agglutinate in antisera against anti-polyagglutinable antigen (PA). Anti-PA antibodies were formed in rabbits when immunization was carried out with bacteria possessing core-bound PA, independently of whether the strains were of S or R phenotype. For bacterial agglutination with anti-PA antibodies two prerequisites are essential: the bacterial cell must be of R phenotype and must possess the core-linked PA. In contrast, the PA in the isolated LPS's can be demonstrated in passive haemagglutination for both (S or R) phenotypes, provided the PA is core-linked. Two PA forms have been recognized, one found only in P. aeruginosa species, both in free and bound form. The other one is shared by all members of Pseudomonas genus but is present only in a free, unbound form.  相似文献   

3.
Pseudomonas aeruginosa strains isolated from cystic fibrosis patients agglutinate in antisera against anti-polyagglutinable antigen (PA). Anti-PA antibodies were formed in rabbits when immunization was carried out with bacteria possessing core-bound PA, independently of whether the strains were of S or R phenotype. For bacterial agglutination with anti-PA antibodies two prerequisites are essential: the bacterial cell must be of R phenotype and must possess the core-linked PA. In contrast, the PA in the isolated LPS's can be demonstrated in passive haemagglutination for both (S or R) phenotypes, provided the PA is core-linked. Two PA forms have been recognized, one found only in P. aeruginosa species, both in free and bound form. The other one is shared by all members of Pseudomonas genus but is present only in a free, unbound form.  相似文献   

4.
Insertional inactivation of wbpM in Pseudomonas aeruginosa serogroup O11 strain PA103 resulted in mutants exhibiting three distinct lipopolysaccharide (LPS) phenotypes. One mutant, PA103 wbpM-C, had a truncated LPS core and lacked O antigen. These defects were not complemented by the cloned wbpM gene, suggesting a secondary mutation was present. When the wild-type galU gene was introduced into strain PA103 wbpM-C containing the cloned wbpM gene, both LPS defects were corrected. Construction of galU mutants in P. aeruginosa serogroups O11, O5, O6 and O17 strains led to truncation of the LPS core, indicating the involvement of GalU in P. aeruginosa LPS core synthesis.  相似文献   

5.
Abstract A panel of 48 monoclonal antibodies was prepared against 8 O-serotype strains of Pseudomonas aeruginosa , and 43 of the antibodies reacted specifically with whole cells of the vaccine strain in an enzyme-linked immunosorbent assay (ELISA). 4 antibodies showed varying degrees of reactivity for more than one of the serotype strains, and one antibody bound to all of the serotype strains as well as strains of Pseudomonas putida and Pseudomonas fluorescens . The epitopes recognised by these antibodies were characterised by immunoblotting and the serotype-specific antibodies reacted only with lipopolysaccharide (LPS) of the vaccine strain. The antibodies that bound to more than one serotype strain were specific for outer-membrane proteins common to the serotype strains. The antibody that cross-reacted with all strains of P. aeruginosa apparently recognised an antigen associated with the core or lipid A components of LPS.  相似文献   

6.
Summary
Strains of Pseudomonas aeruginosa initially isolated from patients with cystic fibrosis (CF) often express a smooth lipopolysaccharide (LPS) containing many long O side-chain antigens, but once a chronic infection is established, strains recovered from these patients express little or no LPS O antigen. The genetic basis for this loss of O antigen expression by P. aeruginosa CF isolates is unknown. We report here that 20 CF isoiates of P. aeruginosa , 13 of which are LPS-rough, were each capable of expressing serogroup 011 antigen when provided with the rfb iocus from P. aeruginosa serogroup 011 strain PA103 on the recombinant plasmid pLPS2. Eight of the thirteen LPS-rough isolates co-expressed another, presumably endogenous, O antigen when they contained pLPS2. Different subcloned regions of pLPS2 complemented distinct strains to restore endogenous O antigen expression. These data suggest that the loss of O antigen expression by P. aeruginosa CF isolates results from alterations specific to the rfb region, and is not due to mutations involving other loci or ancillary LPS genes.  相似文献   

