首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
DNA-induced distamycin a fluorescence   总被引:1,自引:0,他引:1  
Summary The fluorescent properties of the antibiotic distamycin A were investigated in a range of materials including Trypanosoma cruzi epimastigotes, chicken erythrocytes, calf thymus DNA and synthetic polynucleotides using both microscopic and spectroscopic techniques. A bright blue-white fluorescence was observed from kinetoplast DNA and chromatin after treatment with distamycin A under ultraviolet (365 nm) excitation. Considerable enhancement of distamycin A fluorescence (emission peak at 455 nm under 320–340 nm excitation) was found in the presence of DNA and poly(dA-dT)·poly(dA-dT). We discuss a possible explanation for this unexpected fluorescent emission, as well as its implications for microscopic and fluorimetric studies.  相似文献   

2.
C A Grygon  T G Spiro 《Biochemistry》1989,28(10):4397-4402
Raman spectra are reported for distamycin, excited at 320 nm, in resonance with the first strong absorption band of the chromophore. Qualitative band assignments to pyrrole ring and amide modes are made on the basis of frequency shifts observed in D2O. When distamycin is dissolved in dimethyl sulfoxide or dimethylformamide, large (30 cm-1) upshifts are seen for the band assigned to amide I, while amides II and III shift down appreciably. Similar but smaller shifts are seen when distamycin is bound to poly(dA-dT) and poly(dA)-poly(dT). Examination of literature data for N-methylacetamide in various solvents shows that the amide I frequencies correlate well with solvent acceptor number but poorly with solvent donor number. This behavior implies that acceptor interactions with the C = O group are more important than donor interactions with the N-H group in polarizing the amide bond and stabilizing the zwitterionic resonance form. The resonance Raman spectra therefore imply that the distamycin C = O groups, despite being exposed to solvent, are less strongly H-bonded in the polynucleotide complexes than in aqueous distamycin, perhaps because of orienting influences of the nearby backbone phosphate groups. In this respect, the poly(dA-dT) and poly(dA)-poly(dT) complexes are the same, showing the same RR frequencies. Resonance Raman spectra were also obtained at 200-nm excitation, where modes of the DNA residues are enhanced. The spectra were essentially the same with and without distamycin, except for a perceptable narrowing of the adenine modes of poly(dA-dT), suggesting a reduction in conformational flexibility of the polymer upon drug binding.  相似文献   

3.
The optical absorption and fluorescence characteristics of 7-animo-actinomycin D were determined to evaluate its potential as a fluorescent cytochemical probe. At pH 7.0, the absorption maximum and fluorescence excitation maximum are both at 503 nm; the fluorescence emission is at 675 nm. When this compound forms complexes with DNA in solution, the absorption and fluorescence excitation maxima shift to 543 nm and the fluorescence emission shifts to 655 nm. The fluorescence quantum yield is 0.016 for 7-amino-actinomycin D free in solution and 0.01-0.02 for complexes with native DNA. The 7-amino-actinomycin D also exhibits fluorescence shifts characteristic of binding when put into solution with poly(dG-dC) poly(dG-dC), but not with poly(dI-dC) poly(dI-dC). The spectral characteristics are the same at pH 7.0 whether the solvent is 0.01 M PO4 with 0.0001 M EDTA or Earle's salts with 0.025 M N-2-hydroxyethylpiperazine-N1-2-ethanesulfonic acid.  相似文献   

4.
The inhibitory effect of the polypeptide antibiotics netropsin and distamycin A on DNA dependent nucleic acid synthesis has been shown to be related to the base composition of the template DNA. A number of natural DNA's of quite different dA·dT content as well as poly (dI-dC)·poly (dI-dC), poly (dA-dT)·poly (dA-dT), poly (dA) · poly (dT) and poly (dG)·poly(dC) has been studied as templates in DNA and in part in RNA polymerase reaction. The highest binding efficiency of netropsin existing for (dA·dT)-containing DNA polymers and the less pronounced interaction with the (dI·dC)-containing polymer shown by the melting and CD spectral behaviour of the complexes are entirely reflected in the template inactivation. The same is evident for distamycin A. However, in contrast to netropsin the antibiotic distamycin A exhibits some binding tendency to poly (dG)·poly (dC). Binding effects of a netropsin derivative to DNA and (dA·dT)-containing polymers suggest the importance of hydrogen bonds of the peptide groups in the complex formation.  相似文献   

