首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ring chromosome 15 [r(15)] syndrome is characterised by specific facial features, café au lait spots, failure to thrive, mental retardation and typically with a terminal deletion of the long arm of chromosome 15. We report a 2.5 year old girl showing normal growth and development, large hyperpigmented skin changes showing hypopigmentated areas inside, multiple café au lait spots and premature graying-like hypopigmentation of scalp hair. She had a karyotype of r(15) in peripheral lymphocytes and fibroblasts. By FISH analysis the breakpoint was located distal to locus D15S936 (15q26.3) and within 300 kb of the end of the chromosome, indicating no deletion of functional genes on 15q. Hyperpigmentation and café au lait spots are rare signs in ring chromosome syndromes, but with r(15) syndrome, café au lait spots have been described in about 30% of patients and have been considered to result from the deletion of gene(s) on distal 15q. Based on the frequent observation of patchy hyperpigmentation with the r(15) syndrome, absent hyperpigmentation in cases of distal 15q deletion without a ring chromosome, and the telomeric breakpoint location in our patient indicating no significant deletion, we propose that the cutaneous hyperpigmentation and café au lait spots in our proband represent effects of the r(15) chromosome but are not caused by the deletion of specific gene(s) on distal 15q. Patchy skin hypopigmentation is a well known nonspecific sign in cytogenetic mosaicism which is commonly seen in ring syndrome.  相似文献   

2.
Multiple lentigines/LEOPARD syndrome (LS) is a rare, autosomal dominant disorder characterized by Lentigines, Electrocardiogram abnormalities, Ocular hypertelorism, Pulmonic valvular stenosis, Abnormalities of genitalia, Retardation of growth, and Deafness. Like the more common Noonan syndrome (NS), LS is caused by germ line missense mutations in PTPN11, encoding the protein-tyrosine phosphatase Shp2. Enzymologic, structural, cell biological, and mouse genetic studies indicate that NS is caused by gain-of-function PTPN11 mutations. Because NS and LS share several features, LS has been viewed as an NS variant. We examined a panel of LS mutants, including the two most common alleles. Surprisingly, we found that in marked contrast to NS, LS mutants are catalytically defective and act as dominant negative mutations that interfere with growth factor/Erk-mitogen-activated protein kinase-mediated signaling. Molecular modeling and biochemical studies suggest that LS mutations contort the Shp2 catalytic domain and result in open, inactive forms of Shp2. Our results establish that the pathogenesis of LS and NS is distinct and suggest that these disorders should be distinguished by mutational analysis rather than clinical presentation.  相似文献   

3.
Mutations in the PTPN11 gene are known to cause a large fraction of the cases of Noonan syndrome. The objective of this study was to determine the PTPN11 gene mutation rate in a cohort of clinically well-characterized Brazilian patients with Noonan or Noonan-like syndromes and to study the genotype-phenotype correlation. Fifty probands with Noonan syndrome ascertained according to well-established diagnostic criteria, 3 with LEOPARD syndrome, 5 with Noonan-like/multiple giant cell lesion syndrome, and 3 with neurofibromatosis/ Noonan were enrolled in this study. Mutational analysis was performed using denaturing high-performance liquid chromatography (DHPLC) followed by sequencing of amplicons with an aberrant elution profile. We detected missense mutations in the PTPN11 gene in 21 probands with Noonan syndrome (42%), in all 3 patients with LEOPARD syndrome, and in 1 case with Noonan-like/multiple giant cell lesion syndrome. One patient with neurofibromatosis-Noonan syndrome had a mutation in both the PTPN11 and NF1 genes. The only anomalies that reached statistical significance when comparing probands with and without mutations were the hematological abnormalities. Our data confirms that Noonan syndrome is a genetically heterogeneous disorder, with mutations in the PTPN11 gene responsible for roughly 50% of the cases. A definitive genotype-phenotype correlation has not been established, but the T73I mutation seems to predispose to a myeloproliferative disorder. Regarding Noonan-like syndromes, mutation of the PTPN11 gene is the main causal factor in LEOPARD syndrome, and it also plays a role in neurofibromatosis-Noonan syndrome. Noonan- like/multiple giant cell lesion syndrome, part of the spectrum of Noonan syndrome, is also heterogeneous.  相似文献   

