首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The Ca2(+)-dependent regulation of the erythroid membrane cytoskeleton was investigated. The low-salt extract of erythroid membranes, which is mainly composed of spectrin, protein 4.1, and actin, confers a Ca2+ sensitivity on its interaction with F-actin. This Ca2+ sensitivity is fortified by calmodulin and antagonized by trifluoperazine, a potent calmodulin inhibitor. Additionally, calmodulin is detected in the low-salt extract. These results suggest that calmodulin is the sole Ca2(+)-sensitive factor in the low-salt extract. The main target of calmodulin in the erythroid membrane cytoskeleton was further examined. Under native conditions, calmodulin forms a stable and equivalent complex with protein 4.1 as determined by calmodulin affinity chromatography, cross-linking experiments, and fluorescence binding assays with an apparent Kd of 5.5 x 10(-7) M irrespective of the free Ca2+ concentration. Domain mapping with chymotryptic digestion reveals that the calmodulin-binding site resides within the N-terminal 30-kDa fragment of protein 4.1. In contrast, the interaction of calmodulin with spectrin is unexpectedly weak (Kd = 1.2 x 10(-4) M). Given the content of calmodulin in erythrocytes (2-5 microM), these results imply that the major target for calmodulin in the erythroid membrane cytoskeleton is protein 4.1. Low- and high-shear viscometry and binding assays reveal that an equivalent complex of calmodulin with protein 4.1 regulates the spectrin/actin interaction in a Ca2(+)-dependent manner. At a low Ca2+ concentration, protein 4.1 potentiates the actin cross-linking and the actin binding activities of spectrin. At a high Ca2+ concentration, the protein 4.1-potentiated actin cross-linking activity but not the actin binding activity of spectrin is suppressed by Ca2+/calmodulin. The Ca2(+)-dependent regulation of the spectrin/protein 4.1/calmodulin/actin interaction is discussed.  相似文献   

2.
The ability of protein 4.1 to stimulate the binding of spectrin to F-actin has been compared by cosedimentation analysis for three avian (erythrocyte, brain, and brush border) and two mammalian (erythrocyte and brain) spectrin isoforms. Human erythroid protein 4.1 stimulated actin binding of all spectrins except the brush border isoform (TW 260/240). These results suggested that the beta subunit determined the protein 4.1 sensitivity of the heterodimer, since all avian alpha subunits are encoded by a single gene. Tissue-specific posttranslational modification of the alpha subunit was excluded by examining the properties of hybrid spectrins composed of the purified alpha subunit from avian erythrocyte or brush border spectrin and the beta subunit of human erythrocyte spectrin. A hybrid composed of avian brush border alpha and human erythroid beta spectrin ran on nondenaturing gels as a discrete band, migrating near human erythroid spectrin tetramers. The actin-binding activity of this hybrid was stimulated by protein 4.1, while either chain alone was devoid of activity. Therefore, although both subunits were required for actin binding, the sensitivity of the spectrin-actin interaction to protein 4.1 is a property uniquely bestowed on the heterodimer by the beta subunit. The singular insensitivity of brush border spectrin to stimulation by erythroid protein 4.1 was also consistent with the absence of proteins in avian intestinal epithelial cells which were immunoreactive with polyclonal antisera sensitive to all of the known avian and human erythroid 4.1 isoforms.  相似文献   

3.
Distribution of contractile proteins, actin and myosin, and spectrin was studied in oogenesis of X. laevis. These proteins are present already at the previtellogenic stages, where they are diffusely distributed. During vitellogenesis actin and myosin are distributed in the animal region in a fibril-like way, while in the vegetal one they are concentrated around the yolk platelets. In the mature oocyte, distribution of actin and myosin again becomes diffuse. Spectrin forms in the vitellogenic oocyte a network all over the cytoplasm, while in the full-grown oocyte it is localized mostly in the subcortex of the animal region and disappears during oocyte maturation. All these proteins are present in the nuclei of oocytes. Changes in distribution of actin, myosin and spectrin during oocyte maturation are discussed with reference to the cortical contractility, spatial distribution of yolk platelets and regional sensitivity to cytochalasin B.  相似文献   