5.
Using CD measurements we show that the interaction of netropsin to poly(dA-dT).poly(dA-dT) involves two binding modes at low ionic strength. The first and second binding modes are distinguished by a defined shift of the CD maximum and the presence of characteristic isodichroic points in the long wavelength range from 313 nm to 325 nm. The first binding mode is independent of ionic strength and is primarily determined by specific interaction to dA.dT base pairs. Employing a netropsin derivative and different salt conditions it is demonstrated that ionic contacts are essential for the second binding mode. Other alternating duplexes and natural DNA also exhibit more or less a second step in the interaction with netropsin observable at high ratio of ligand per nucleotide. The second binding mode is absent for poly(dA).poly(dT). The presence of a two-step binding mechanism is also demonstrated in the complex formation of poly(dA-dT).poly(dA-dT) with the distamycin analog consisting of pentamethylpyrrolecarboxamide. While the binding mode I of netropsin is identical with its localization in the minor groove, for binding mode II we consider two alternative interpretations.  相似文献   

6.
Abstract

Using CD measurements we show that the interaction of netropsin to poly(dA-dT)·poly(dA-dT) involves two binding modes at low ionic strength. The first and second binding modes are distinguished by a defined shift of the CD maximum and the presence of characteristic isodichroic points in the long wavelength range from 313 nm to 325 nm. The first binding mode is independent of ionic strength and is primarily determined by specific interaction to dA·dT base pairs. Employing a netropsin derivative and different salt conditions it is demonstrated that ionic contacts are essential for the second binding mode. Other alternating duplexes and natural DNA also exhibit more or less a second step in the interaction with netropsin observable at high ratio of ligand per nucleotide. The second binding mode is absent for poly(dA)·poly(dT). The presence of a two-step binding mechanism is also demonstrated in the complex formation of poly(dA-dT)·poly(dA-dT) with the distamycin analog consisting of pentamethylpyrrolecarboxamide. While the binding mode I of netropsin is identical with its localization in the minor groove, for binding mode II we consider two alternative interpretations.  相似文献   

7.
The interaction between the fluorescent dye YO (oxazole yellow) and the alternating polynucleotides [poly(dA-dT)]2[the duplex of alternating poly(dA-dT)]and [poly(dG-dC)]2[the duplex of alternating poly(dG-dC)] has been studied with optical spectroscopic techniques including absorbance, flow linear dichroism, CD, and fluorescence measurements. The principal features of the spectra are very similar for the two polynucleotide solutions, showing that YO binds quite similarly to AT and GC base pairs. From a strongly negative reduced linear dichroism (LDr) in the dye absorption band, an induced negative CD, and transfer of energy from the bases to bound YO, we conclude that at low mixing ratios YO is intercalated in both [poly(dA-dT)]2 and [poly(dG-dC)]2. At higher mixing ratios an external binding mode starts to contribute, evidenced from the appearance of an exciton CD. The conclusion that YO binds in a similar way to AT and GC base pairs should be valid also for the dimer YOYO since its YO units have been found to bind to double-stranded (dsDNA) in the same way as the YO monomer. The fluorescence properties of YO and YOYO complexed with DNA or the polynucleotides have been characterized by studying the dependence of fluorescence intensity on temperature, mixing ratio, and ionic strength. The fluorescence intensity and fluorescence lifetime of YO-DNA decrease strongly with increasing mixing ratio, whereas the fluorescence intensity of YOYO-DNA shows a weaker dependence, indicating that the quantum yield depends on the distance between the YO chromophores on the DNA chain. Further, the fluorescence intensity of YO depends on the base sequence; the quantum yield and fluorescence lifetime for YO complexed with [poly(dG-dC)]2 are about twice as large as for YO complexed with [poly(dA-dT)]2. Measurements of excitation spectra at different mixing ratios and different emission wavelengths indicate that the fluorescence of the externally bound chromophores is negligible compared to the intercalated ones. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
In this study, the spectroscopic features and microscopical applications of the fluorescent daunomycin-Al3+ complex have been analyzed. In the presence of Al3+, the absorption spectrum of daunomycin showed a deep bathochromic shift and new peaks at 529 and 566 nm, whereas the fluorescence emission was considerably modified. The emission of daunomycin alone (peak at 560 nm under optimal excitation at 470 nm) decreased continuously from 0.5 to 24h after addition of Al3+ ions, and a new emission peak appeared at 580 nm (optimal excitation at 530 nm). Under the fluorescence microscope using green exciting light, nuclei from chicken blood smears and paraffin sections of rat embryos stained with daunomycin showed a weak emission, which greatly increased after treatment with Al3+ ions. The bright and stable fluorescence of chromatin DNA induced by daunomycin-Al3+ could be a valuable labelling method in fluorescence microscopy and DNA cytochemistry.  相似文献   

