首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Insulin induces a rapid activation of p21ras in NIH 3T3 and Chinese hamster ovary cells that overexpress the insulin receptor. Previously, we suggested that p21ras may mediate insulin-induced gene expression. To test such a function of p21ras more directly, we studied the effect of different dominant inhibitory mutants of p21ras on the induction of gene expression in response to insulin. We transfected a collagenase promoter-chloramphenicol acetyltransferase (CAT) gene or a fos promoter-luciferase gene into NIH 3T3 cells that overexpressed the insulin receptor. The activities of both promoters were strongly induced after treatment with insulin. This induction could be suppressed by cotransfection of two inhibitory mutant ras genes, H-ras(Asn-17) or H-ras(Leu-61,Ser-186). In particular, insulin-induced activation of the fos promoter was inhibited completely by H-ras(Asn-17). These results show that p21ras functions as an intermediate in the insulin signal transduction route leading to the induction of gene expression.  相似文献   

2.
We used a dominant inhibitory mutation of c-Ha-ras which changes Ser-17 to Asn-17 in the gene product p21 [p21(Asn-17)Ha-ras] to investigate ras function in mitogenic signal transduction. An NIH 3T3 cell line [NIH(M17)] was isolated that displayed inducible expression of the mutant Ha-ras gene (Ha-ras Asn-17) via the mouse mammary tumor virus long terminal repeat and was growth inhibited by dexamethasone. The effect of dexamethasone induction on response of quiescent NIH(M17) cells to mitogens was then analyzed. Stimulation of DNA synthesis by epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) was completely blocked by p21(Asn-17) expression, and stimulation by serum, fibroblast growth factor, and platelet-derived growth factor was partially inhibited. However, the induction of fos, jun, and myc by EGF and TPA was not significantly inhibited in this cell line. An effect of p21(Asn-17) on fos induction was, however, demonstrated in transient expression assays in which quiescent NIH 3T3 cells were cotransfected with a fos-cat receptor plasmid plus a Ha-ras Asn-17 expression vector. In this assay, p21(Asn-17) inhibited chloramphenicol acetyltransferase expression induced by EGF and other growth factors. In contrast to its effect on DNA synthesis, however, Ha-ras Asn-17 expression did not inhibit fos-cat expression induced by TPA. Conversely, downregulation of protein kinase C did not inhibit fos-cat induction by activated ras or other oncogenes. These results suggest that ras proteins are involved in at least two parallel mitogenic signal transduction pathways, one of which is independent of protein kinase C. Although either pathway alone appears to be sufficient to induce fos, both appear to be necessary to induce the full mitogenic response.  相似文献   

3.
We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The Krev-1 gene has been shown to suppress ras-mediated transformation in vitro. Both ras and Krev-1 proteins have identical effector domains (ras residues 32 to 40), which are required for biological activity and for the interaction of Ras p21 with Ras GTPase-activating protein (GAP). In this study, five amino acid residues flanking the ras effector domain, which are not conserved with the Krev-1 protein, were shown to be required for normal protein-protein interactions and biological activity. The substitution of Krev-1 p21 residues 26, 27, 30, 31, and 45 with the corresponding amino acid residues from Ras p21 resulted in a Krev-1 protein which had ras function in both mammalian and yeast biological assays. Replacement of these residues in Ras p21 with the corresponding Krev-1 p21 amino acids resulted in ras proteins which were impaired biologically or reduced in their affinity for in vitro GAP binding. Evaluation of these mutant ras proteins have implications for Ras p21-GAP interactions in vivo.  相似文献   