4.
Gimm JA  An X  Nunomura W  Mohandas N 《Biochemistry》2002,41(23):7275-7282
Protein 4.1R is the prototypical member of a protein family that includes 4.1G, 4.1B, and 4.1N. 4.1R plays a crucial role in maintaining membrane mechanical integrity by binding cooperatively to spectrin and actin through its spectrin-actin-binding (SAB) domain. While the binary interaction between 4.1R and spectrin has been well characterized, the actin binding site in 4.1R remains unidentified. Moreover, little is known about the interaction of 4.1R homologues with spectrin and actin. In the present study, we showed that the 8 aa motif (LKKNFMES) within the 10 kDa spectrin-actin-binding domain of 4.1R plays a critical role in binding of 4.1R to actin. Recombinant 4.1R SAB domain peptides with mutations in this motif showed a marked decrease in their ability to form ternary complexes with spectrin and actin. Binary protein-protein interaction studies revealed that this decrease resulted from the inability of mutant SAB peptides to bind to actin filaments while affinity for spectrin was unchanged. We also documented that the 14 C-terminal residues of the 21 amino acid cassette encoded by exon 16 in conjunction with residues 27-43 encoded by exon 17 constituted a fully functional minimal spectrin-binding motif. Finally, we showed that 4.1N SAB domain was unable to form a ternary complex with spectrin and actin, while 4.1G and 4.1B SAB domains were able to form such a complex but less efficiently than 4.1R SAB. This was due to a decrease in the ability of 4.1G and 4.1B SAB domain to interact with actin but not with spectrin. These data enabled us to propose a model for the 4.1R-spectrin-actin ternary complex which may serve as a general paradigm for regulation of spectrin-based cytoskeleton interaction in various cell types.  相似文献   

5.
6.
4.1 Proteins are a family of multifunctional cytoskeletal components (4.1R, 4.1G, 4.1N and 4.1B) derived from four related genes, each of which is expressed in the nervous system. Using subcellular fractionation, we have investigated the possibility that 4.1 proteins are components of forebrain postsynaptic densities, cellular compartments enriched in spectrin and actin, whose interaction is regulated by 4.1R. Antibodies to each of 4.1R, 4.1G, 4.1N and 4.1B recognize polypeptides in postsynaptic density preparations. Of these, an 80-kDa 4.1R polypeptide is enriched 11-fold in postsynaptic density preparations relative to brain homogenate. Polypeptides of 150 and 125 kDa represent 4.1B; of these, only the 125 kDa species is enriched (threefold). Antibodies to 4.1N recognize polypeptides of approximately 115, 100, 90 and 65 kDa, each enriched in postsynaptic density preparations relative to brain homogenate. Minor 225 and 200 kDa polypeptides are recognized selectively by specific anti-4.1G antibodies; the 200 kDa species is enriched 2.5-fold. These data indicate that specific isoforms of all four 4.1 proteins are components of postsynaptic densities. Blot overlay analyses indicate that, in addition to spectrin and actin, postsynaptic density polypeptides of 140, 115, 72 and 66 kDa are likely to be 4.1R-interactive. Of these, 72 kDa and 66 kDa polypeptides were identified as neurofilament L and alpha-internexin, respectively. A complex containing 80 kDa 4.1R, alpha-internexin and neurofilament L was immunoprecipitated with anti-4.1R antibodies from brain extract. We conclude that 4.1R interacts with the characteristic intermediate filament proteins of postsynaptic densities, and that the 4.1 proteins have the potential to mediate the interactions of diverse components of postsynaptic densities.  相似文献   

7.
Cellular differentiation is often accompanied by the expression of specialized plasma membrane proteins which accumulate in discrete regions. The biogenesis of these specialized membrane domains involves the assembly and co-localisation of a spectrin-based membrane skeleton. While the constituents of the membrane skeleton in non-erythroid cells are often immunologically related to erythroid spectrin, ankyrin, and protein 4.1, there are structural and functional differences between the isoforms of these membrane skeleton polypeptides, as well as highly variable patterns of expression during cellular differentiation. We consider this heterogeneity of structure and expression during development in the context of the hypothesis that non-erythroid spectrin, ankyrin, and protein 4.1 are involved in the formation of specialized membrane domains.  相似文献   

8.
The African clawed frog Xenopus laevis has long been used to study the development and function of the vertebrate retina. An efficient technique for generating transgenic Xenopus embryos, the REMI procedure, has enabled the stable overexpression of transgenes in developing and mature X. laevis. In the retina, transgenes driven by retinal-specific promoters have been used to study protein trafficking, circadian rhythms, and retinal degeneration. The REMI technique is surprisingly simple, consisting of integration of plasmid DNA into permeabilized sperm nuclei, followed by transplantation of these nuclei into unfertilized eggs. Here, we describe the reagents and steps necessary for generation of transgenic embryos using the REMI reaction and discuss its applications for the study of retinal development.  相似文献   