7.
In a murine model of acute fatal pneumonia, we previously showed that nasal immunization with a live-attenuated aroA deletant of Pseudomonas aeruginosa strain PAO1 elicited LPS serogroup-specific protection, indicating that opsonic Ab to the LPS O Ag was the most important immune effector. Because P. aeruginosa strain PA14 possesses additional virulence factors, we hypothesized that a live-attenuated vaccine based on PA14 might elicit a broader array of immune effectors. Thus, an aroA deletant of PA14, denoted PA14DeltaaroA, was constructed. PA14DeltaaroA-immunized mice were protected against lethal pneumonia caused not only by the parental strain but also by cytotoxic variants of the O Ag-heterologous P. aeruginosa strains PAO1 and PAO6a,d. Remarkably, serum from PA14DeltaaroA-immunized mice had very low levels of opsonic activity against strain PAO1 and could not passively transfer protection, suggesting that an antibody-independent mechanism was needed for the observed cross-serogroup protection. Compared with control mice, PA14DeltaaroA-immunized mice had more rapid recruitment of neutrophils to the airways early after challenge. T cells isolated from P. aeruginosa DeltaaroA-immunized mice proliferated and produced IL-17 in high quantities after coculture with gentamicin-killed P. aeruginosa. Six hours following challenge, PA14DeltaaroA-immunized mice had significantly higher levels of IL-17 in bronchoalveolar lavage fluid compared with unimmunized, Escherichia coli-immunized, or PAO1DeltaaroA-immunized mice. Antibody-mediated depletion of IL-17 before challenge or absence of the IL-17 receptor abrogated the PA14DeltaaroA vaccine's protection against lethal pneumonia. These data show that IL-17 plays a critical role in antibody-independent vaccine-induced protection against LPS-heterologous strains of P. aeruginosa in the lung.  相似文献   

8.
Abstract Lipopolysaccharide (LPS, endotoxin) was extracted from biofilm and planktonically grown monoagglutinable (1118) and polyagglutinable (258 and 15703) strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients with chronic pulmonary infections. Analysis by polyacrylamide gel electrophoresis (PAGE) followed by immune-detection of LPS fractions showed an S-form appearance of strain 1118 and 258 with three distinct clusters of high molecular weight bands, whereas 15703 appeared semi-rough. LPS of semi-rough cells grown planktonically and as biofilm showed a very similar PAGE pattern; however, the core/lipid A R-LPS fraction was more prominent in biofilm-LPS than in planktonic-LPS extracted from the S-form bacteria (1118 and 258). The apparent change in LPS sub-unit components of the bacteria when grown as biofilm may reflect changes in the outer membrane structure that contribute to the altered physico-chemical properties of biofilm bacteria in foreign-device associated infections and chronic P. aeruginosa lung infection in cystic fibrosis patients.  相似文献   

9.
Lipopolysaccharides (LPS) are an important class of macromolecules that are components of the outer membrane of Gram-negative bacteria such as Pseudomonas aeruginosa. P. aeruginosa contains two different sugar chains, the homopolymer common antigen (A band) and the heteropolymer O antigen (B band), which impart serospecificity. The characteristics of LPS are generally assessed after isolation rather than in the context of whole bacteria. Here we used atomic force microscopy (AFM) to probe the physical properties of the LPS of P. aeruginosa strain PA103 (serogroup O11) in situ. This strain contains a mixture of long and very long polymers of O antigen, regulated by two different genes. For this analysis, we studied the wild-type strain and four mutants, ΔWzz1 (producing only very long LPS), ΔWzz2 (producing only long LPS), DΔM (with both the wzz1 and wzz2 genes deleted), and Wzy::GM (producing an LPS core oligosaccharide plus one unit of O antigen). Forces of adhesion between the LPS on these strains and the silicon nitride AFM tip were measured, and the Alexander and de Gennes model of steric repulsion between a flat surface and a polymer brush was used to calculate the LPS layer thickness (which we refer to as length), compressibility, and spacing between the individual molecules. LPS chains were longest for the wild-type strain and ΔWzz1, at 170.6 and 212.4 nm, respectively, and these values were not statistically significantly different from one another. Wzy::GM and DΔM have reduced LPS lengths, at 34.6 and 37.7 nm, respectively. Adhesion forces were not correlated with LPS length, but a relationship between adhesion force and bacterial pathogenicity was found in a mouse acute pneumonia model of infection. The adhesion forces with the AFM probe were lower for strains with LPS mutations, suggesting that the wild-type strain is optimized for maximal adhesion. Our research contributes to further understanding of the role of LPS in the adhesion and virulence of P. aeruginosa.  相似文献   

