首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermal inactivation experiments were carried out to assess the utility of a recently optimized phage amplification assay to accurately enumerate viable Mycobacterium avium subsp. paratuberculosis cells in milk. Ultra-heat-treated (UHT) whole milk was spiked with large numbers of M. avium subsp. paratuberculosis organisms (106 to 107 CFU/ml) and dispensed in 100-μl aliquots in thin-walled 200-μl PCR tubes. A Primus 96 advanced thermal cycler (Peqlab, Erlangen, Germany) was used to achieve the following time and temperature treatments: (i) 63°C for 3, 6, and 9 min; (ii) 68°C for 20, 40, and 60 s; and (iii) 72°C for 5, 10, 15, and 25 s. After thermal stress, the number of surviving M. avium subsp. paratuberculosis cells was assessed by both phage amplification assay and culture on Herrold''s egg yolk medium (HEYM). A high correlation between PFU/ml and CFU/ml counts was observed for both unheated (r2 = 0.943) and heated (r2 = 0.971) M. avium subsp. paratuberculosis cells. D and z values obtained using the two types of counts were not significantly different (P > 0.05). The D68°C, mean D63°C, and D72°C for four M. avium subsp. paratuberculosis strains were 81.8, 9.8, and 4.2 s, respectively, yielding a mean z value of 6.9°C. Complete inactivation of 106 to 107 CFU of M. avium subsp. paratuberculosis/ml milk was not observed for any of the time-temperature combinations studied; 5.2- to 6.6-log10 reductions in numbers were achieved depending on the temperature and time. Nonlinear thermal inactivation kinetics were consistently observed for this bacterium. This study confirms that the optimized phage assay can be employed in place of conventional culture on HEYM to speed up the acquisition of results (48 h instead of a minimum of 6 weeks) for inactivation experiments involving M. avium subsp. paratuberculosis-spiked samples.Due to the possible association of Mycobacterium avium subsp. paratuberculosis, the causative agent of Johne''s disease in cattle, with Crohn''s disease in humans, the consumption of milk and dairy products contaminated with this pathogenic bacterium has been suggested as a possible source of infection for humans (18). So far, the presence of viable M. avium subsp. paratuberculosis cells has been reported for pasteurized cows'' milk (6, 14, 23) and various cheeses (1, 4, 19). However, the rapid detection of viable M. avium subsp. paratuberculosis cells in food remains problematic. Culture is considered the gold standard method of demonstrating the viability of M. avium subsp. paratuberculosis cells, yet this approach is far from perfect and is not really appropriate for risk assessment purposes. First, M. avium subsp. paratuberculosis is a fastidious, slow-growing bacterium requiring a long incubation period before producing visible colonies (4 to 6 weeks minimum). Second, there is no selective growth medium for M. avium subsp. paratuberculosis, and chemical decontamination is required before plating samples on solid Herrold''s egg yolk medium (HEYM). This decontamination step, which aims to inactivate the competitive microflora, is often not totally effective, and cultures can be overgrown quickly by non-acid-fast bacteria during incubation. Third, the decontamination step has been demonstrated to have adverse effects on M. avium subsp. paratuberculosis viability (5). This extends the time required for primary isolation (to up to 20 weeks) and undoubtedly underestimates the number of cells originally present in the sample.Recently, we reported an optimization of the conditions of a commercially available phage amplification assay involving D29 mycobacteriophage (FASTPlaqueTB assay; Biotec Laboratories, Ipswich, United Kingdom) to permit accurate enumeration of M. avium subsp. paratuberculosis cells in milk (7). The main advantage of using phage amplification to detect M. avium subsp. paratuberculosis is that the number of viable cells can be estimated quickly, within 24 to 48 h, based on the count of plaques produced when D29-infected cells burst on a lawn of M. smegmatis indicator cells in an agar plate. Moreover, there is no need to carry out chemical decontamination of the sample before the phage assay because the D29 phage will infect only viable mycobacterial cells, and thus the detection sensitivity of the test is enhanced. For these reasons, the optimized phage amplification method may be used to speed up the acquisition of results during inactivation experiments involving samples artificially spiked with M. avium subsp. paratuberculosis.So far, the optimized phage amplification assay has been applied for the detection of viable M. avium subsp. paratuberculosis cells in spiked broth and milk samples. However, the performance of the test in assessing the viability of M. avium subsp. paratuberculosis cells subjected to physical or chemical treatments, which are likely to comprise mixtures of viable cells, injured/stressed cells, and dead cells, still needed to be investigated. For this reason, thermal inactivation experiments were carried out in order to assess the utility of this optimized phage assay for use instead of conventional culture for research involving artificially spiked milk samples. The main objectives of this study were to evaluate the correlation between colony and plaque counts for heat-treated M. avium subsp. paratuberculosis and to demonstrate a quicker acquisition of accurate results than that obtainable by culture.  相似文献   