4.
LEOPARD syndrome (LS, OMIM 151100) is a rare multiple congenital anomalies condition, mainly characterized by skin, facial and cardiac anomalies. LEOPARD is an acronym for the major features of this disorder, including multiple Lentigines, ECG conduction abnormalities, Ocular hypertelorism, Pulmonic stenosis, Abnormal genitalia, Retardation of growth, and sensorineural Deafness. About 200 patients have been reported worldwide but the real incidence of LS has not been assessed. Facial dysmorphism includes ocular hypertelorism, palpebral ptosis and low-set ears. Stature is usually below the 25th centile. Cardiac defects, in particular hypertrophic cardiomyopathy mostly involving the left ventricle, and ECG anomalies are common. The lentigines may be congenital, although more frequently manifest by the age of 4–5 years and increase throughout puberty. Additional common features are café-au-lait spots (CLS), chest anomalies, cryptorchidism, delayed puberty, hypotonia, mild developmental delay, sensorineural deafness and learning difficulties. In about 85% of the cases, a heterozygous missense mutation is detected in exons 7, 12 or 13 of the PTPN11 gene. Recently, missense mutations in the RAF1 gene have been found in two out of six PTPN11-negative LS patients. Mutation analysis can be carried out on blood, chorionic villi and amniotic fluid samples. LS is largely overlapping Noonan syndrome and, during childhood, Neurofibromatosis type 1-Noonan syndrome. Diagnostic clues of LS are multiple lentigines and CLS, hypertrophic cardiomyopathy and deafness. Mutation-based differential diagnosis in patients with borderline clinical manifestations is warranted. LS is an autosomal dominant condition, with full penetrance and variable expressivity. If one parent is affected, a 50% recurrence risk is appropriate. LS should be suspected in foetuses with severe cardiac hypertrophy and prenatal DNA test may be performed. Clinical management should address growth and motor development and congenital anomalies, in particular cardiac defects that should be monitored annually. Hypertrophic cardiomyopathy needs careful risk assessment and prophylaxis against sudden death in patients at risk. Hearing should be evaluated annually until adulthood. With the only exception of ventricular hypertrophy, adults with LS do not require special medical care and long-term prognosis is favourable.  相似文献   

5.

Background

Noonan syndrome (NS) and Noonan syndrome with multiple lentigines (NSML) are autosomal dominant developmental disorders. NS and NSML are caused by abnormalities in genes that encode proteins related to the RAS-MAPK pathway, including PTPN11, RAF1, BRAF, and MAP2K. In this study, we diagnosed ten NS or NSML patients via targeted sequencing or whole exome sequencing (TS/WES).

Methods

TS/WES was performed to identify mutations in ten Chinese patients who exhibited the following manifestations: potential facial dysmorphisms, short stature, congenital heart defects, and developmental delay. Sanger sequencing was used to confirm the suspected pathological variants in the patients and their family members.

Results

TS/WES revealed three mutations in the PTPN11 gene, three mutations in RAF1 gene, and four mutations in BRAF gene in the NS and NSML patients who were previously diagnosed based on the abovementioned clinical features. All the identified mutations were determined to be de novo mutations. However, two patients who carried the same mutation in the RAF1 gene presented different clinical features. One patient with multiple lentigines was diagnosed with NSML, while the other patient without lentigines was diagnosed with NS. In addition, a patient who carried a hotspot mutation in the BRAF gene was diagnosed with NS instead of cardiofaciocutaneous syndrome (CFCS).

Conclusions

TS/WES has emerged as a useful tool for definitive diagnosis and accurate genetic counseling of atypical cases. In this study, we analyzed ten Chinese patients diagnosed with NS and related disorders and identified their correspondingPTPN11, RAF1, and BRAF mutations. Among the target genes, BRAF showed the same degree of correlation with NS incidence as that of PTPN11 or RAF1.
  相似文献   