5.
We have used a dominant inhibitory ras mutant (Ha-ras Asn-17) to investigate the relationship of Ras proteins to hydrolysis of phosphatidylcholine (PC) in the transduction of mitogenic signals. Expression of Ha-Ras Asn-17 inhibited NIH 3T3 cell proliferation induced by polypeptide growth factors or phorbol esters. In contrast, the mitogenic activity of PC-specific phospholipase C (PC-PLC) was not inhibited by Ha-Ras Asn-17 expression. Similarly, cotransfection with a cloned PC-PLC gene bypassed the block to NIH 3T3 cell proliferation resulting from expression of the inhibitory ras mutant. Hydrolysis of PC can therefore induce cell proliferation in the absence of normal Ras activity, suggesting that PC-derived second messengers may act downstream of Ras in mitogenic signal transduction. This was substantiated by the finding that Ha-Ras Asn-17 expression inhibited growth factor-stimulated hydrolysis of PC. Taken together, these results indicate that PC hydrolysis is a target of Ras during the transduction of growth factor-initiated mitogenic signals.  相似文献   

6.
Kim MJ  Chang JS  Park SK  Hwang JI  Ryu SH  Suh PG 《Biochemistry》2000,39(29):8674-8682
A recent report that microinjection of the SH3 domain of PLC-gamma1 could induce DNA synthesis raised the functional importance of the SH3 domain of PLC-gamma1 in mitogenic signaling. In this report, we provide evidence that SOS1, a p21Ras-specific guanine nucleotide exchange factor, directly binds to the SH3 domain of PLC-gamma1, and that the SH3 domain of PLC-gamma1 is involved in SOS1-mediated p21Ras activation. SOS1 was coprecipitated with the GST-fused SH3 domain of PLC-gamma1 in vitro. The interaction between SOS1 and the PLC-gamma1 SH3 domain is mediated by direct physical interaction. The carboxyl-terminal proline-rich domain of SOS1 is involved in the interaction with the PLC-gamma1 SH3 domain. Moreover, PLC-gamma1 could be co-immunoprecipitated with SOS1 antibody in cell lysates. From transient expression studies, we could demonstrate that the SH3 domain of PLC-gamma1 is necessary for the association with SOS1 in vivo. Intriguingly, overexpression of the SH3 domain of PLC-gamma1, lipase-inactive PLC-gamma1, or wild-type PLC-gamma1 elevated p21Ras activity and ERK activity when compared with vector transfected cells. The PLC-gamma1 mutant lacking the SH3 domain could not activate p21Ras. p21Ras activities in cell lines overexpressing either PLC-gamma1 or the SH2-SH2-SH3 domain of PLC-gamma1 were elevated about 2-fold compared to vector transfected cells. This study is the first to demonstrate that the PLC-gamma1 SH3 domain enhances p21Ras activity, and that the SH3 domain of PLC-gamma1 may be involved in the SOS1-mediated signaling pathway.  相似文献   

7.
A dominant inhibitory mutation of Ha-ras which changes Ser-17 to Asn-17 in the gene product p21 [p21 (Asn-17)Ha-ras] has been used to investigate the role of ras in neuronal differentiation of PC12 cells. The growth of PC12 cells, in contrast to NIH 3T3 cells, was not inhibited by p21(Asn-17)Ha-ras expression. However, PC12 cells expressing the mutant Ha-ras protein showed a marked inhibition of morphological differentiation induced by nerve growth factor (NGF) or fibroblast growth factor (FGF). These cells, however, were still able to respond with neurite outgrowth to dibutyryl cyclic AMP and 12-O-tetradecanoylphorbol-13-acetate (TPA). Induction of early-response genes (fos, jun, and zif268) by NGF and FGF but not by TPA was also inhibited by high levels of p21(Asn-17)Ha-ras. However, lower levels of p21(Asn-17) expression were sufficient to block neuronal differentiation without inhibiting induction of these early-response genes. Induction of the secondary-response genes SCG10 and transin by NGF, like morphological differentiation, was inhibited by low levels of p21(Asn-17) whether or not induction of early-response genes was blocked. Therefore, although inhibition of ras function can inhibit early-response gene induction, this is not required to block morphological differentiation or secondary-response gene expression. These results suggest that ras proteins are involved in at least two different pathways of signal transduction from the NGF receptor, which can be distinguished by differential sensitivity to p21(Asn-17)Ha-ras. In addition, ras and protein kinase C can apparently induce early-response gene expression by independent pathways in PC12 cells.  相似文献   