9.
The conformational changes of poly(dA-dT) from random coil to ordered structure with stacked bases produce important changes in the Raman line intensities (hypochromism) when the polymer is excited under the preresonance Raman conditions (λ excitation = 300 nm). Poly(dA-dT)–RNase and poly(dA-dT)–histone H1 interactions have been studied as models of mechanisms of destabilization and stabilization by proteins of the DNA secondary structure, respectively, following this intense preresonance Raman hypochromism. In addition, the specific variation of the intensity of the 1582-cm?1 line of adenine is interpreted in terms of the interaction of the amino group with the RNase (thus involving the large groove). In the poly(dA-dT)–H1 complex, the intensity of the 1665-cm?1 line of thymine increases. This increase appears to involve the C2?O group of thymine, located in the narrow groove.  相似文献   

10.
The binding of the antibiotics netropsin and distamycin A to DNA has been studied by thermal melting, CD and sedimentation analysis. Netropsin binds strongly at antibiotic/nucleotide ratios up to at least 0.05. CD spectra obtained using DNA model polymers reveal that netropsin binds tightly to poly (dA) · poly (dT), poly (dA-dT) · poly(dA-dT) and poly (dI-dC) · poly (dI-dC) but poorly, if at all, to poly (dG) · poly (dC). Binding curves obtained with calf thymus DNA reveal one netropsin-binding site per 6.0 nucleotides (Ka=2.9 · 105 M−1); corresponding values for distamycin A are one site per 6.1 nucleotides with Ka= 11.6 · 105 M−1. Binding sites apparently involve predominantly A·T-rich sequences whose specific conformation determines their high affinity for the two antibiotics. It is suggested that the binding is stabilized primarily by hydrogen bonding and electrostatic interactions probably in the narrow groove of the DNA helix, but without intercalation. Any local structural deformation of the helix does not involve unwinding greater than approximately 3° per bound antibiotic molecule.  相似文献   

