首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Male association preferences in a bisexual‐unisexual species complex were studied in clear and turbid environments. In south and central Texas, where the gynogenetic sexual‐parasite Poecilia formosa lives syntopically with Poecilia latipinna as its sexual host species, association times of P. latipinna males with conspecific sexual and heterospecific asexual females in clear and turbid water were measured sequentially. Turbidity had an influence on male mate association behaviour. Males spent less time with any kind of female stimulus in turbid water. There was no preference for conspecific sexual females, either in turbid water or under clear conditions. Also, origin of males and acclimatization to turbid water had no effect. How turbidity as a source of visual noise might affect communication among individuals and how this environmental factor might contribute to the stability of this sexual‐asexual mating complex in nature are discussed.  相似文献   

2.
The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans‐species evolution).  相似文献   

3.
The maintenance of sexual reproduction in the face of its supposed costs is a major paradox in evolutionary biology. The Red Queen hypothesis, which states that sex is an adaptation to fast-evolving parasites, is currently one of the most recognized explanations for the ubiquity of sex and predicts that asexual lineages should suffer from a higher parasite load if they coexist with closely related sexuals. We tested this prediction using four populations of the sexual fish species Poecilia latipinna and its asexual relative Poecilia formosa. Contrary to expectation, no differences in parasite load could be detected between the two species.  相似文献   

4.
Unisexual species like the gynogenetic Amazon molly, Poecilia formosa, enjoy a twofold advantage over sexual species, because they do not produce males. Therefore, unisexuals should be able to outcompete and consequently, replace sexual species. For sperm-dependent (gynogenetic) unisexuals this creates a paradox: they cannot replace their sexual hosts without eradicating themselves. Thus, mechanisms must be in place to stabilize such mating systems. We assessed juvenile survivorship between asexual P. formosa and sexual Poecilia latipinna as a possible factor allowing for persistence and coexistence between the two sympatric species. Offspring of gynogenetic Amazon mollies did not differ significantly in survivorship compared to their sexual host, the Sailfin molly, P. latipinna. The presence of an adult female significantly reduced survival in both species, suggesting that filial cannibalisms operates in this system, but does not appear to play a role in stabilizing mixed sexual/asexual populations. Clark Hubbs, who spent 59 years at the University of Texas and was widely regarded as one of the state’s foremost researchers in the field of ichthyology, the study of fish, passed away February 3rd of 2008 after a long battle with colorectal cancer. He was 86.  相似文献   

5.
We describe the first microsatellite loci for the gynogenetic Amazon molly, Poecilia formosa, an all‐female species arisen through hybridization of the bisexual species Poecilia mexicana and Poecilia latipinna. The loci showed one to six alleles and an expected heterozygosity between zero and 0.75. As expected with parthenogenetic inheritance, most loci were either constantly homozygous (five loci) or constantly heterozygous (eight loci). For six loci, both heterozygotes and homozygotes occurred. This and the fact that some loci only showed alleles of one of the ancestral species could indicate genome homogenization through mitotic gene conversion. Our new loci conformed to the hybrid origin of Amazon molly and are also applicable to both ancestral bisexual species.  相似文献   

6.
All known vertebrate clones have originated from hybridization events and some have produced distinct evolutionary lineages via hybrid speciation. Amazon mollies (Poecilia formosa) present an excellent study system to investigate how clonal species have adapted to heterogeneous environments because they are the product of a single hybridization event between male sailfin mollies (Poecilia latipinna) and female Atlantic mollies (Poecilia mexicana). Here, we ask whether the hybrid species differs from the combination of its parental species’ genes in its plastic response to different environments. Using a three-way factorial design, we exposed neonates produced by Amazon mollies and reciprocal F1 hybrid crosses to different thermal (24°C and 29°C) and salinity (0/2, 12, and 20 ppt) regimes. We measured various ontogenetic and life history characteristics across the life span of females. Our major results were as follows: (1) Reaction norms of growth and maturation to temperature and salinity are quite similar between the two hybrid crosses; (2) Amazon molly reaction norms were qualitatively different than the P. latipinna male and P. mexicana female (L×M) hybrids for the ontogenetic variables; (3) Amazon molly reaction norms in reproductive traits were also quite different from L×M hybrids; and (4) The reaction norms of net fertility were very different between Amazon mollies and L×M hybrids. We conclude that best locale for Amazon mollies is not the best locale for hybrids, which suggests that Amazon mollies are not just an unmodified mix of parental genes but instead have adapted to the variable environments in which they are found. Hybridization resulting in asexuality may represent an underappreciated mechanism of speciation because the unlikely events required to produce such hybrids rarely occur and is dependent upon the genetic distance between parental species.  相似文献   