2.
A light cycler-based real-time PCR (LC-PCR) assay that amplifies the F57 sequence of Mycobacterium avium subsp. paratuberculosis was developed. This assay also includes an internal amplification control template to monitor the amplification conditions in each reaction. The targeted F57 sequence element is unique for M.avium subsp. paratuberculosis and is not known to exist in any other bacterial species. The assay specificity was demonstrated by evaluation of 10 known M. avium subsp. paratuberculosis isolates and 33 other bacterial strains. The LC-PCR assay has a broad linear range (2 x 10(1) to 2 x10(6) copies) for quantitative estimation of the number of M. avium subsp. paratuberculosis F57 target copies in positive samples. To maximize the assay's detection sensitivity, an efficient strategy for isolation of M. avium subsp. paratuberculosis DNA from spiked milk samples was also developed. The integrated procedure combining optimal M. avium subsp. paratuberculosis DNA isolation and real-time PCR detection had a reproducible detection limit of about 10 M. avium subsp. paratuberculosis cells per ml when a starting sample volume of 10 ml of M. avium subsp. paratuberculosis-spiked milk was analyzed. The entire process can be completed within a single working day and is suitable for routine monitoring of milk samples for M. avium subsp. paratuberculosis contamination. The applicability of this protocol for naturally contaminated milk was also demonstrated using milk samples from symptomatic M. avium subsp. paratuberculosis-infected cows, as well as pooled samples from a dairy herd with a confirmed history of paratuberculosis.  相似文献   

3.
Using fluorescence resonance energy transfer technology and Lightcycler analysis, we developed a real-time PCR assay with primers and probes designed by using IS900 which allowed rapid detection of Mycobacterium avium subsp. paratuberculosis DNA in artificially contaminated milk. Initially, the PCR parameters (including primer and probe levels, assay volume, Mg2+ concentration, and annealing temperature) were optimized. Subsequently, the quantitative ability of the assay was tested and was found to be accurate over a broad linear range (3 × 106 to 3 × 101 copies). The assay sensitivity when purified DNA was used was determined to be as low as five copies, with excellent reproducibility. A range of DNA isolation strategies was developed for isolating M. avium subsp. paratuberculosis DNA from spiked milk, the most effective of which involved the use of 50 mM Tris HCl, 10 mM EDTA, 2% Triton X-100, 4 M guanidinium isothiocyante, and 0.3 M sodium acetate combined with boiling, physical grinding, and nucleic acid spin columns. When this technique was used in conjunction with the real-time PCR assay, it was possible to consistently detect <100 organisms per ml of milk (equivalent to 2,000 organisms per 25 ml). Furthermore, the entire procedure (extraction and PCR) was performed in less than 3 h and was successfully adapted to quantify M. avium subsp. paratuberculosis in spiked milk from heavily and mildly contaminated samples.  相似文献   