6.
Noonan syndrome (NS) is an autosomal dominant disorder caused by activating mutations in the PTPN11 gene encoding Shp2, which manifests in congenital heart disease, short stature, and facial dysmorphia. The complexity of Shp2 signaling is exemplified by the observation that LEOPARD syndrome (LS) patients possess inactivating PTPN11 mutations yet exhibit similar symptoms to NS. Here, we identify “protein zero-related” (PZR), a transmembrane glycoprotein that interfaces with the extracellular matrix to promote cell migration, as a major hyper-tyrosyl-phosphorylated protein in mouse and zebrafish models of NS and LS. PZR hyper-tyrosyl phosphorylation is facilitated in a phosphatase-independent manner by enhanced Src recruitment to NS and LS Shp2. In zebrafish, PZR overexpression recapitulated NS and LS phenotypes. PZR was required for zebrafish gastrulation in a manner dependent upon PZR tyrosyl phosphorylation. Hence, we identify PZR as an NS and LS target. Enhanced PZR-mediated membrane recruitment of Shp2 serves as a common mechanism to direct overlapping pathophysiological characteristics of these PTPN11 mutations.  相似文献   

7.
Wimmer K  Etzler J 《Human genetics》2008,124(2):105-122
Heterozygous mutations in one of the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause the dominant adult cancer syndrome termed Lynch syndrome or hereditary non-polyposis colorectal cancer. During the past 10 years, some 35 reports have delineated the phenotype of patients with biallelic inheritance of mutations in one of these MMR genes. The patients suffer from a condition that is characterised by the development of childhood cancers, mainly haematological malignancies and/or brain tumours, as well as early-onset colorectal cancers. Almost all patients also show signs reminiscent of neurofibromatosis type 1, mainly café au lait spots. Alluding to the underlying mechanism, this condition may be termed as “constitutional mismatch repair-deficiency (CMMR-D) syndrome”. To give an overview of the current knowledge and its implications of this recessively inherited cancer syndrome we summarise here the genetic, clinical and pathological findings of the so far 78 reported patients of 46 families suffering from this syndrome.  相似文献   

8.
Germline mutations in PTPN11, the gene encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome (NS) and the clinically related LEOPARD syndrome (LS), whereas somatic mutations in the same gene contribute to leukemogenesis. On the basis of our previously gathered genetic and biochemical data, we proposed a model that splits NS- and leukemia-associated PTPN11 mutations into two major classes of activating lesions with differential perturbing effects on development and hematopoiesis. To test this model, we investigated further the diversity of germline and somatic PTPN11 mutations, delineated the association of those mutations with disease, characterized biochemically a panel of mutant SHP-2 proteins recurring in NS, LS, and leukemia, and performed molecular dynamics simulations to determine the structural effects of selected mutations. Our results document a strict correlation between the identity of the lesion and disease and demonstrate that NS-causative mutations have less potency for promoting SHP-2 gain of function than do leukemia-associated ones. Furthermore, we show that the recurrent LS-causing Y279C and T468M amino acid substitutions engender loss of SHP-2 catalytic activity, identifying a previously unrecognized behavior for this class of missense PTPN11 mutations.  相似文献   

9.
Neurofibromatosis (NF) is a clinically heterogeneous autosomal dominant disorder. Three distinct forms have been identified: neurofibromatosis type 1 (NF1), type 2 (NF2) and schwannomatosis. In the present study, we report clinical and genetic findings in the NF1 and NF2 genes in a cohort of 27 Bulgarian patients, with 18 cases (67%) genetically verified. Both NF1 and NF2 genes were screened by Sanger sequencing on DNA samples. The Sanger negative samples were screened by Multiplex Ligation-dependent Probe Amplification (MLPA) for deletions and duplications. The results from genetic testing revealed three novel mutations and fifteen previously reported ones (13 in the NF1 gene and 2 in the NF2 gene). The novel variants in the NF1 gene are a splice site mutation c.4725-1G>A, a small deletion of five bases c.823delATCTT, p.Leu275ValfsTer14, and a single base duplication c.6547dupC, p.Arg2183ProfsTer11. The novel splice site mutation is manifested by multiple “café au lait” macules and neurofibromas. Both novel out of frame mutations were found in patients with multiple “café au lait” spots and focal epilepsy. A segmental neurofibromatosis (SNF1) is restricted to one or more body segments. Here we present a case with SNF1 caused by a somatic deletion of exons 1 to 12 of the NF1 gene which is manifested by multiple neurofibromas in the right hand. Two nonsense mutations are found in the NF2 gene. Our study adds three novel mutations to the NF1 mutation spectra and contributes to the clinical-genetic NF1-characterization. Here we report strikingly different phenotypic spectra caused by the same mutation in a single family. Our findings contribute to the genotype- phenotype correlations which are difficult to establish, due to the extremely complex NF phenotype being a combination of clinical features.  相似文献   