7.
The present study investigated the spatiotemporal patterns in trophic resource use in a system of a gynogenetic poeciliid fish, the Amazon molly Poecilia formosa, and its sexual congeners the sailfin molly Poecilia latipinna and the Atlantic molly Poecilia mexicana using gut contents analysis. No statistically significant differences in trophic resource use were found between sexual and gynogenetic species, but gut contents varied significantly across sites and over time. In addition, variation in trophic morphology (i.e. gut length) was significant across sites but not species, and laboratory experiments indicated that gut length is phenotypically plastic. Overall, trophic differentiation between coexisting asexual and sexual Poecilia appears to be minimal, and it is unlikely that niche differentiation contributes to a stable coexistence of the two reproductive forms.  相似文献   

8.
Fifty‐one microsatellite DNA markers of guppy (Poecilia reticulata) were developed. All of the markers detected moderate allelic variation. The number of alleles for each locus ranged from two to 10. Observed and expected heterozygosities varied from 0.10 to 0.63 and from 0.23 to 0.77, respectively. Three additional fish species of family Poeciliidae were used for the cross‐species amplification of these markers. It was found that only four to 16 markers detected polymorphism in these three fish species.  相似文献   

9.
Synopsis We analyzed variation in allozymes and mating preferences in 12 populations across much of the range of the sailfin molly, Poecilia latipinna. Sailfin mollies can be sympatric with its sexual parasite Amazon mollies, P. formosa. Amazon mollies must co-exist and mate with bisexual males of closely related species (including sailfin mollies) to induce embryogenesis but inheritance is strictly maternal. Where sailfin and Amazon mollies are sympatric there is evidence of reproductive character displacement as males show a significantly stronger mating preference for sailfin molly females over Amazon mollies compared to preferences of males from allopatric populations. From the allozyme data we found a moderate amount of genetic variation across all populations but this variation did not reveal significant partitioning between sympatric and allopatric populations. Additionally, we found no evidence for isolation by distance as genetic distance was not significantly correlated with geographic distance. While allozyme variation also did not significantly correlate with male mating preferences, there was a significant correlation between male mating preferences and geographic distance. This correlation between mating preferences and geographic distance may have arisen from coevolution with Amazon mollies resulting in reproductive character displacement. Taken together, the distribution of genetic and behavioral variation among sympatric and allopatric populations suggests that behavioral evolution has outpaced evolution at the allozyme loci we examined in P. latipinna.  相似文献   

10.
The Tamesí molly, Poecilia latipunctata, has a very limited biogeographical range in northeast Mexico. This area is nested within the ranges of the Atlantic molly, Poecilia mexicana, and the unisexual Amazon molly, Poecilia formosa. Based on morphology, especially fin shape, the Tamesí molly has been considered to be a "short-fin" molly. We describe the courtship sequence of P. latipunctata. The courtship clearly places the species into the clade of "long-fin" mollies, a finding that corroborates earlier studies based on nuclear DNA and mitochondrial DNA. All three species live together in certain habitats. This renders P. latipunctata a potential host species for the sperm-dependent, unisexual Amazon molly. Using behavioural tests, we demonstrate that P. latipunctata males actually copulate with Amazon mollies, despite a pronounced preference for conspecific females. In laboratory experiments P. latipunctata males are capable of triggering embryogenesis in P. formosa females. Field observations support the hypothesis that P. latipunctata is a third host species for P. formosa, indicating that the Amazon molly effectively exploits all available host species for its gynogenetic mode of reproduction. Electronic Publication  相似文献   