4.
In order to introduce specificity for Mycobacterium avium subsp. paratuberculosis prior to a phage amplification assay, various magnetic-separation approaches, involving either antibodies or peptides, were evaluated in terms of the efficiency of capture (expressed as a percentage) of M. avium subsp. paratuberculosis cells and the percentage of nonspecific binding by other Mycobacterium spp. A 50:50 mixture of MyOne Tosylactivated Dynabeads coated with the chemically synthesized M. avium subsp. paratuberculosis-specific peptides biotinylated aMp3 and biotinylated aMptD (i.e., peptide-mediated magnetic separation [PMS]) proved to be the best magnetic-separation approach for achieving 85 to 100% capture of M. avium subsp. paratuberculosis and minimal (<1%) nonspecific recovery of other Mycobacterium spp. (particularly if beads were blocked with 1% skim milk before use) from broth samples containing 103 to 104 CFU/ml. When PMS was coupled with a recently optimized phage amplification assay and used to detect M. avium subsp. paratuberculosis in 50-ml volumes of spiked milk, the mean 50% limit of detection (LOD50) was 14.4 PFU/50 ml of milk (equivalent to 0.3 PFU/ml). This PMS-phage assay represents a novel, rapid method for the detection and enumeration of viable M. avium subsp. paratuberculosis organisms in milk, and potentially other sample matrices, with results available within 48 h.The prospect of being able to detect viable Mycobacterium avium subsp. paratuberculosis organisms in food or veterinary samples within 48 h using a commercially available phage amplification assay (FASTPlaqueTB assay; Biotec Laboratories Limited, Ipswich, United Kingdom), rather than waiting weeks for conventional culture results, is an exciting recent development (7, 8, 26). However, the mycobacteriophage used in the phage amplification assay has a broader mycobacterial host range than M. avium subsp. paratuberculosis alone (23). Consequently, plaques obtained when naturally infected, rather than artificially spiked, samples are tested may not necessarily emanate from M. avium subsp. paratuberculosis alone if other Mycobacterium spp. are also present in the sample. Some additional selective step prior to phage infection, such as magnetic separation (12), is needed to introduce selectivity for M. avium subsp. paratuberculosis.Magnetic separation (MS) has become a routine method in food and veterinary microbiology laboratories and is commonly used in combination with culture or molecular methods for the detection and isolation of pathogenic bacteria such as Listeria monocytogenes (13, 31), Salmonella spp. (22, 25), and Escherichia coli O157:H7 in both the food (15) and veterinary (20) clinical sample testing context. Magnetic-separation methods selectively separate the target bacterium from other, nontarget microorganisms and inhibitory sample components while concentrating the target bacterial cells into a smaller volume. Collectively, these properties of magnetic separation enhance the analytical specificity and sensitivity of the subsequent detection method, which can be culture, PCR, microscopy, an antigen detection immunoassay, or a phage assay. The latter is our proposed endpoint detection method. The combination of phage amplification and MS is not a new concept. Immunomagnetic (IMS)-phage assays for Salmonella enterica serovar Enteritidis and Escherichia coli O157:H7 have been described previously (5, 6).The original IMS approach for M. avium subsp. paratuberculosis, employing a polyclonal anti-M. avium subsp. paratuberculosis antibody, was described by Grant et al. (9). This IMS approach showed good detection specificity for M. avium subsp. paratuberculosis as well as high detection sensitivity, because it was able to recover ≤10 CFU/ml directly from both spiked broth and milk. Its subsequent use in combination with IS900 PCR enhanced the speed of detection of M. avium subsp. paratuberculosis (10), and IMS-PCR was able to detect as few as 103 CFU/50 ml, 1 to 2 log10 units lower than the number detected by IS900 PCR applied directly to milk. However, our experience of using this and another polyclonal-antibody-based IMS method (Pathatrix PM-50 beads; Matrix Microscience, Newmarket, England) in conjunction with culture on Herrold''s egg yolk medium for the isolation of M. avium subsp. paratuberculosis from mixed-broth cultures from milk (unpublished data) and from raw-milk cheeses (27) has been that these polyclonal-antibody-based IMS methods lack sufficient specificity for M. avium subsp. paratuberculosis, and that consequently, nontarget bacteria, which bind nonspecifically to the beads, often overgrow this bacterium in culture. With other food-borne pathogens, an appropriate selective culture medium can be employed after IMS to prevent the outgrowth of any nontarget bacteria. Unfortunately, no truly selective culture medium exists for M. avium subsp. paratuberculosis at present, so specificity for this bacterium via magnetic separation must be achieved by optimizing the types of bead and capture ligands used.A monoclonal-antibody-based IMS method for M. avium subsp. paratuberculosis was reported by Metzger-Boddien et al. (17). Other groups have been attempting to produce monoclonal antibodies for application in IMS (3, 4). However, as an alternative to either polyclonal or monoclonal antibodies for the capture of M. avium subsp. paratuberculosis, new magnetic-separation approaches involving an M. avium subsp. paratuberculosis-specific peptide, aMp3 (30) or aMptD (28), have been described (i.e., peptide-mediated magnetic separation [PMS]). The first peptide (aMp3) was screened from nine recombinant bacteriophages specifically binding M. avium subsp. paratuberculosis that were produced using a commercially available phage-peptide display library (30). The second peptide, aMptD, was identified by biopanning of the M. avium subsp. paratuberculosis-specific ABC transponder operon (mpt) (29). The two chemically synthesized peptides, aMp3 and aMptD, were linked via carbodiimide to paramagnetic beads and were used in peptide-based capture PCR. Both PMS methods were reported to have high selectivity for M. avium subsp. paratuberculosis (i.e., no cross-reaction with other Mycobacterium spp.), and the analytical detection sensitivity, 5 ×102 CFU per ml (28), was comparable to the results previously reported by Grant et al. (10).As with other pathogenic bacteria that are likely to be present in raw milk, low numbers of viable M. avium subsp. paratuberculosis organisms are expected to be encountered in milk and dairy products (2, 11, 24). For other food-borne pathogens, such as Listeria monocytogenes (31), Salmonella spp. (22), and Escherichia coli O157:H7 (15), magnetic separation is generally applied after an enrichment culture step. This enrichment culture step aims to dilute food components known to be growth/PCR inhibitors, revive stressed or injured cells, and boost the numbers of the target bacterium (18, 21), so that magnetic separation and subsequent detection are likely to be more successful. Unfortunately, a prior enrichment culture step is impractical for M. avium subsp. paratuberculosis, since it would take too long, due to the slow-growing nature of this bacterium; thus, MS really needs to be applied directly to the sample. Consequently, any IMS or PMS method for M. avium subsp. paratuberculosis must achieve close to 100% capture efficiency, with minimal nonspecific binding by other mycobacteria, to limit false-negative or false-positive results. Capture efficiency is a measure of the completeness of capture of the original population of target cells present in the sample. Analytical specificity refers to the ability of an assay to measure one particular organism or substance, rather than others, in a sample (19). Therefore, the objectives of this study were (i) to identify the best magnetic-separation approach for the isolation of M. avium subsp. paratuberculosis from milk, in terms of capture efficiency and the percentage of nonspecific binding, by comparing as many paramagnetic-bead-coating antigen combinations as possible and (ii) to evaluate the potential use of the best magnetic-separation approach in conjunction with the previously optimized phage assay (7) as a novel IMS- or PMS-phage assay for the detection of M. avium subsp. paratuberculosis in milk.  相似文献   