10.
Metachondromatosis (MC) is a rare, autosomal dominant, incompletely penetrant combined exostosis and enchondromatosis tumor syndrome. MC is clinically distinct from other multiple exostosis or multiple enchondromatosis syndromes and is unlinked to EXT1 and EXT2, the genes responsible for autosomal dominant multiple osteochondromas (MO). To identify a gene for MC, we performed linkage analysis with high-density SNP arrays in a single family, used a targeted array to capture exons and promoter sequences from the linked interval in 16 participants from 11 MC families, and sequenced the captured DNA using high-throughput parallel sequencing technologies. DNA capture and parallel sequencing identified heterozygous putative loss-of-function mutations in PTPN11 in 4 of the 11 families. Sanger sequence analysis of PTPN11 coding regions in a total of 17 MC families identified mutations in 10 of them (5 frameshift, 2 nonsense, and 3 splice-site mutations). Copy number analysis of sequencing reads from a second targeted capture that included the entire PTPN11 gene identified an additional family with a 15 kb deletion spanning exon 7 of PTPN11. Microdissected MC lesions from two patients with PTPN11 mutations demonstrated loss-of-heterozygosity for the wild-type allele. We next sequenced PTPN11 in DNA samples from 54 patients with the multiple enchondromatosis disorders Ollier disease or Maffucci syndrome, but found no coding sequence PTPN11 mutations. We conclude that heterozygous loss-of-function mutations in PTPN11 are a frequent cause of MC, that lesions in patients with MC appear to arise following a "second hit," that MC may be locus heterogeneous since 1 familial and 5 sporadically occurring cases lacked obvious disease-causing PTPN11 mutations, and that PTPN11 mutations are not a common cause of Ollier disease or Maffucci syndrome.  相似文献   

11.
12.
BACKGROUND: Noonan syndrome NS (OMIM 163950) is an autosomal dominant developmental disorder characterized mainly by typical facial dysmorphism, growth retardation and variable congenital heart defects. In unrelated individuals with sporadic or familial NS, heterozygous missense point mutations in the gene PTPN11 (OMIM 176876) have been confirmed, with a clustering of mutations in exons 3 and 8, the mutation A922G Asn308Asp accounting for nearly 25% of cases. PATIENT AND METHODS: We report a 7-year-old boy with short stature and some other clinical features of NS, who has been investigated by molecular analysis for the presence of mutations in the PTPN11 gene. Result: The de novo mutation A172G in the exon 3 of the PTPN11 gene, predicting an Asn58Asp substitution, has been found. To the best of our knowledge, this specific mutation has only been described once before, but this is the first report of detailed clinical data suggesting a mild phenotype. CONCLUSION: Detailed clinical phenotype in every patient with major or minor features of NS and molecular identification of PTPN11 gene mutation may contribute to a better phenotype-genotype correlation.  相似文献   

13.
Noonan syndrome (NS) is a developmental disorder characterized by facial dysmorphia, short stature, cardiac defects, and skeletal malformations. We recently demonstrated that mutations in PTPN11, the gene encoding the non-receptor-type protein tyrosine phosphatase SHP-2 (src homology region 2-domain phosphatase-2), cause NS, accounting for approximately 50% of cases of this genetically heterogeneous disorder in a small cohort. All mutations were missense changes and clustered at the interacting portions of the amino-terminal src-homology 2 (N-SH2) and protein tyrosine phosphatase (PTP) domains. A gain of function was postulated as a mechanism for the disease. Here, we report the spectrum and distribution of PTPN11 mutations in a large, well-characterized cohort with NS. Mutations were found in 54 of 119 (45%) unrelated individuals with sporadic or familial NS. There was a significantly higher prevalence of mutations among familial cases than among sporadic ones. All defects were missense, and several were recurrent. The vast majority of mutations altered amino acid residues located in or around the interacting surfaces of the N-SH2 and PTP domains, but defects also affected residues in the C-SH2 domain, as well as in the peptide linking the N-SH2 and C-SH2 domains. Genotype-phenotype analysis revealed that pulmonic stenosis was more prevalent among the group of subjects with NS who had PTPN11 mutations than it was in the group without them (70.6% vs. 46.2%; P<.01), whereas hypertrophic cardiomyopathy was less prevalent among those with PTPN11 mutations (5.9% vs. 26.2%; P<.005). The prevalence of other congenital heart malformations, short stature, pectus deformity, cryptorchidism, and developmental delay did not differ between the two groups. A PTPN11 mutation was identified in a family inheriting Noonan-like/multiple giant-cell lesion syndrome, extending the phenotypic range of disease associated with this gene.  相似文献   