11.
Ten tetranucleotide microsatellite loci are characterized for guppy, Poecilia reticulata, an important model species in the study of adaptation and mating systems. Loci were isolated following a microsatellite enrichment procedure using probe‐labelled magnetic beads. These microsatellites were designed for use in examining gene flow, reproductive isolation, and parentage within natural guppy populations.  相似文献   

12.
Several epidemiological models predict a positive relationship between host population density and abundance of directly transmitted macroparasites. Here, we generalize these, and test the prediction by a comparative study. We used data on communities of gastrointestinal strongylid nematodes from 19 mammalian species, representing examination of 6670 individual hosts. We studied both the average abundance of all strongylid nematodes within a host species, and the two components of abundance, prevalence and intensity. The effects of host body weight, diet, fecundity and age at maturity and parasite body size were controlled for directly, and the phylogenetically independent contrast method was used to control for confounding factors more generally. Host population density and average parasite abundance were strongly positively correlated within mammalian taxa, and across all species when the effects of host body weight were controlled for. Controlling for other variables did not change this. Even when looking at single parasite species occurring in several host species, abundance was highest in the host species with the highest population density. Prevalence and intensity showed similar patterns. These patterns provide the first macroecological evidence consistent with the prediction that transmission rates depend on host population density in natural parasite communities.  相似文献   

13.
This study reports significant differences between the gynogenetic Amazon molly Poecilia formosa and one of its sperm hosts, and the sexual sailfin molly Poecilia latipinna in the critical temperatures at which individual fishes lost motion control. Based on these measurements, it is suggested that cold snaps occurring in winter, but not summer temperatures, can significantly change population composition of these closely related fishes by inflicting higher mortality on P. formosa .  相似文献   

14.
The degree of plasticity an individual expresses when moving into a new environment is likely to influence the probability of colonization and potential for subsequent evolution. Yet few empirical examples exist where the ancestral and derived conditions suggest a role for plasticity in adaptive genetic divergence of populations. Here we explore the genetic and plastic components of shoaling behaviour in two pairs of populations of Poecilia reticulata (Trinidadian guppies). We contrast shoaling behaviour of guppies derived from high‐ and low‐predation populations from two separate drainages by measuring the shoaling response of second generation laboratory‐reared individuals in the presence and absence of predator induced alarm pheromones. We find persistent differences in mean shoaling cohesion that suggest a genetic basis; when measured under the same conditions high‐predation guppies form more cohesive shoals than low‐predation guppies. Both high and low‐predation guppies also exhibit plasticity in the response to alarm pheromones, by forming tighter, more cohesive shoals. These patterns suggest a conserved capacity for adaptive behavioural plasticity when moving between variable predation communities that are consistent with models of genetic accommodation.  相似文献   

15.
Heterosis for neonatal survival in the guppy   总被引:2,自引:0,他引:2  
Neonatal survival rate ranged from 91.8 to 100.0% in 12 populations of the guppy Poecilia reticulata , and was higher in naturalized Japanese stream populations than in domestic strains. Mean heterozygosity at five allozyme and four microsatellite loci varied between 0.112 and 0.430 and was significantly correlated with neonatal survival rate among populations, suggest ing that inbreeding decreases neonatal survival. Diallel and reciprocal crosses among four domestic strains demonstrated heterosis for neonatal survival. These results indicate that neonatal survival is genetically affected by heterosis and its antithesis, inbreeding depression. The relationship between neonatal survival and the mean heterozygosity suggests that overall heterozygosity is important for neonatal survival of the guppy.  相似文献   

16.
The trade‐offs involved in allocating carotenoid pigments and food to healing and regrowing damaged caudal fin tissue v . other functions were examined in guppies Poecilia reticulata , a species in which females prefer males that display larger amounts of carotenoids in their skin. The guppies were derived from four natural populations in Trinidad that differed in resource availability but not predation intensity. Carotenoids, food and site of origin did not affect either absolute or relative fin regrowth, which suggested that fin regeneration in guppies was not constrained by carotenoid availability. It is possible that carotenoid intake influences fin regeneration in the presence of natural stressors such as predators. There was a significant negative interaction between food level in the laboratory and resource availability in the field: males from low‐resource‐availability sites regrew more fin tissue when raised on the high food level, and males from high‐resource‐availability sites regrew more fin tissue when raised on the low food level. The direction of this interaction runs counter to theoretical expectations.  相似文献   