5.
6.
The FASTPlaqueTB assay is an established diagnostic aid for the rapid detection of Mycobacterium tuberculosis from human sputum samples. Using the FASTPlaqueTB assay reagents, viable Mycobacterium avium subsp. paratuberculosis cells were detected as phage plaques in just 24 h. The bacteriophage used does not infect M. avium subsp. paratuberculosis alone, so to add specificity to this assay, a PCR-based identification method was introduced to amplify M. avium subsp. paratuberculosis-specific sequences from the DNA of the mycobacterial cell detected by the phage. To give further diagnostic information, a multiplex PCR method was developed to allow simultaneous amplification of either M. avium subsp. paratuberculosis or M. tuberculosis complex-specific sequences from plaque samples. Combining the plaque PCR technique with the phage-based detection assay allowed the rapid and specific detection of viable M. avium subsp. paratuberculosis in milk samples in just 48 h.  相似文献   

7.
Paratuberculosis is an infectious, chronic, and incurable disease that affects ruminants, caused by Mycobacterium avium subsp. paratuberculosis. This bacterium is shed primarily through feces of infected cows but can be also excreted in colostrum and milk and might survive pasteurization. Since an association of genomic sequences of M. avium subsp. paratuberculosis in patients with Crohn''s disease has been described; it is of interest to rapidly detect M. avium subsp. paratuberculosis in milk for human consumption. IS900 insertion is used as a target for PCR amplification to identify the presence of M. avium subsp. paratuberculosis in biological samples. Two target sequences were selected: IS1 (155 bp) and IS2 (94 bp). These fragments have a 100% identity among all M. avium subsp. paratuberculosis strains sequenced. M. avium subsp. paratuberculosis was specifically concentrated from milk samples by immunomagnetic separation prior to performing PCR. The amplicons were characterized using DNA methylase Genotyping, i.e., the amplicons were methylated with 6-methyl-adenine and digested with restriction enzymes to confirm their identity. The methylated amplicons from 100 CFU of M. avium subsp. paratuberculosis can be visualized in a Western blot format using an anti-6-methyl-adenine monoclonal antibody. The use of DNA methyltransferase genotyping coupled to a scintillation proximity assay allows for the detection of up to 10 CFU of M. avium subsp. paratuberculosis per ml of milk. This test is rapid and sensitive and allows for automation and thus multiple samples can be tested at the same time.  相似文献   