8.
Insulin-induced differentiation of 3T3 L1 cells to adipocytes can be mimicked by the expression of transfected ras oncogenes but not of the tyrosine-kinase oncogenes src and trk. Expression of two different transfected, dominant inhibitory ras mutants resulted in significant inhibition of insulin-induced differentiation, suggesting that endogenous Ras proteins are mediators of insulin signaling in these cells. Exposure of untransfected 3T3 L1 cells to insulin resulted in significant formation of the active Ras.GTP complex, at levels comparable with those resulting from exposure to platelet-derived growth factor. However, whereas exposure of the same cells to platelet-derived growth factor resulted in significant tyrosine phosphorylation of the p21ras GTPase-activating protein (GAP), insulin-treated cells did not show any detectable levels of de novo GAP tyrosine phosphorylation. Interestingly, insulin caused tyrosine phosphorylation of the p62 polypeptide coprecipitated with GAP by anti-GAP antibodies. Insulin-induced activation of cytosolic MAP kinase activity in untransfected 3T3 L1 cells was also mimicked by Ras expression (in the absence of insulin) in the same cells transfected with an inducible ras construct. These results confirm that Ras proteins participate in insulin signaling pathways in these mammalian cells and indicate that activation of cytosolic MAP kinases is an early event occurring downstream from Ras activation. However, tyrosine phosphorylation of GAP appears not to be a significant upstream regulatory event in the activation of Ras by insulin.  相似文献   

9.
We have generated deletion mutants of the H-ras p21 protein which lack residues 58 to 63 or 64 to 68 and contain either the normal glycine or an activating mutation, arginine, at position 12. None of the deleted proteins were recognized by monoclonal antibody Y13-259, and those mutants with activating mutations showed at least a 100-fold reduction in their transforming activities compared with the activities of their nondeleted counterparts. Alterations observed in the in vitro GTPase or GTP interchange properties of the deletion mutants were not consistent with the decrease in their transforming activities. Moreover, each mutant showed normal membrane localization, which is essential for its biological activity. Recently, a newly identified protein, designated GTPase-activating protein (GAP), was found to markedly increase GTPase activity of the normal ras p21 but not of p21 mutants bearing activating lesions (H. Adari, D. R. Lowy, B. M. Willumsen, C. J. Der, and F. McCormick, Science 240:518-521, 1988). We showed that GAP had no effect on the in vitro GTPase activity of the deletion mutants of the normal p21 protein. Since similar deletions in mutants with activating lesions at position 12 or 59 or both showed decreased transforming activity, our results suggest that the recognition site for Y13-259 within the ras p21 molecule influences directly or indirectly the interaction of ras p21 with GAP and that this interaction is critical for biological activity of ras proteins.  相似文献   