17.
Socially reared guppies Poecilia reticulata derived from two wild populations (Upper and Lower Aripo River, Trinidad) showed a significant relationship between body size and shoaling tendency, measured as the proportion of time spent in proximity to a bottle containing conspecifics. Larger females shoaled significantly more than smaller females. Fish from the high-shoaling population (Lower Aripo) showed significantly less shoaling behaviour when reared in isolation. In contrast, low-shoaling fish (Upper Aripo) demonstrated no significant change in their shoaling behaviour in response to social isolation.  相似文献   

18.
We evaluated the extent to which males and females evolve along similar or different trajectories in response to the same environmental shift. Specifically, we used replicate experimental introductions in nature to consider how release from a key parasite (Gyrodactylus) generates similar or different defence evolution in male vs. female guppies (Poecilia reticulata). After 4–8 generations of evolution, guppies were collected from the ancestral (parasite still present) and derived (parasite now absent) populations and bred for two generations in the laboratory to control for nongenetic effects. These F2 guppies were then individually infected with Gyrodactylus, and infection dynamics were monitored on each fish. We found that parasite release in nature led to sex‐specific evolutionary responses: males did not show much evolution of resistance, whereas females showed the evolution of increased resistance. Given that male guppies in the ancestral population had greater resistance to Gyrodactylus than did females, evolution in the derived populations led to reduction of sexual dimorphism in resistance. We argue that previous selection for high resistance in males constrained (relative to females) further evolution of the trait. We advocate more experiments considering sex‐specific evolutionary responses to environmental change.  相似文献   

19.
Multihost parasites have been implicated in the emergence of new diseases in humans and wildlife, yet little is known about factors that influence the host range of parasites in natural populations. We used a comprehensive data set of 415 micro- and macroparasites reported from 119 wild primate hosts to investigate broad patterns of host specificity. The majority (68%) of primate parasites were reported to infect multiple host species, including animals from multiple families or orders. This pattern corresponds to previous studies of parasites found in humans and domesticated animals. Within three parasite groups (viruses, protozoans and helminths), we examined parasite taxonomy and transmission strategy in relation to measures of host specificity. Relative to other parasite groups, helminths were associated with the greatest levels of host specificity, whereas most viruses were reported to infect hosts from multiple families or orders. Highly significant associations between the degree of host specificity and transmission strategy arose within each parasite group, but not always in the same direction, suggesting that unique constraints influence the host range of parasites within each taxonomic group. Finally characteristics of over 100 parasite species shared between wild primates and humans, including those recognised as emerging in humans, revealed that most of these shared parasites were reported from multiple host orders. Furthermore, nearly all viruses that were reported to infect both humans and non-human primates were classified as emerging in humans.  相似文献   

20.
Coexistence of macroparasites is studied by extending the infinite-dimensional model considered by Anderson and May (1978, J. Anim. Ecol. 47, 219-247, 249-267) to several species of parasites that are assumed to interact only by causing the death of a common host. An exact invadability condition is found for this model. By studying when mutual invasibility is possible, the region where two parasite species can coexist is found. The result is that, if there is a trade-off between virulence and transmissibility, then coexistence of two species of parasites is possible, but only when the parameters of the model fall into a very narrow parameter region. If, on the other hand, one parasite is more virulent and less transmissible, then it will be competitively excluded. This latter result, though expected in terms of competition theory, is in contrast with what found in the approximate models so far used for studying interacting macroparasites. The effect of parasite aggregation on coexistence is studied by considering two modifications of the basic model (clumped infections and host population heterogeneity in predisposition to infections) that allow for higher aggregation. It appears that the width of the coexistence region is insensitive to these modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号