14.
Noonan syndrome (NS) is a phenotypically heterogeneous syndrome which is frequently associated with short stature. Recent genetic investigations have identified mutations in five genes, namely PTPN11, KRAS, SOS1, NF1 and RAF1 in patients with the NS phenotype. PTPN11 is the commonest, being present in approximately 50% of cases. The degree of short stature in children does not associate closely with the presence of mutations, however some PTPN11-positive patients have decreased GH-dependent growth factors consistent with mild GH insensitivity. GH therapy, using doses similar to those approved for Turner syndrome (TS), induced short-term increases in height velocity over 1-3 years, and may improve final adult height with longer-term treatment.  相似文献   

15.
Germline mutations in PTPN11--the gene encoding the nonreceptor protein tyrosine phosphatase SHP-2--represent a major cause of Noonan syndrome (NS), a developmental disorder characterized by short stature and facial dysmorphism, as well as skeletal, hematologic, and congenital heart defects. Like many autosomal dominant disorders, a significant percentage of NS cases appear to arise from de novo mutations. Here, we investigated the parental origin of de novo PTPN11 lesions and explored the effect of paternal age in NS. By analyzing intronic portions that flank the exonic PTPN11 lesions in 49 sporadic NS cases, we traced the parental origin of mutations in 14 families. Our results showed that all mutations were inherited from the father, despite the fact that no substitution affected a CpG dinucleotide. We also report that advanced paternal age was observed among cohorts of sporadic NS cases with and without PTPN11 mutations and that a significant sex-ratio bias favoring transmission to males was present in subjects with sporadic NS caused by PTPN11 mutations, as well as in families inheriting the disorder.  相似文献   

16.
Noonan syndrome (NS) is a very rare heterogenous genetic disorder often characterized by short stature, facial dysmorphisms, congenital heart defects and learning disabilities in affected children. In the current study, we sought to discover the disease causal mutations, inherited or de novo, for Noonan Syndrome among Arab patients. We screened the coding regions and splice sites of 10 known RAS/MAP Kinase pathway genes in 17 NS-trios and 100 random healthy volunteers by oilgonucleotide chip testing and Sanger sequencing methods. We found pathogenic heteroallelic de novo mutations in BRAF or PTPN11 gene in 7/17 (41.17%) of NS patients. None of the 200 chromosomes of healthy volunteers had those pathogenic mutations. Genotype-phenotype analysis showed positive correlation between BRAF and PTPN11 gene mutations and classical NS clinical manifestations. Characteristic facies is the major observed clinical manifestation among PTPN11-mutation positive cases (c.236A>G, c.854T>C, c.923A>G), whereas both characteristic facies and ectodermal manifestations are seen as dominant clinical features among BRAF-mutation positive cases (c.730A>C, c.770A>G, c.1406G>A). In addition to genotyping and clinical phenotyping, we performed computational structural analysis to examine the impact of amino acid substitution mutations on the conformation and folding of BRAF and PTPN11 proteins. Our results suggested that BRAF (c.730A>C, c.770A>G, c.1406G>A) and PTPN11 (c.236A>G, c.854T>C, c.923A>G) gene mutations elicits structural and functional alterations at protein level, which would eventually lead to dysregulation of RAS-MAPK signaling cascade, which plays critical a role in cell cycle and senescence. In conclusion, our study suggest that molecular screening of BRAF and PTPN11 genetic mutations in Arab NS patients may assist in deriving competitive outcomes related to clinical phenotyping and disease diagnosis.  相似文献   