10.
Lipopolysaccharides (LPS) were isolated from rough-type mutant strains of Pseudomonas aeruginosa (Delta algC) derived from wild-type strains PAO1 (serogroup O5) and PAC1R (serogroup O3). Structural studies of the LPS core region with a special focus on the phosphorylation pattern were performed by 2D NMR spectroscopy, including a 1H,(31)P HMQC-TOCSY experiment, MALDI-TOF MS, and Fourier-transform ion cyclotron resonance ESIMS using the capillary skimmer dissociation technique. Both LPS were found to contain two residues each of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and L-glycero-D-manno-heptose (Hep), one residue of N-(L-alanyl)-D-galactosamine and one O-carbamoyl group (Cm) on the distal Hep residue. The following structures of a tetrasaccharide trisphosphate from strain PAC1R Delta algC and that carrying an additional ethanolamine phosphate group (PEtN) from strain PAO1 Delta algC were elucidated: [carbohydrate structre: see text] where R=P in PAC1R Delta algC and PPEtN in PAO1 Delta algC. To our knowledge, in this work the presence of ethanolamine diphosphate is unambiguously confirmed and its position established for the first time in the LPS core of a rough-type strain of P. aeruginosa. In addition, the structure of the complete LPS core of wild-type strain P. aeruginosa PAO1 was reinvestigated and the position of the phosphorylation sites was revised.  相似文献   

11.
A temperate phage, phi CTX, is a cytotoxin-converting phage of Pseudomonas aeruginosa. In this study, we characterized the lipopolysaccharide (LPS) structures of phi CTX-resistant mutants derived from phi CTX-sensitive strains. phi CTX infectivity was neutralized by LPS preparations derived from sensitive strains but not by those from resistant strains. phi CTX-resistant mutants had lower-molecular-weight rough (R)-type LPS than the parental strains and lacked the reactivity of some anti-LPS core monoclonal antibodies. Some LPS core components were lacking or significantly decreased in the resistant mutants. These results suggested that a receptor site of the cytotoxin-converting phage phi CTX was the LPS core region and that especially L-rhamnose and D-glucose residues in the outer core were involved in phage binding. The host range of phi CTX was nearly O-serotype dependent, probably because of the diversity of the LPS core structure among P. aeruginosa strains. phi CTX bound to most strains of Homma serotypes A, G, and I but not to strains of serotypes B and E. Furthermore, we found that a genetic locus specifying phi CTX sensitivity (and consequently participating in the biosynthesis of part of the LPS core) existed in or near the locus participating in the determination of O-serotype specificity (somA), which has been mapped between leu-10 and eda-9001. phi CTX, as well as anti-LPS core monoclonal antibodies, will be a good tool for structural characterization of the P. aeruginosa LPS core region.  相似文献   

12.
The product of Pseudomonas aeruginosa regA gene acts as a positive regulator of exotoxin A expression. The protein, RegA, was overproduced in E. coli transformed with an expression vector containing the regA gene. The overproduced RegA accumulated in E. coli in the form of inclusion bodies. The latter were isolated and served as a source of antigen for raising polyclonal antibodies. The antibodies reacted specifically with a P. aeruginosa protein whose molecular weight corresponded to that predicted for RegA from its known DNA sequence, and whose response to modulating factors matched that expected for RegA. The immunodetectable RegA was localized in the membrane fraction of P. aeruginosa strain PA103.  相似文献   

13.
K Jarrell  A M Kropinski 《Microbios》1977,19(76):103-116
The chemical composition of the lipopolysaccharide (LPS) of the smooth strain Pseudomonas aeruginosa PAO 307 and a spontaneously derived rough mutant, obtained by selection for resistance to the LPS-specific phage E79, are compared. The rough LPS was shown to contain lipid A, heptose, 2-keto 3-deoxyoctonic acid, galactosamine, alanine and phosphate but lacked glucose, rhamnose and fucosamine which were important constituents, on a weight basis, of the smooth LPS. These results, and chromatographic analysis of the polysaccharide fraction indicate that the rough strain lacked side chain material and was defective in its inner core region. The chemical date obtained were consistent with a core in the PAO strain similar to that of strain NCTC 1999, enhancing the evidence for a common core polysaccharide in the LPS of P. aeruginosa strains.  相似文献   