11.
The acridine dye quinacrine and its interactions with calf thymus DNA, poly(dA-dT) · poly (dA-dT), and poly (dG-dC) · poly(dG-dC) were studied by light absorption, linear dichroism, and fluorescence spectroscopy. The transition moments of quinacrine give rise to absorption bands polarized along the short axis (400–480-nm band), and the long axis (345-nm and 290-nm bands) of the molecule, respectively. Linear dichroism studies show that quinacrine intercalates into calf thymus DNA as well as into the polynucleotides, displaying fairly homogeneous binding to poly (dA-dT) · poly (dA-dT), but more than one type of intercalation site for calf thymus DNA and poly (dG-dC) · poly(dG-dC). Fluorescence spectroscopy shows that for free quinacrine the pK = 8.1 between the mono- and diprotonated states also remains unchanged in the excited state. Quinacrine bound to calf thymus DNA and polynucleotides exhibits light absorption typical for the intercalated diprotonated form. The fluorescence enhancement of quinacrine bound to poly (dA-dT) · poly(dA-dT) may be due to shielding from water interactions involving transient H-bond formation. The fluorescence quenching in poly(dG-dC) · poly(dG-dC) may be due to excited state electron transfer from guanine to quinacrine. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Circular dichroism was used to examine alterations in the secondary structure of poly(dA-dT) X poly(dA-dT) upon binding polymer X, a polycationic CD probe for aspects of DNA structure. Stable complex formation is evidenced by increasing Tm and the appearance of large extrinsic bands in the greater than 300 nm, region which increase proportionally with r (ratio of polymer charge to DNa phosphate), in the range 0.0 to 0.32. At relatively low values of r (less than .32), CD spectra of the poly(dA-dT) X poly(dA-dT)-polymer X complex show a gradual non-cooperative inversion in the long wavelength portion (275 nm) of the intrinsic band in low salt solutions suggesting structural and conformational flexibility in poly(dA-dT) X poly(dA-dT) and further implicating polymer X as a potential probe for variations in DNA secondary structure. The dinucleotide repeat configuration of poly(dA-dT) X poly(dA-dT) is presumed to play a role in the observed intrinsic CD changes. NMR data support an "alternating B" conformation for the complex.  相似文献   

13.
Some nonrigid DNA-binding antibiotics and fluorochromes that recognize adenine-thymine (AT) sequences are widely applied in biomedical research, but the microscopic use, spectral characteristics and DNA binding modes of other similar compounds have been overlooked or scarcely explored. After treatment with thioflavine T, auramine O and G, curcumin, bis-aminophenyl-oxadiazol, berenil and distamycin A, a bright DNA-dependent fluorescence reaction was found in the chromatin of interphase nuclei, meiotic and polytene chromosomes, spermatozoa heads and kinetoplasts of Trypanosoma cruzi epimastigotes. Nucleoli and basophilic cytoplasm showed low or no fluorescence; the highest emission occurred in the AT-rich kinetoplast DNA. When bound to DNA or in the presence of alpha-cyclodextrin and viscous solvents or cosolutes, nonrigid compounds revealed a striking enhancement of fluorescence. The results indicate that these new or poorly known fluorochromes bind selectively to DNA-containing structures and that the minor groove from AT-rich DNA regions could represent the specific and highly fluorescent binding site.  相似文献   

14.
Abstract

CD spectra of poly(dA-dT)· poly(dA-dT) in low salt (10–100 mM NaCl) and high salt (4–6 M CsF) are different i.e. 275 nm band gets inverted in going from low to high salt (Vorhickova et. al.MarJ. Mol. Biol. 166, 85, 1983). However, from CD spectra alone it is not possible to decipher any structural differences that might exist between the low and high salt forms of poly(dA-dT)? poly(dA-dT). Hence, we took recourse to high resolution NMR spectroscopy to understand the structural properties of poly(dA-dT)? poly(dA-dT) in low and high salt. A detailed analysis of shielding constants and extensive use of NOE studies under minimum spin diffusion conditions using C(8)-deuterated poly(dA-dT)? poly(dA-dT) enabled us to come up with the following conclusions (i) base-pairing is Watson-Crick under low and high salt conditions, (ii) under both the conditions of salt the experimental data can be explained in terms of an equilibrium blend of right and left-handed B-DNA duplexes with the left-handed form 70% and the right-handed 30%. In a 400 base pairs long poly(dA-dT)? polyidA-dT) (as used in this study), equilibrium between right and left-handed helices can also mean the existence of both helical domains in the same molecule with fast interchange between these domains or/and unhindered motion/propagation of these domains along the helix axis, (iii) However, there are other structural differences between the low and high salt forms of poly(dA-dT) ? poly(dA-dT); under the low salt condition, right-and left-handed B-DNA duplexes have mononucleotide as a structural repeat while under the high salt conditions, right-and left-handed B-DNA duplexes have dinucleotide as a structural repeat. In the text we provide the listing of torsion angles for the low and high salt structural forms, (iv) Salt (CsF) induced structural transition in poly(dA-dT)? poly(dA-dT) occurs without any breakage of Watson- Crick pairing, (v) The high salt form of poly(dA-dT)? poly(dA-dT) is not the left-handed Z-helix.