17.
Noonan syndrome is a well-known clinical entity comprising multiple congenital anomalies characterized by typical facial features, short stature and congenital heart defect. Approximately 50% of cases are sporadic. Familial cases are generally autosomal dominant. In 2001 a gene responsible for Noonan syndrome, PTPN11, encoding for the non-receptor protein tyrosine phosphatase SHP-2, was identified. Mutation analysis of the PTPN11 gene was carried out in Nijmegen in 150 patients with Noonan syndrome. Mutations were found in 68 patients (45%), the most common being A922G in exon 8. In exon 4 a mutation was found that encoded the C-SH2 domain of the PTPN11 gene in two unique patients who shared some uncommon features. A 218C-->T mutation was found in exon 3 in one patient with Noonan syndrome and mild juvenile myelomonocytic leukaemia.  相似文献   

18.
《Journal of molecular biology》2019,431(19):3889-3899
Neurofibromatosis type I (NF1) and Legius syndrome are rare inherited disorders that share diagnostic symptoms including dermal abnormalities like axillary and inguinal freckling and café au lait spots. In addition, patients suffering from NF1 have a demanding risk for the development of severe tumors of the peripheral and central nervous system among other NF1-specific symptoms. NF1 and Legius syndrome are caused by alterations in the NF1 and SPRED1 genes encoding the Ras inhibitors neurofibromin and Spred1 (sprouty related EVH1 domain-containing protein), respectively. Neurofibromin functions as a Ras-specific GTPase-activating protein (Ras-GAP), and Spred1 enhances Ras inactivation by recruiting neurofibromin from the cytosol to membrane-anchored Ras. In a previous study, we mapped the Spred binding site to the GAP-related domain of neurofibromin (NF1-GAP) and identified the GAPex subdomain as critical for Spred1 binding. Here, we characterize the binding site of these proteins in more detail focusing on a mutant Spred1 variant carrying a pathogenic missense mutation (threonine 102 to arginine). Introduction of this mutation, which locates at the N-terminal EVH1 domain of Spred1, weakens the interaction with neurofibromin by about 3 orders of magnitude without perturbing the protein fold, and the binding site of NF1-GAP on the mutant Spred1(EVH1) variant can be identified by NMR spectroscopy. Taken together, our data provide structural insight into the interaction of Spred1 and neurofibromin and characterize the structural or functional consequence of selected patient-derived mutations associated with Legius syndrome.  相似文献   

19.
Mutations in PTPN11 gene was responsible for ~50% of the Noonan syndrome (NS), however, we did not find any mutation in PTPN11 in any of seven NS patients analysed. Whereas, the complete mtDNA sequencing revealed 146 mutations, of which five, including one heteroplasmic (A11144R; Thr  Ala) non-synonymous mutation, were novel and exclusively observed in NS patients. Interestingly all the seven probands and their maternal relatives were clustered under a major haplogroup R and its novel sub-haplogroups (R7b1b, R30a1, R30c, T2b7, U9a1) exclusive in NS, therefore we strongly suggest that these haplogroups may influence NS in South Indian populations.  相似文献   

20.
Neurofibromatosis type 1 (NF1) demonstrates phenotypic overlap with Noonan syndrome (NS) in some patients, which results in the so-called neurofibromatosis-Noonan syndrome (NFNS). From a genetic point of view, NFNS is a poorly understood condition, and controversy remains as to whether it represents a variable manifestation of either NF1 or NS or is a distinct clinical entity. To answer this question, we screened a cohort with clinically well-characterized NFNS for mutations in the entire coding sequence of the NF1 and PTPN11 genes. Heterozygous NF1 defects were identified in 16 of the 17 unrelated subjects included in the study, which provides evidence that mutations in NF1 represent the major molecular event underlying this condition. Lesions included nonsense mutations, out-of-frame deletions, missense changes, small inframe deletions, and one large multiexon deletion. Remarkably, a high prevalence of inframe defects affecting exons 24 and 25, which encode a portion of the GAP-related domain of the protein, was observed. On the other hand, no defect in PTPN11 was observed, and no lesion affecting exons 11-27 of the NF1 gene was identified in 100 PTPN11 mutation-negative subjects with NS, which provides further evidence that NFNS and NS are genetically distinct disorders. These results support the view that NFNS represents a variant of NF1 and is caused by mutations of the NF1 gene, some of which have been demonstrated to cause classic NF1 in other individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号