9.
Erythrocyte protein 4.1 plays a major role in stabilizing the spectrin-actin junction of the erythrocyte membrane skeleton. The particular sites on spectrin responsible for the binding of actin and protein 4.1 have not been specifically defined, although the general region of the 'tail' end, opposite the self-association site, has been deduced by electron microscopy. Using a photoactivatable, radiolabel-transfer cross-linker, 1-[N-(2-hydroxy-5-azidobenzoyl)-2-aminoethyl]-4-(N-hydroxysuccinimidyl)- succinate, we have determined that the binding site for protein 4.1 on spectrin resides in the N-terminal region of beta spectrin within a sequence homologous to the actin-binding region of alpha actinin. Moreover, this technique provided clear evidence for a direct binding interaction between actin filaments and protein 4.1 that was confirmed by rapid-sedimentation assays. In summary, use of radiolabel-transfer cross-linking has enabled assignment of the protein-4.1-binding site on erythrocyte spectrin and has identified a previously ill-defined binary interaction between protein 4.1 and F-actin.  相似文献   

10.
C M Cohen  S F Foley 《Biochemistry》1984,23(25):6091-6098
Ternary complex formation between the major human erythrocyte membrane skeletal proteins spectrin, protein 4.1, and actin was quantified by measuring cosedimentation of spectrin and band 4.1 with F-actin. Complex formation was dependent upon the concentration of spectrin and band 4.1, each of which promoted the binding of the other to F-actin. Simultaneous measurement of the concentrations of spectrin and band 4.1 in the sedimentable complex showed that a single molecule of band 4.1 was sufficient to promote the binding of a spectrin dimer to F-actin. However, the molar ratio of band 4.1/spectrin in the complex was not fixed, ranging from approximately 0.6 to 2.2 as the relative concentration of added spectrin to band 4.1 was decreased. A mole ratio of 0.6 band 4.1/spectrin suggests that a single molecule of band 4.1 can promote the binding of more than one spectrin dimer to an actin filament. Saturation binding studies showed that in the presence of band 4.1 every actin monomer in a filament could bind at least one molecule of spectrin, yielding ternary complexes with spectrin/actin mole ratios as high as 1.4. Electron microscopy of such complexes showed them to consist of actin filaments heavily decorated with spectrin dimers. Ternary complex formation was not affected by alteration in Mg2+ or Ca2+ concentration but was markedly inhibited by KCl above 100 mM and nearly abolished by 10 mM 2,3-diphosphoglycerate or 10 mM adenosine 5'-triphosphate. Our data are used to refine the molecular model of the red cell membrane skeleton.  相似文献   

11.
The calcium receptor calmodulin interacts with components of the human red cell membrane skeleton as well as with the membrane. Under physiological salt conditions, calmodulin has a calcium-dependent affinity for spectrin, one of the major components of the membrane skeleton. It is apparent from our results that calmodulin inhibits the ability of erythrocyte spectrin (when preincubated with filamentous actin) to create nucleation centers and thereby to seed actin polymerization. The gelation of filamentous actin induced by spectrin tetramers is also inhibited by calmodulin. The inhibition is calcium dependent and decreases with increasing pH, similar to the binding of calmodulin to spectrin. Direct binding studies using aqueous two-phase partition indicate that calmodulin interferes with the binding of actin to spectrin. Even in the presence of protein 4.1, which is believed to stabilize the ternary complex, calmodulin has an inhibitory effect. Since calmodulin also inhibits the corresponding activities of brain spectrin (fodrin), it appears likely that calmodulin may modulate the organization of cytoskeletons containing actin and spectrin or spectrin analogues.  相似文献   

12.
13.
The presence and the distribution of proteins of the membrane skeleton in differentiating germ cells of the rat has been investigated. Immunofluorescence and immunoblotting analysis, performed using monoclonal and polyclonal antibodies to human erythroid alpha-spectrin and protein 4.1 and to brain spectrin (fodrin), demonstrated the presence of analogues of spectrin and fodrin in spermatocytes and round spermatids and of protein 4.1-like molecules in spermatocytes, spermatids and spermatozoa. Spectrin and fodrin showed molecular weights comparable to those of their analogues in erythrocytes but a distinct intracellular distribution. Fodrin was localized along the plasma membrane while spectrin appeared associated with the regions of the Golgi apparatus and of the developing acrosome. Antibodies to protein 4.1 recognized molecules with a molecular weight not comparable with that in erythrocytes, and their presence in spermatozoa was confined to specific regions of the head and of the tail.  相似文献   