Although the results above from NMR data are quite unambiguous, a question still remains i.e. what does the salt (CsF) induced change in the CD spectra of poly(dA-dT)? poly(dA-dT) really indicate? Interestingly, we could show that the salt (CsF) induced change in poly(dA-dT)? poly(dA-dT) is quite similar to that caused by a basic polypeptide viz. poly-L(Lys2-Ala)n i.e. both the agents induced a ψ-structure in DNA. And it was also demonstrated that the changes in poly(dA-dT)? poly(dA-dT) as caused by CsF and poly-L-(Lys2-Ala)n could be reverted back by ethidium bromide-a relaxing agent.

To minimize complications from spin diffusion in this study we have used very small presaturation pulse lengths and C(8)-deuterated poly(dA-dT)? poly(dA-dT) of 400 ± 150 bp long. Even though deuteration of a primary site of diffusion such as C(8)H substantially decreases diffusion, in order to make sure that our conclusions are not compromised by possible diffusion in such a long fragment under small presaturation times, we have repeated our experiments using the six base pair long duplex of d(A-T-A-T-A-T) and found the results to be strikingly similar to that from the polymer.  相似文献   

15.
Photoaddition between adjacent adenine and thymine bases occurs, with a quantum yield of approximately 5 X 10(-4) mol einstein-1, when d(T-A), dT-A, d(pT-A), d(T-A-T), d(T-A-T-A) and poly(dA-dT) are irradiated, at 254 nm, in aqueous solution. The photoadduct thus formed is specifically degraded by acid to the fluorescent heterocyclic base 6-methylimidazo[4,5-b]pyridin-5-one (6-MIP) with retention of C(8) of adenine and the methyl group of thymine. This reaction, coupled with either spectrofluorimetric or radiochemical assay of 6-MIP isolated by high voltage paper electrophoresis, has been used to demonstrate formation of the adenine-thymine photoadduct on UV irradiation of poly(dA-dT).poly(dA-dT) and both native and denatured DNA from calf thymus and E. coli. Estimated quantum yields for this new type of photoreaction in DNA show that it is substantially quenched by base pairing. Possible biological implications of the photoreaction are discussed.  相似文献   

16.
New fluorescent derivatives of dinucleoside monophosphates, (5'-AmNS)UpA/ApU/GpU/CpA, with a fluorophore, 1-aminonaphthalene-5-sulfonic acid (AmNS), attached to the first nucleotide of the dinucleoside monophosphates via a 5'-secondary amine linkage were synthesized in good yield. The chemical structure of (5'-AmNS)ApU was proved by the phosphodiesterase digestion followed by Whatman No. 3MM paper chromatographic and spectroscopic analysis of the digested products. The ability of these analogs to be incorporated into the 5' terminus of RNA chain forming fluorescent oligonucleotides by Escherichia coli RNA polymerase was studied in the presence of a synthetic DNA template. The enzymatic reaction of (5'-AmNS)UpA and [3H]UTP in the presence of poly(dA-dT) yielded (5'-AmNS)UpAp[3H]U in greater than 30% yield with the Km values of 5 and 2.5 microM and Vmax values of 17 and 25 nmol/min/mg of enzyme for (5'-AmNS)UpA and UpA, respectively. The structure of this fluorescent trinucleotide was identified by RNase A digestion and paper chromatographic analysis of the digested products. (5'-AmNS)UpA or (5'-AmNS)ApU exhibits two absorption maxima around 270 and 340-350 nm and a fluorescent emission maximum at 445 nm when excited at 340 nm. These spectral characteristics permit their use as energy donors for the transfer of energy to the intrinsic cobalt of the cobalt-substituted RNA polymerases. Upon hydrolysis of the phosphodiester bond of these analogs by venom phosphodiesterase, the absorption at 340 and 270 nm increased by 5 and 20%, respectively, while their fluorescence at 445 nm was enhanced by 25%. Thus, these analogs can be used for studying the dynamics of initiation and elongation reactions catalyzed by DNA-dependent RNA polymerases by absorption and fluorescence spectroscopies.  相似文献   