8.
A peptide-mediated capture PCR for the detection of Mycobacterium avium subsp. paratuberculosis in bulk milk samples was developed and characterized. Capture of the organism was performed using peptide aMptD, which had been shown to bind to the M. avium subsp. paratuberculosis MptD protein (J. Stratmann, B. Strommenger, R. Goethe, K. Dohmann, G. F. Gerlach, K. Stevenson, L. L. Li, Q. Zhang, V. Kapur, and T. J. Bull, Infect. Immun. 72:1265-1274, 2004). Consistent expression of the MptD receptor protein and binding of the aMptD ligand were demonstrated by capturing different Mycobacterium avium subsp. paratuberculosis type I and type II strains and subsequent PCR analysis using ISMav2-based primers. The analytical sensitivity of the method was determined to be 5 × 102 CFU ml−1 for artificially contaminated milk. The specificity of aMptD binding was confirmed by culture and competitive capture assays, showing selective enrichment of M. avium subsp. paratuberculosis (at a concentration of 5 × 102 CFU ml−1) from samples containing 100- and 1,000-fold excesses of other mycobacterial species, including M. avium subsp. avium and M. avium subsp. hominissuis. The aMptD-mediated capture of M. avium subsp. paratuberculosis using paramagnetic beads, followed by culture, demonstrated the ability of this approach to capture viable target cells present in artificially contaminated milk. Surface plasmon resonance experiments revealed that the aMptD peptide is a high-affinity ligand with a calculated association rate constant of 9.28 × 103 and an association constant of 1.33 × 109. The potential use of the method on untreated raw milk in the field was investigated by testing 423 bulk milk samples obtained from different dairy farms in Germany, 23 of which tested positive. Taken together, the results imply that the peptide-mediated capture PCR might present a suitable test for paratuberculosis screening of dairy herds, as it has an analytical sensitivity sufficient for detection of M. avium subsp. paratuberculosis in bulk milk samples under field conditions, relies on a defined and validated ligand-receptor interaction, and is adaptable to routine diagnostic laboratory automation.  相似文献   

9.
The enteropathy called paratuberculosis (PTB), which mainly affects ruminants and has a worldwide distribution, is caused by Mycobacterium avium subsp. paratuberculosis. This disease significantly reduces the cost-effectiveness of ruminant farms, and therefore, reliable and rapid detection methods are needed to control the spread of the bacterium in livestock and in the environment. The aim of this study was to identify a specific and sensitive combination of DNA extraction and amplification to detect M. avium subsp. paratuberculosis in feces. Negative bovine fecal samples were inoculated with increasing concentrations of two different bacterial strains (field and reference) to compare the performance of four extraction and five amplification protocols. The best results were obtained using the JohnePrep and MagMax extraction kits combined with an in-house triplex real-time PCR designed to detect IS900, ISMap02 (an insertion sequence of M. avium subsp. paratuberculosis present in 6 copies per genome), and an internal amplification control DNA simultaneously. These combinations detected 10 M. avium subsp. paratuberculosis cells/g of spiked feces. The triplex PCR detected 1 fg of genomic DNA extracted from the reference strain K10. The performance of the robotized version of the MagMax extraction kit combined with the IS900 and ISMap02 PCR was further evaluated using 615 archival fecal samples from the first sampling of nine Friesian cattle herds included in a PTB control program and followed up for at least 4 years. The analysis of the results obtained in this survey demonstrated that the diagnostic method was highly specific and sensitive for the detection of M. avium subsp. paratuberculosis in fecal samples from cattle and a very valuable tool to be used in PTB control programs.  相似文献   