14.
Most strains of Pseudomonas aeruginosa can express two chemically and immunologically distinct types of lipopolysaccharide (LPS), an antigenically conserved form called A band and the serotype-specific form called B band. To study the molecular controls regulating expression of the A-band LPS antigen, we have cloned the genes involved with A-band LPS expression. Strain AK1401, a phage-resistant mutant of PAO1 which was shown previously to produce only A-band LPS and not the O-antigen-containing B-band LPS, was mutagenized by using ethyl methanesulfonate to generate an A-band-deficient mutant called rd7513. A cosmid clone bank of P. aeruginosa PAO1 whole genomic DNA was constructed in Escherichia coli. The gene bank was mobilized en masse into strain rd7513, and detection of complementation of synthesis of A band was done by screening transconjugants in a colony immunoblot assay with the A-band-specific monoclonal antibody N1F10. One recombinant cosmid, pFV3, complemented synthesis of A-band polysaccharide in rd7513. Silver-stained polyacrylamide gel and Western immunoblot analyses of LPS extracted from the transconjugant rd7513(pFV3) showed that the A band produced had a higher molecular weight than the A band of AK1401. Analysis of the plasmid pFV3 showed that it contained a chromosomal insert of 27 kb. Two subclones of pFV3, namely, pFV35 and pFV36, containing chromosomal inserts of 5.3 and 4.2 kb, respectively, also complemented A-band expression in rd7513. The LPS banding profile of rd7513(pFV35) was similar to that of AK1401, while the LPS profile of rd7513(pFV36) more closely resembled that of rd7513(pFV3). pFV3 complemented A-band expression in five of the six P. aeruginosa O serotypes which lack A band as well as in rough strain AK44 but failed to complement A-band expression in core mutants AK1012 and AK1282, suggesting that pFV3 contains genes for A-band expression and that synthesis of a complete core region in isogenic mutant strains is required for A-band synthesis.  相似文献   

15.
A bioluminescence method was established for quantifying the adhesion of P. aeruginosa to polystyrene and the adherent components were investigated. The results indicated that the slime polysaccharide (SPS) is an important adherent factor of some slime strains of P. aeruginosa. The adhered amount of washed slime strains could be increased by pre-coating of polystyrene with SPS obtained from PA3. The activity of PA3SPS could be inhibited by anti-PA3SPS antiserum and blocked by N-acetylglucosamine.  相似文献   

16.
Monoclonal antibodies reacting with the core oligosaccharide or lipid A component of Rhizobium lipopolysaccharide (LPS) could be useful for the elucidation of the structure and biosynthesis of this group of macromolecules. Mutant derivatives of Rhizobium leguminosarum 3841 with LPS structures lacking the major O-antigen moiety were used as immunogens, and eight antibodies were selected for further study. All the antibodies reacted with the fast-migrating species known as LPS-2 following gel electrophoresis of Rhizobium cell extracts. For four of these antibodies, reactivity with affinity-purified LPS was lost after mild acid hydrolysis, indicating that they probably recognized the core oligosaccharide component. The four other antibodies still reacted with acid-treated LPS and may recognize the lipid A moiety, which is stable to mild acid hydrolysis. The pattern of antibody staining after gel electrophoresis revealed differences in LPS-2 epitope structure between each of the mutants and the wild type. Furthermore, for each of the mutants the antibodies crossreacted with a minor band that migrated more slowly than LPS-2; we have termed this more slowly migrating form LPS-3. The majority of the antibodies also reacted with LPS from strain CE109, a derivative of Rhizobium etli CE3, confirming that the LPS core antigens can be relatively conserved between strains of different Rhizobium species. One of the antibodies isolated in this study (JIM 32) was unusual because it appeared to react with all forms of LPS from strain 3841 (namely, LPS-1, LPS-2, and LPS-3). Furthermore, JIM 32 reacted positively with the LPS from many strains of Rhizobium tested (excluding the Rhizobium meliloti subgroup). JIM 32 did not react with representative strains from Bradyrhizobium, Azorhizobium or other related bacterial species.  相似文献   