14.
While the temporal sequences of the synthesis and assembly of membrane skeletal proteins has been studied during erythroid maturation, relatively little is known about the events which initiate the assembly of membrane skeleton at the early stages of mammalian erythroid commitment. To investigate the early events that initiate the assembly of the membrane skeleton in mammalian erythroid cells, we have studied the synthesis and assembly of membrane skeletal proteins in murine Rauscher erythroleukemia virus-transformed cells. These cells are blocked in differentiation at around the early progenitor (burst forming unit-erythroid, BFUe) cell stage but can be induced to differentiate in vitro. Pulse-labeling studies reveal that Rauscher cells actively synthesize alpha spectrin, beta spectrin, ankyrin and band 4.1 proteins. However, the synthesis of the band 3 protein and its mRNA are barely detectable in these cells. The peripheral membrane skeletal components assemble only transiently in the membrane skeleton and turn over rapidly, resulting in about 20-fold lower steady state levels than are found in mature erythrocytes. Upon induction with erythropoietin and dimethyl sulfoxide, the mRNA level and synthesis of band 3 are increased about 50-fold. In contrast, the synthesis of spectrin, ankyrin and band 4.1 is increased only about 1.5 to 2.0-fold. However, after induction, the fraction of these proteins assembled on the membrane is increased, their half-lives on the membrane are nearly doubled with a concomitant 4 to 5-fold increase in their steady-state levels. These results suggest that the synthesis of peripheral membrane proteins is detected at the earliest stages of erythroid commitment and increases only slightly during further differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Protein 4.1 is a globular 80-kDa component of the erythrocyte membrane skeleton that enhances spectrin–actin interaction via its internal 10-kDa domain. Previous studies have shown that protein 4.1 mRNA is expressed as multiple alternatively spliced isoforms, resulting from the inclusion or exclusion of small cassette sequences called motifs. By tissue screening for protein 4.1 isoforms, we have observed new features of an already complex pattern of alternative splicing within the spectrin/actin binding domain. In particular, we found a new 51-nt exon that is present almost exclusively in muscle tissue. In addition, we have isolated multiple genomic clones spanning over 200 kb, containing the entire erythroid and nonerythroid coding sequence of the human locus. The exon/intron structure has now been characterized; with the exception of a 17-nt motif, all of the alternatively spliced motifs correspond to individual exons. The 3′-untranslated region (UTR) has also been completely sequenced using various PCR and genomic-sequencing methods. The 3′ UTR, over 3 kb, accounts for one-half of the mature mRNA.  相似文献   

16.
17.
18.
Protein 4.1 is a crucial component of the erythrocyte membrane skeleton. Responsible for the amplification of the spectrin-actin interaction, its presence is required for the maintenance of erythrocyte integrity. We have demonstrated a 4.1-like protein in nonerythroid cells. An antibody was raised to erythrocyte protein 4.1 purified by KCl extraction (Tyler, J. M., W. R. Hargreaves, and D. Branton, 1979, Proc. Natl. Acad. Sci. USA, 76:5192-5196), and used to identify a serologically cross-reactive protein in polymorphonuclear leukocytes, platelets, and lymphoid cells. The cross-reactive protein(s) were localized to various regions of the cells by immunofluorescence microscopy. Quantitative adsorption studies indicated that at least 30-60% of the anti-4.1 antibodies reacted with this protein, demonstrating significant homology between the erythroid and nonerythroid species. A homologous peptide doublet was observed on immunopeptide maps, although there was not complete identity between the two proteins. When compared with erythrocyte protein 4.1, the nonerythroid protein(s) displayed a lower molecular weight--68,000 as compared with 78,000-and did not bind spectrin or the nonerythroid actin-binding protein filamin. There was no detectable cross-reactivity between human acumentin or human tropomyosin-binding protein, which are similarly sized actin-associated proteins, and erythrocyte protein 4.1. The possible origin and significance of 4.1-related protein(s) in nonerythroid cells are discussed.  相似文献   

19.
20.
Alternative pre-mRNA splicing plays a major role in regulating cell type-specific expression of the protein 4.1 family of skeletal proteins. The biological importance of alternative splicing as a mechanism for 4.1 gene regulation is underscored by studies of the prototypical 4.1R gene in erythroid cells: activation of exon 16 inclusion in mRna at the erythroblast stage greatly enhances the ability of newly synthesized 4.1R protein to bind spectrin and actin, and thus assemble into a stable membrane skeleton. This gain-of- function has profound effects on the biophysical properties of deformability and membrane strength that are critical to red cell survival in the circulation. Another example of developmentally regulated splicing occurs in differentiating mammary epithelial cells in culture, where cell morphogenesis is accompanied by a splicing switch that reversibly activates inclusion of alternative exon muscle. Few other genes are known to be so richly endowed with regulated switches in pre-mRna splicing making the 4.1R gene an interesting paradigm for the role of alternative splicing as a mediator of cell function. Recent evidence that other members of the 4.1 gene family are also regulated by alternative splicing suggests, moreover, that this phenomenon is of general importance in regulating the structure of this class of skeletal proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号