17.
The base dependent binding of the cytotoxic alkaloid palmatine to four synthetic polynucleotides, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) was examined by competition dialysis, spectrophotometric, spectrofluorimetric, thermal melting, circular dichroic, viscometric and isothermal titration calorimetric (ITC) studies. Binding of the alkaloid to various polynucleotides was dependent upon sequences of base pairs. Binding data obtained from absorbance measurements according to neighbour exclusion model indicated that the intrinsic binding constants decreased in the order poly(dA).poly(dT)>poly(dA-dT).poly(dA-dT)>poly(dG-dC).poly(dG-dC)>poly(dG).poly(dC). This affinity was also revealed by the competition dialysis, increase of steady state fluorescence intensity, increase in fluorescence quantum yield, stabilization against thermal denaturation and perturbations in circular dichroic spectrum. Among the polynucleotides, poly(dA).poly(dT) showed positive cooperativity at binding values lower than r=0.05. Viscosity studies revealed that in the strong binding region, the increase of contour length of DNA depended strongly on the sequence of base pairs being higher for AT polymers and induction of unwinding-rewinding process of covalently closed superhelical DNA. Isothermal titration calorimetric data showed a single entropy driven binding event in the AT homo polymer while that with the hetero polymer involved two binding modes, an entropy driven strong binding followed by an enthalpy driven weak binding. These results unequivocally established that the alkaloid palmatine binds strongly to AT homo and hetero polymers by mechanism of intercalation.  相似文献   

18.
亚油酸体系脂质过氧化引起的DNA损伤研究   总被引:5,自引:3,他引:2  
用含两个双键的不饱和脂肪酸-亚油酸作为模型化合物,分析其过氧化程度,同时检测了由于脂质过氧化而引起的DNA损伤,结果表明:在脂质过氧化过程中,DNA与亚油酸过氧化产物反应生成一种荧光物质、其最大激发波长315nm最大发射波长410nm并随着氧化时间增加而增加,与此同时,双链DNA百分含量明显下降,DNA-溴乙锭复合物荧光显著降低,反映了DNA二级结构受到破坏.上述结果揭示了脂质过氧化产物在自由基引起DNA的损伤中可能起重要作用  相似文献   

19.
DNA condensation was only observed after the addition of Hoechst 33258 (H33258) among various types of DNA binding molecules. The morphological structural change of DNA was found to depend on the H33258 concentration. On comparison of fluorescence spectrum measurements with AFM observation, it was found that fluorescence quenching of DNA-H33258 complexes occurred after DNA condensation. Additionally, we showed that DNA condensation by H33258 was independent of sequence selectivity or binding style using two types of polynucleotides, i.e. poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC). Moreover, it was concluded that the condensation was caused by a strong hydrophobic interaction, because the dissolution of condensed DNA into its native form on dimethyl sulfoxide (DMSO) treatment was observed. This study is the first report, which defines the DNA condensation mechanism of H33258, showing the correlation between the single molecule scale morphology seen on AFM observation and the bulky scale morphology observed on fluorescence spectroscopy.  相似文献   

20.
A novel and simple method for detection of mutations in DNA oligonucleotides using a double-stranded DNA specific dye (SYBR Green I) is reported. The SYBR Green I is bound specifically with a duplex DNA oligonucleotide (intercalation). This intercalation induces fluorescent emission at 525 nm with excitation at 494 nm. The fluorescence intensity of mismatched oligonucleotides (40-mer) decreases (by more than 13%) in comparison with the perfectly matched oligonucleotides. Moreover, fluorescence measurement of the SYBR Green I can distinguish various types of single-base mismatches, except for the T-G terminal mismatch. The addition of 20% (v/v) formamide, however, to an oligonucleotide solution improved the sensitivity of detection and also enabled the detection of the T-G terminal-mismatch. This detection method requires only a normal fluorescence spectrophotometer, an inexpensive dye and just 50 pmol of sample DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号