17.
We have constructed strains of Pseudomonas aeruginosa with mutations in the algC gene, previously shown to encode the enzyme phosphomannomutase. The algC mutants of a serotype O5 strain (PAO1) and a serotype O3 strain (PAC1R) did not express lipopolysaccharide (LPS) O side chains or the A-band (common antigen) polysaccharide. The migration of LPS from the algC mutant strains in Tricine-sodium dodecyl sulfate-polyacrylamide gels was similar to that of LPS from a PAO1 LPS-rough mutant, strain AK1012, and from a PAC1R LPS-rough mutant, PAC605, each previously shown to be deficient in the incorporation of glucose onto the LPS core (K. F. Jarrell and A. M. Kropinski, J. Virol. 40:411-420, 1981, and P. S. N. Rowe and P. M. Meadow, Eur. J. Biochem. 132:329-337, 1983). We show that, as expected, the algC mutant strains had no detectable phosphomannomutase activity and that neither algC strain had detectable phosphoglucomutase (PGM) activity. To confirm that the PGM activity was encoded by the algC gene, we transferred the cloned, intact P. aeruginosa algC gene to a pgm mutant of Escherichia coli and observed complementation of the pgm phenotype. Our finding that the algC gene product has PGM activity and that strains with mutations in this gene produce a truncated LPS core suggests that the synthesis of glucose 1-phosphate is necessary in the biosynthesis of the P. aeruginosa LPS core. The data presented here thus demonstrate that the algC gene is required for the synthesis of a complete LPS core in two strains with different LPS core and O side chain structures.  相似文献   

18.
The pilin structural gene of Pseudomonas aeruginosa 1244 was cloned in both cosmids and lambda. Expression of the cloned gene was detected in P. aeruginosa strains PAO2003, PA103, and 653A by an immunoblot reaction utilizing monoclonal antibodies. Western blot analysis showed that pilin expressed from the cloned gene was slightly larger than native 1244 pilin when produced in strains PAO2003 and 653A, but distinctly smaller in PA103. Bacteriophages specific for the 1244 pilus did not lyse strain PAO2003 containing the cloned 1244 pilin gene, indicating that functional 1244 pili were not assembled in this recombinant strain. Nucleotide sequencing revealed a coding region which when translated would produce a 15,615 dalton peptide. The amino-terminal region of this peptide is identical with published pilin sequences. While the rest of the peptides are generally dissimilar, common residues are seen within potentially antigenic regions.  相似文献   

19.
Monoclonal antibodies that react with Rhizobium leguminosarum lipopolysaccharide core antigens (LPS-2) have been used to investigate LPS-2 structure in Rhizobium etli. The panel of antibodies (JIM 32 - JIM 35, JIM 37, JIM 38) specific for LPS-2 of R. leguminosarum strain 3841 and its core components displays similar reactivities towards isolated LPS-2 from R. etli CE109 (a mutant of wild-type strain R. etli CE3 that displays LPS-2 as its main LPS form on the cell surface). This result suggests the antibodies bind to similar epitopes on both strains and, hence, that R. leguminosarum and R. etli have very similar LPS core and lipid A antigen structures. More detailed analysis of the antibody binding sites with isolated LPS-2 and lipid A from R. etli suggests that some of the antibodies (JIM 32, 33, 34, and MASM-I) bind some part of the core oligosaccharides, while others (JIM 35 and JIM 38) involve lipid A. These antibodies have already proven useful in the biochemical analysis of the LPS antigen forms. For example, the loss of reactivity of certain LPS forms with antibody JIM 37 has led to the discovery of a hitherto unnoticed form of the LPS antigen in a precipitate formed during the phenol/water extraction procedure. This new form reacts with the JIM 37 antibody. Furthermore, the positive reaction of some of the antibodies with only sonicated wild-type R. etli cells suggests that either an effective way of masking the display of core antigens on whole bacterial cells is occurring or that core forms of the LPSs are never displayed on the surface of the bacterial cells. Either possibility, once confirmed, could be important for our picture of the Rhizobium cell surface and could also have some bearing on symbiotic nodule infection and development.Abbreviations LPS lipopolysaccharide  相似文献   

20.
The human monoclonal antibody MH-4H7 recognizes the lipopolysaccharide outer core region of some Pseudomonas aeruginosa strains and in of some Pseudomonas aeruginosa strains and in particular strongly binds to strains of Lányi serotype 04. In this paper, we report that this monoclonal antibody also reacts with Escherichia coli O26 LPS. However, our results suggest that the previous reported immunological cross reaction between P. aeruginosa 04 and E. coli O26 strains (which was observed by using antisera against heat-stable antigens) is not due to the similarity of the O-polysaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号