首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The ANR1 MADS-box gene in Arabidopsis is a key gene involved in regulating lateral root development in response to the external nitrate supply. There are five ANR1-like genes in Oryza sativa, OsMADS23, OsMADS25, OsMADS27, OsMADS57 and OsMADS61, all of which belong to the AGL17 clade. Here we have investigated the responsiveness of these genes to fluctuations in nitrogen (N), phosphorus (P) and sulfur (S) mineral nutrient supply. The MADS-box genes have been shown to have a range of responses to the nutrient supply. The expression of OsMADS61 was transiently induced by N deprivation but was not affected by re-supply with various N sources. The expression of OsMADS25 and OsMADS27 was induced by re-supplying with NO3 and NH4NO3, but downregulated by NH4 +. The expression of OsMADS57 was significantly downregulated by N starvation and upregulated by 3 h NO3 re-supply. OsMADS23 was the only gene that showed no response to either N starvation nor NO3 re-supply. OsMADS57 was the only gene not regulated by P fluctuation whereas the expression of OsMADS23, OsMADS25 and OsMADS27 was downregulated by P starvation and P re-supply. In contrast, all five ANR1-related genes were significantly upregulated by S starvation. Our results also indicated that there were interactions among nitrate, sulphate and phosphate transporters in rice.  相似文献   

2.
3.
为了解MADS-box基因在向日葵(Helianthus annuus)花发育过程中的作用,采用RT-PCR技术克隆了1个MADS-box基因新成员HAM23-like,开放阅读框为831bp,编码276个氨基酸,相对分子量为30.52k D,理论等电点为9.42。系统发育分析表明,HAM23-like与拟南芥的AGL18聚于同一分支,具有较近的亲缘关系。qRT-PCR分析表明,HAM23-like基因在花和成熟果实(籽粒饱满期)中的表达量较高;HAM23-like在开花当天的雄蕊中的表达量最高;随着花的发育,HAM 23-like表达量逐渐升高,在开花后5 d (果实形成早期)达到最高表达水平。因此,推断HAM23-like基因可能与向日葵花器官后期发育和瘦果早期发育相关。  相似文献   

4.
5.
6.
7.
8.
9.
10.
MADS box genes expressed in developing inflorescences of rice and sorghum   总被引:16,自引:0,他引:16  
With the aim of elucidating the complex genetic system controlling flower morphogenesis in cereals, we have characterized two rice and two sorghum MADS box genes isolated from cDNA libraries made from developing inflorescences. The rice clones OsMADS24 and OsMADS45, which share high homology with the Arabidopsis AGL2 and AGL4 MADS box genes, are expressed in the floral meristem, in all the primordia, and in mature floral organs. High expression levels have also been found in developing kernels. The sorghum clone SbMADS1 is also homologous to AGL2 and AGL4: expression analysis and mapping data suggest that it is the ortholog of OsMADS24. The pattern of expression of SbMADS2, the other sorghum MADS box gene, suggests that it may play a role as a meristem identity gene, as does AP1 in Arabidopsis, to which it shows considerable homology. The four genes have been mapped on a rice RFLP genetic map: the results are discussed in terms of synteny among cereals. Received: 25 April 1996 / Accepted: 29 August 1996  相似文献   

11.
12.
13.
14.
15.
16.
To investigate ternary MADS protein complexes involved in the regulation of floral organ development in rice, we identified MADS proteins interacting with the class B MADS heterodimers, OsMADS16-OsMADS4 and OsMADS16-OsMADS2, using yeast three-hybrid assay. The class B heterodimers interacted with OsMADS6, 7, 8, 14 and 17, which belong to AP1-like, SEP-like or AGL6-like MADS proteins, generating ternary complexes. The entire region of the K and C domains of OsMADS4 was required for the formation of the OsMADS16-OsMADS4-OsMADS6 and OsMADS16-OsMADS4-OsMADS7 ternary complexes. Analysis results of transgenic plants concomitantly suppressing OsMADS4 and OsMADS6, together with the results of previous studies, suggest that the OsMADS16-OsMADS4-OsMADS6 ternary complex plays an important role in floral development, especially lodicule development.  相似文献   

17.
Characterization of tobacco MADS-box genes involved in floral initiation   总被引:9,自引:0,他引:9  
Jang S  An K  Lee S  An G 《Plant & cell physiology》2002,43(2):230-238
  相似文献   

18.
Kang HG  An G 《Plant cell reports》2005,24(2):120-126
OsMADS4, a rice MADS-box gene, is a member of the GLO/PI family that specifies the identity of petals and stamens in combination with other MADS-box genes. We report here the ectopic expression of OsMADS4 fused to the CaMV 35S promoter in tobacco plants. Transgenic plants carrying the CaMV 35S promoter::OsMADS4 construct generated mutant flowers with a mosaic carpel, in which the tissue around the nectary was elongated and the styles reduced. The fruits were distorted, but viable seeds did develop. These phenotypes mimicked those of transgenic tobacco plants that ectopically express Antirrhinum GLO. However, unlike GLO, OsMADS4 did not cause any homeotic change in the first whorl of the transgenic flowers. These results suggest that the functional role of OsMADS4 in the outer whorls has diverged from that of its dicot counterparts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号