10.
The effect of various pasteurization time-temperature conditions with and without homogenization on the viability of Mycobacterium avium subsp. paratuberculosis was investigated using a pilot-scale commercial high-temperature, short-time (HTST) pasteurizer and raw milk spiked with 101 to 105 M. avium subsp. paratuberculosis cells/ml. Viable M. avium subsp. paratuberculosis was cultured from 27 (3.3%) of 816 pasteurized milk samples overall, 5 on Herrold's egg yolk medium and 22 by BACTEC culture. Therefore, in 96.7% of samples, M. avium subsp. paratuberculosis had been completely inactivated by HTST pasteurization, alone or in combination with homogenization. Heat treatments incorporating homogenization at 2,500 lb/in2, applied upstream (as a separate process) or in hold (at the start of a holding section), resulted in significantly fewer culture-positive samples than pasteurization treatments without homogenization (P < 0.001 for those in hold and P < 0.05 for those upstream). Where colony counts were obtained, the number of surviving M. avium subsp. paratuberculosis cells was estimated to be 10 to 20 CFU/150 ml, and the reduction in numbers achieved by HTST pasteurization with or without homogenization was estimated to be 4.0 to 5.2 log10. The impact of homogenization on clump size distribution in M. avium subsp. paratuberculosis broth suspensions was subsequently assessed using a Mastersizer X spectrometer. These experiments demonstrated that large clumps of M. avium subsp. paratuberculosis cells were reduced to single-cell or “miniclump” status by homogenization at 2,500 lb/in2. Consequently, when HTST pasteurization was being applied to homogenized milk, the M. avium subsp. paratuberculosis cells would have been present as predominantly declumped cells, which may possibly explain the greater inactivation achieved by the combination of pasteurization and homogenization.  相似文献   

11.
Paratuberculosis, or Johne''s disease, in cattle is caused by Mycobacterium avium subsp. paratuberculosis, which has recently been suspected to be transmitted through dust. This longitudinal study on eight commercial M. avium subsp. paratuberculosis-positive dairy farms studied the relationship between the number of cows with M. avium subsp. paratuberculosis antibody-positive milk and the presence of viable M. avium subsp. paratuberculosis in settled-dust samples, including their temporal relationship. Milk and dust samples were collected in parallel monthly for 2 years. M. avium subsp. paratuberculosis antibodies in milk were measured by enzyme-linked immunosorbent assay (ELISA) and used as a proxy for M. avium subsp. paratuberculosis shedding. Settled-dust samples were collected by using electrostatic dust collectors (EDCs) at six locations in housing for dairy cattle and young stock. The presence of viable M. avium subsp. paratuberculosis was identified by liquid culture and PCR. The results showed a positive relationship (odds ratio [OR], 1.2) between the number of cows with ELISA-positive milk and the odds of having positive EDCs in the same airspace as the adult dairy cattle. Moreover, the total number of lactating cows also showed an OR slightly above 1. This relationship remained the same for settled-dust samples collected up to 2 months before or after the time of milk sampling. The results suggest that removal of adult cows with milk positive for M. avium subsp. paratuberculosis-specific antibody by ELISA might result in a decrease in the presence of viable M. avium subsp. paratuberculosis in dust and therefore in the environment. However, this decrease is likely delayed by several weeks at least. In addition, the data support the notion that M. avium subsp. paratuberculosis exposure of young stock is reduced by separate housing.  相似文献   

12.
Raw milk was artificially contaminated with declumped cells of Mycobacterium avium subsp. paratuberculosis at a concentration of 104 to 105 CFU/ml and was used to manufacture model hard (Swiss Emmentaler) and semihard (Swiss Tisliter) cheese. Two different strains of M. avium subsp. paratuberculosis were tested, and for each strain, two model hard and semihard cheeses were produced. The survival of M. avium subsp. paratuberculosis cells was monitored over a ripening period of 120 days by plating out homogenized cheese samples onto 7H10-PANTA agar. In both the hard and the semihard cheeses, counts decreased steadily but slowly during cheese ripening. Nevertheless, viable cells could still be detected in 120-day cheese. D values were calculated at 27.8 days for hard and 45.5 days for semihard cheese. The most important factors responsible for the death of M. avium subsp. paratuberculosis in cheese were the temperatures applied during cheese manufacture and the low pH at the early stages of cheese ripening. Since the ripening period for these raw milk cheeses lasts at least 90 to 120 days, the D values found indicate that 103 to 104 cells of M. avium subsp. paratuberculosis per g will be inactivated.  相似文献   