10.
Ras GTPase activating protein (GAP) possesses a C-terminal domain that interacts with GTP-bound Ras, and an N-terminal region containing two SH2 domains and an SH3 domain. In addition to its association with Ras, GAP binds stably to autophosphorylated beta PDGF receptors, and to two cytoplasmic phosphoproteins: p62, an RNA binding protein, and p190, which possesses GAP activity towards small guanine nucleotide binding proteins in the Rho/Rac family. To define the region of GAP that mediates these interactions with cellular phosphoproteins, and to investigate the biological significance of these complexes, a truncated GAP polypeptide (GAP-N) containing residues 1-445 was stably expressed in Rat-2 fibroblasts. GAP-N contains the SH2 and SH3 domains, but lacks the Ras GTPase activating domain. Stimulation of cells expressing GAP-N with PDGF induced association of GAP-N with the beta PDGF receptor, and phosphorylation of GAP-N on tyrosine, consistent with the notion that GAP SH2 domains direct binding to the autophosphorylated beta PDGF receptor in vivo. GAP-N bound constitutively to p190 in both serum-deprived and growth factor-stimulated cells. This GAP-N-p190 complex had Rho GAP activity in vitro. The expression of GAP-N in Rat-2 cells correlated with changes in the cytoskeleton and in cell adhesion, typified by the disruption of action stress fibres, a reduction in focal contacts, and an impaired ability to adhere to fibronectin. These results suggest that the N-terminal domain of GAP can direct interactions with cellular phosphoproteins in vivo, and thereby exert an effector function which modulates the cytoskeleton and cell adhesion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Amino acid sequence homology between the GTPase Activating Protein (GAP) and the GTP-binding regulatory protein, Gs alpha, suggests that a specific region of GAP primary structure (residues 891-898) may be involved in its stimulation of p21ras GTP hydrolytic activity (McCormick, F. [1989] Nature 340, 678-679). A peptide, designated p891, corresponding to GAP residues 891-906 (M891RTRVVSGFVFLRLIC906) was synthesized and tested for its ability to inhibit GAP-stimulated p21ras GTPase activity. At a concentration of 25 microM, p891 inhibited GAP activity approximately 50%. Unexpectedly, p891 also stimulated GTP binding to p21N-ras independent of GAP. This stimulation correlated with an enhancement of p21N-ras.GDP dissociation; an approximate 15-fold increase in the presence of 10 microM p891. In contrast, dissociation of the p21N-ras.GTP gamma S complex was unaffected by 10 microM p891. The p21N-ras.GDP complex was unresponsive to 100 microM mastoparan, a peptide toxin shown previously to accelerate GDP dissociation from the guanine nucleotide regulatory proteins, Gi and Go. p21H-ras, as well as the two p21H-ras effector mutants, Ala-38, and Ala-35, Leu-36, also exhibited increased rates of GDP dissociation in the presence of p891. Also tested were three ras-related GTP-binding proteins; rap, G25K and rac. The rap.-GDP complex was unaffected by 10 microM p891. Dissociation of the G25K- and rac.GDP complexes were enhanced slightly; approximately 1.3- and 1.8-fold over control, respectively. Thus, the inhibitory effect of p891 on GAP stimulation of p21ras suggests that amino acids within the region 891-906 of GAP may be essential for interaction with p21ras. In addition, p891 independently affects the nucleotide exchange properties of p21ras.  相似文献   

12.
The role of RasGAP was investigated in the model system of Xenopus oocytes expressing fibroblast growth factor receptor 1 (FGFR1) stimulated by fibroblast growth factor 1 (FGF1). The injection of the SH2-SH3-SH2 domains of RasGAP suppressed Ras activity, extracellular signal-regulated protein kinase 2 (ERK2) phosphorylation and Mos synthesis. The SH2 domain of Src, and PP2, an inhibitor of Src, also abolished Ras activity, ERK2 phosphorylation and Mos synthesis. In addition, Src activity was blocked by the SH2-SH3-SH2 domains of RasGAP. Immunoprecipitation of a chimera composed of the extracellular domain of the platelet-derived growth factor (PDGF) receptor and the intracellular domain of FGFR1 stimulated by PDGF-BB demonstrates the recruitment of phosphorylated RasGAP. This study shows that the transduction cascade induced by the FGFR1-FGF1 interaction in Xenopus oocytes involves RasGAP as a co-activator of Src to stimulate the Ras/mitogen-activated protein kinase cascade and Mos synthesis. It emphasises a new positive regulatory role for RasGAP in FGFR transduction.  相似文献   

