首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Human mitochondrial DNA contains two physically separate and distinct origins of DNA replication. The initiation of each strand (heavy and light) occurs at a unique site and elongation proceeds unidirectionally. Animal mitochondrial DNA is novel in that short nascent strands are maintained at one origin (D-loop) in a significant percentage of the molecules. In the case of human mitochondrial DNA, there are three distinct D-loop heavy strands differing in length at the 5' end. We report here the localization of the 5' ends of nascent daughter heavy strands originating from the D-loop region. Analyses of the map positions of 5' ends relative to known restriction endonuclease cleavage sites and 5' end nucleotides indicate that the points of initiation of D-loop synthesis and actual daughter strands are the same. In contrast, the second origin is located two-thirds of the way around the genome where light strand synthesis is presumably initiated on a single-stranded template. Mapping of 5' ends of daughter light strands at this origin relative to known restriction endonuclease cleavage sites reveals two distinct points of initiation separated by 37 nucleotides. This origin is in the same relative genomic position and shows a high degree of DNA sequence homology to that of mouse mitochondrial DNA. In both cases, the DNA region within and immediately flanking the origin of DNA replication contains five tightly clustered tRNA genes. A major portion of the pronounced DNA template secondary structure at this origin includes the known tDNA sequences.  相似文献   

5.
Although cellular mitochondrial DNA (mtDNA) copy number varies widely among cell lines and tissues, little is known about the mechanism of mtDNA copy number control. Most nascent replication strands from the leading, heavy-strand origin (OH) are prematurely terminated, defining the 3′ boundary of the displacement loop (D-loop). We have depleted mouse LA9 cell mtDNA to ~20% of normal levels by treating with 2′,3′-dideoxycytidine (ddC) and subsequently allowed recovery to normal levels of mtDNA. A quantitative ligation-mediated PCR assay was used to determine the levels of both terminated and extended nascent OH strands during mtDNA depletion and repopulation. Depleting mtDNA leads to a release of replication termination until mtDNA copy number approaches a normal level. Detectable total nascent strands per mtDNA genome remain below normal. Therefore, it is likely that the level of replication termination plays a significant role in copy number regulation in this system. However, termination of D-loop strand synthesis is persistent, indicating formation of the D-loop structure has a purpose that is required under conditions of rapid recovery of depleted mtDNA.  相似文献   

6.
7.
The D-loop resulting from limited synthesis of the newly replicated heavy (H) strand of mitochondrial DNA provides a good opportunity to examine both the origin and termination of DNA synthesis. We report here the precise determination of the 3' and 5' termini of nascent Xenopus laevis D-loop H strand. We observe two major classes of newly synthesized D-loop H strands, 1641 and 1675 nucleotides long. A stable putative secondary structure located around its 3' end is described. Analogous secondary structures are also found in the same region of the mammalian D-loop mitochondrial DNAs. Moreover a pentanucleotide (5' TACAT 3'), base-paired in these secondary structures and most often present in two copies, is conserved in all vertebrate species so far studied. The termination associated sequence previously described in mammals is part of the putative stop signal represented by the secondary structure except in man. These results show that the mechanism of arrest of H strand synthesis is common to vertebrates.  相似文献   

8.
9.
10.
11.
The major form of mouse L-cell mitochondrial DNA contains a small displacement loop at the replication origin, created by synthesis of a 550 to 670-nucleotide portion of the heavy strand. These short heavy-strand segments remain hydrogen-bonded to the parental light strand and are collectively termed 7 S mitochondrial DNA. The unique location of these 7 S mitochondrial DNAs at the heavy-strand origin suggests that they may function as primers in the synthesis of full-length heavy strands. Ribonucleotides have been detected at the 5′-end of some of these molecules, which are most likely remnants of primer RNAs. Using 5′-end labeling in vitro, we have determined that these ribonucleotides occur at several discrete positions along the nucleotide sequence of the origin region, which suggests that there may be variability in the precise initiation point of RNA priming or in the location of the switchover from RNA priming to DNA synthesis. The length of 5′-end RNA was estimated by alkali treatment of mitochondrial DNA prior to end labeling. A range of one to ten ribonucleotides was hydrolyzed from the 5′-end of some 7 S mitochondrial DNA strands. This is the first evidence of RNA priming at a eukaryotic cell DNA replication origin.  相似文献   

12.
13.
14.
15.
16.
The sequences of the displacement-loop (D-loop) regions of mitochondrial DNA (mtDNA) from mouse L cells and human KB cells have been determined and provide physical maps to aid in the identification of sequences involved in the regulation of replication and expression of mammalian mtDNA. Both D-loop regions are bounded by the genes for tRNAPhe and tRNAPro. This region contains the most highly divergent sequences in mtDNA with the exceptions of three small conserved sequence blocks near the 5' ends of D-loop strands, a 225 nucleotide conserved sequence block in the center of the D-loop strand template region, and a short sequence associated with the 3' ends of D-loop strands. A sequence similar to that associated with the 3' termini of D-loop strands overlaps one of the conserved sequence blocks near the 5' ends of D-loop strands. The large, central conserved sequence probably does not code for a protein since no open reading frames are discretely conserved. Numerous symmetric sequences and potential secondary structures exist in these sequences, but none appear to be clearly conserved between species.  相似文献   

17.
Theoretical analysis and experimental approaches by gel electrophoresis in retarding conditions allowed us to identify the presence of an intrinsic bending in the D-loop containing region of the rat mitochondrial genome. The curvature was located in the right domain of the sequence analyzed, between the origin of replication of the heavy strand and its promoter. The preliminary evidence of a specific recognition of the bent DNA with mitochondrial matrix proteins suggests a probable role of this DNA conformation in the duplication and/or expression of the mammalian mitochondrial genome.  相似文献   

18.
Pif-1 proteins are 5′→3′ superfamily 1 (SF1) helicases that in yeast have roles in the maintenance of mitochondrial and nuclear genome stability. The functions and activities of the human enzyme (hPif1) are unclear, but here we describe its DNA binding and DNA remodeling activities. We demonstrate that hPif1 specifically recognizes and unwinds DNA structures resembling putative stalled replication forks. Notably, the enzyme requires both arms of the replication fork-like structure to initiate efficient unwinding of the putative leading replication strand of such substrates. This DNA structure-specific mode of initiation of unwinding is intrinsic to the conserved core helicase domain (hPifHD) that also possesses a strand annealing activity as has been demonstrated for the RecQ family of helicases. The result of hPif1 helicase action at stalled DNA replication forks would generate free 3′ ends and ssDNA that could potentially be used to assist replication restart in conjunction with its strand annealing activity.  相似文献   

19.
Heterogeneous mitochondrial DNA D-loop sequences in bovine tissue   总被引:23,自引:0,他引:23  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号