13.
It has been suggested that Mycobacterium avium subspecies paratuberculosis has a role in Crohn''s disease. The organism may be acquired but is difficult to culture from the environment. We describe a quantitative PCR (qPCR) method to detect M. avium subsp. paratuberculosis in drinking water and the results of its application to drinking water and faucet biofilm samples collected in the United States.Mycobacterium avium subspecies paratuberculosis is a member of the Mycobacterium avium complex. M. avium subsp. paratuberculosis causes Johne''s disease in bovine and ovine animals and has been hypothetically linked to Crohn''s disease in humans. Several review articles have been written describing the association between M. avium subsp. paratuberculosis and Crohn''s disease (1, 2, 10, 11, 16, 23). Most mycobacterial infections are acquired from the environment; however, M. avium subsp. paratuberculosis can elude laboratory culture from environmental samples (28). M. avium subsp. paratuberculosis has been cultured only once from drinking water in the United States; therefore, its occurrence in drinking water is unknown (17). There are several reasons one could expect to find M. avium subsp. paratuberculosis in drinking water. The bacterium has been isolated from surface water used as a source of drinking water (19, 20, 24, 26). It is resistant to chlorine disinfection (25). Also, other subspecies of M. avium have been detected in biofilms obtained from drinking water pipes in the United States (8, 22, 27).Due to the potential for waterborne transmission of mycobacteria and the association of M. avium subsp. paratuberculosis with human illness, the focus of this study was to estimate the organism''s occurrence in drinking water in the United States using quantitative PCR (qPCR) (15). A comprehensive method was developed for detection of M. avium subsp. paratuberculosis in drinking water and biofilms that includes the concentration of microorganisms from samples using membrane filtration, total DNA extraction and purification, and detection of two targets unique to this bacterium: IS900 and target 251. IS900 is a common target used to identify M. avium subsp. paratuberculosis, and the average number of copies per genome is 14 to 18 (13). Target 251 qPCR analysis, which corresponds to the M. avium subsp. paratuberculosis gene 2765c (David Alexander, personal communication), was developed by Rajeev et al. (21). Samples positive for both targets are considered positive for M. avium subsp. paratuberculosis. TaqMan primer and probe sequences and qPCR assay characteristics are described in Table Table1.1. The complete method is described in Fig. S1 in the supplemental material.

TABLE 1.