13.
The receptor deleted in colorectal cancer (DCC) mediates the attraction of growing axons to netrin-1 during brain development. In response to netrin-1 stimulation, DCC becomes a signaling platform to recruit proteins that promote axon outgrowth and guidance. The Ras GTPase-activating protein (GAP) p120RasGAP inhibits Ras activity and mediates neurite retraction and growth cone collapse in response to repulsive guidance cues. Here we show an interaction between p120RasGAP and DCC that positively regulates netrin-1-mediated axon outgrowth and guidance in embryonic cortical neurons. In response to netrin-1, p120RasGAP is recruited to DCC in growth cones and forms a multiprotein complex with focal adhesion kinase and ERK. We found that Ras/ERK activities are elevated aberrantly in p120RasGAP-deficient neurons. Moreover, the expression of p120RasGAP Src homology 2 (SH2)-SH3-SH2 domains, which interact with the C-terminal tail of DCC, is sufficient to restore netrin-1-dependent axon outgrowth in p120RasGAP-deficient neurons. We provide a novel mechanism that exploits the scaffolding properties of the N terminus of p120RasGAP to tightly regulate netrin-1/DCC-dependent axon outgrowth and guidance.  相似文献   

14.
We investigated the involvement of the p21ras-GTPase activating protein (GAP) in insulin-induced signal transduction. In cells overexpressing the insulin receptor, we did not observe association between GAP and the insulin receptor after insulin treatment nor the phosphorylation of GAP on tyrosine residues. However, after insulin treatment in the presence of the phosphotyrosine phosphatase inhibitor phenylarsine oxide (PAO), 5-10% of GAP was found to be associated with the insulin receptor, and, in addition, a fraction of total GAP was phosphorylated on tyrosine. Using in vitro binding we showed that the N-terminal part of GAP containing the src-homology domains 2 and 3 (SH2-SH3-SH2 region) is involved in binding to the autophosphorylated insulin receptor beta-chain. In vitro binding between GAP and the autophosphorylated insulin receptor occurred independently of PAO pretreatment. These results suggest that GAP can transiently interact with the insulin receptor after insulin treatment, and this interaction is arrested after PAO pretreatment.  相似文献   

15.
We report the development of a quantitative assay for measuring SH2 domain binding in vitro. Using this assay we have analyzed the binding of purified recombinant SH2 domains from ras GTPase activating protein (GAP) and the 85-kDa subunit of phosphatidylinositol 3-kinase (p85) to proteins from epidermal growth factor-stimulated and v-src-transformed cells. The purified recombinant SH2 domains from GAP and p85 bind to the tyrosine phosphorylated epidermal growth factor receptor with nanomolar affinities. Moreover, competition studies suggest that these two proteins bind to equivalent or overlapping sites on this receptor. In v-src-transformed cells the purified recombinant SH2 domains from GAP and p85 bind to distinct but overlapping sets of proteins.  相似文献   

16.
Substitution of asparagine for serine at position 17 decreased the affinity of rasH p21 for GTP 20- to 40-fold without significantly affecting its affinity for GDP. Transfection of NIH 3T3 cells with a mammalian expression vector containing the Asn-17 rasH gene and a Neor gene under the control of the same promoter yielded only a small fraction of the expected number of G418-resistant colonies, indicating that expression of Asn-17 p21 inhibited cell proliferation. The inhibitory effect of Asn-17 p21 required its localization to the plasma membrane and was reversed by coexpression of an activated ras gene, indicating that the mutant p21 blocked the endogenous ras function required for NIH 3T3 cell proliferation. NIH 3T3 cells transformed by v-mos and v-raf, but not v-src, were resistant to inhibition by Asn-17 p21, indicating that the requirement for normal ras function can be bypassed by these cytoplasmic oncogenes. The Asn-17 mutant represents a novel reagent for the study of ras function by virtue of its ability to inhibit cellular ras activity in vivo. Since this phenotype is likely associated with the preferential affinity of the mutant protein for GDP, analogous mutations might also yield inhibitors of other proteins whose activities are regulated by guanine nucleotide binding.  相似文献   

17.
ras p21 GTPase-activating protein (GAP) has been proposed to interact with the putative effector domain of ras p21s, and smg p21, a ras p21-like guanine nucleotide binding protein (G protein), has been shown to have the same amino acid sequence as ras p21s in this region. In the present studies, we examined the effects of ras p21 GAP on the GTPase activity of smg p21 purified from human platelets, of smg p21 on the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21 purified from Escherichia coli, and of c-Ha-ras p21 on the smg p21 GAP1- or -2-stimulated GTPase activity of smg p21. ras p21 GAP stimulated the GTPase activity of c-Ha-ras p21 but not that of smg p21. The GTP-bound form of smg p21, however, inhibited the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21 in a dose-dependent manner. The half-maximum inhibition by smg p21 was obtained at 0.4 microM which was more potent than previously observed for ras p21 (2-200 microM). The GDP-bound form also inhibited the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21, but the efficiency was 40-50% that of the GTP-bound form. smg p21 GAP1 and -2 stimulated the GTPase activity of smg p21 but not that of c-Ha-ras p21. c-Ha-ras p21 did not inhibit the smg p21 GAP1- or -2-stimulated GTPase activity of smg p21. These results indicate that ras p21 GAP interacts with smg p21 without the subsequent stimulation of its GTPase activity.  相似文献   

18.
19.
The cDNA for bovine ras p21 GTPase activating protein (GAP) has been cloned and the 1044 amino acid polypeptide encoded by the clone has been shown to bind the GTP complexes of both normal and oncogenic Harvey (Ha) ras p21. To identify the regions of GAP critical for the catalytic stimulation of ras p21 GTPase activity, a series of truncated forms of GAP protein were expressed in Escherichia coli. The C-terminal 343 amino acids of GAP (residues 702-1044) were observed to bind Ha ras p21-GTP and stimulate Ha ras p21 GTPase activity with the same efficiency (kcat/KM congruent to 1 x 10(6) M-1 s-1 at 24 degrees C) as GAP purified from bovine brain or full-length GAP expressed in E. coli. Deletion of the final 61 amino acid residues of GAP (residues 986-1044) rendered the protein insoluble upon expression in E. coli. These results define a distinct catalytic domain at the C terminus of GAP. In addition, GAP contains amino acid similarity with the B and C box domains conserved among phospholipase C-II, the crk oncogene product, and the non-receptor tyrosine kinase oncogene products. This homologous region is located in the N-terminal half of GAP outside of the catalytic domain that stimulates ras p21 GTPase activity and may constitute a distinct structural or functional domain within the GAP protein.  相似文献   

20.
The 68 kDa Src substrate associated during mitosis (Sam68) is an RNA binding protein with Src homology (SH) 2 and 3 domain binding sites. We have recently found that Sam68 is a substrate of the insulin receptor (IR) that translocates from the nucleus to the cytoplasm and that Tyr-phosphorylated Sam68 associates with the SH2 domains of p85 PI3K and GAP, in vivo and in vitro. In the present work, we have further demonstrated the cytoplasmic localization of Sam68, which is increased in cells overexpressing IR. Besides, we sought to further study the association of Sam68 with the Ras-GAP pathway by assessing the interactions with SH3 domains of Grb2. We employed GST-fusion proteins containing the SH3 domains of Grb2 (N or C), and recombinant Sam68 for in vitro studies. In vivo studies of protein-protein interaction were assessed by co-immunoprecipitation experiments with specific antibodies against Sam68, GAP, Grb2, SOS, and phosphotyrosine; and by affinity precipitation with the fusion proteins (SH3-Grb2). Insulin stimulation of HTC-IR cells promotes phosphorylation of Sam68 and its association with the SH2 domains of GAP. Sam68 is constitutively associated with the SH3 domains of Grb2 and it does not change upon insulin stimulation, but Sam68 is Tyr-phosphorylated and promotes the association of GAP with the Grb2-SOS complex. In vitro studies with fusion proteins showed that Sam68 association with Grb2 is preferentially mediated by the C-terminal SH3 domains of Grb2. In conclusion, Sam68 is a substrate of the IR and may have a role as a docking protein in IR signaling, recruiting GAP to the Grb2-SOS complex, and in this way it may modulate Ras activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号