qPCR assay primers, probes, DNA targets, and assay characteristicsa
DNA targetPrimer or probe (sequence, 5′→3′)Product (bp)
Reference
LODbLOQc
IS900IS900F (CCGCTAATTGAGAGATGCGATTGG)2301.81.813
IS900R (ATTCAACTCCAGCAGCGCGGCCTC)
IS900P (6-FAM-TCCACGCCCGCCCAGACAGG-TAMRA)
Target 251251F (GCAAGACGTTCATGGGAACT)200NDND21
251R (GCGTAACTCAGCGAACAACA)
251P (6-FAM-CTGACTTCACGATGCGGTTCTTC-TAMRA)
Open in a separate windowaFAM, 6-carboxyfluorescein; TAMRA, 6-carboxytetramethylrhodamine; ND, not determined.bThe limit of detection (LOD) of the IS900 qPCR assay was defined as the lowest copy number resulting in a CT of <40, determined from six independent dilution series.cThe limit of quantification (LOQ) was defined as the lowest copy number per assay yielding a coefficient of variation (CV) of less than 25% (33).A master standard curve was generated from six series of 10-fold dilutions of genomic DNA from M. avium subsp. paratuberculosis strain 49164 for quantification of IS900 target copies (see Fig. S2A in the supplemental material). Each dilution series contained eight standards run in triplicate for a total of 18 threshold cycle (CT) measurements per standard. A linear regression was performed on CT versus log IS900 copy number and R2 was 0.997. The standard error of y was used to create two equations to estimate the upper and lower concentration, or range, of M. avium subsp. paratuberculosis IS900 copy number.The specificities of the IS900 and target 251 primer/probe sets were evaluated by Rajeev et al. (21) on 211 M. avium subsp. paratuberculosis and 38 non-M. avium subsp. paratuberculosis isolates, and each assay was 100% specific for M. avium subsp. paratuberculosis. We further evaluated specificity using 22 M. avium subsp. paratuberculosis isolates from animals and 10 non-M. avium subsp. paratuberculosis ATCC reference strains (see Table S1 in the supplemental material) (18). Target 251 was 100% specific; however, one M. avium subsp. paratuberculosis isolate (3063) repeatedly produced a negative result by IS900 qPCR. Results suggest that a small subset of M. avium subsp. paratuberculosis isolates may not contain the IS900 element or may have a sequence that differs from that of the IS900 primer/probe set.The sensitivity of the method for detection of M. avium subsp. paratuberculosis in different drinking water matrices was evaluated by spiking serial dilutions of strain 1112 cells, ranging from 104 cells to no addition of cells, into 1-liter tap water samples obtained from five locations in the United States. The number of M. avium subsp. paratuberculosis cell equivalents was estimated by dividing the IS900 copy number obtained from the master standard curve by 18 (mean, 18 IS900 copies/M. avium subsp. paratuberculosis genome). The method provided consistent detection (5/5 samples) in a spiked sample of 100 cells/liter. In a spiked sample of 10 cells/liter, the IS900 target was detected 40% (2/5 samples) of the time, and at 1 cell/liter we did not detect the target in any spiked sample. Percent recovery was variable and decreased as the number of spiked cells decreased (Fig. (Fig.1).1). At a spike level of 1 × 104 cells/liter, the average percent recovery was 64%; this decreased to 9.2% at 1 × 102 cells/liter. Cell surface hydrophobicity, a property of mycobacteria, may have influenced clumping of the spiked sample or partitioning of M. avium subsp. paratuberculosis onto the sample bottle or filtration unit, affecting recovery of the bacterium (3).Open in a separate windowFIG. 1.Average percent recovery of M. avium subsp. paratuberculosis spiked into drinking water collected from five sites in the United States. Error bars denote standard deviation. MAP, M. avium subsp. paratuberculosis.  相似文献   

14.
UV light inactivation of Mycobacterium avium subsp. paratuberculosis in Middlebrook 7H9 broth and whole and semiskim milk was investigated using a laboratory-scale UV machine that incorporated static mixers within UV-penetrable pipes. UV treatment proved to be less effective in killing M. avium subsp. paratuberculosis suspended in milk (0.5- to 1.0-log10 reduction per 1,000 mJ/ml) than that suspended in Middlebrook 7H9 broth (2.5- to 3.3-log10 reduction per 1,000 mJ/ml). The FASTPlaqueTB phage assay provided more rapid enumeration of surviving M. avium subsp. paratuberculosis (within 24 h) than culture on Herrold's egg yolk medium (6 to 8 weeks). Despite the fact that plaque counts were consistently 1 to 2 log10 lower than colony counts throughout the study, UV inactivation rates for M. avium subsp. paratuberculosis derived using the phage assay and culture results were not significantly different (P = 0.077).  相似文献   

15.
Between November 2002 and April 2003, 244 bottles and cartons of commercially pasteurized cow's milk were obtained at random from retail outlets throughout the Czech Republic. During the same period, samples of raw milk and of milk that was subsequently subjected to a minimum of 71.7°C for 15 s in a local pasteurization unit were also obtained from two dairy herds, designated herds A and B, with low and high levels, respectively, of subclinical Mycobacterium avium subsp. paratuberculosis infection, and from one herd, herd C, without infection. Infection in individual cows in each herd was tested by fecal culturing. Milk samples were brought to the Veterinary Research Institute in Brno, Czech Republic, processed, inoculated onto Herrold's egg yolk slants, and incubated for 32 weeks. Colonies were characterized by morphology, Ziehl-Neelsen staining, mycobactin J dependency, and IS900 PCR results. M. avium subsp. paratuberculosis was cultured from 4 of 244 units (1.6%) of commercially pasteurized retail milk. M. avium subsp. paratuberculosis was also cultured from 2 of 100 (2%) cartons of locally pasteurized milk derived from infected herds A and B and from 0 of 100 cartons of milk from uninfected herd C. Raw milk from 1 of 10 (10%) fecal culture-positive cows in herd A and from 13 of 66 (19.7%) fecal culture-positive cows in herd B was culture positive for M. avium subsp. paratuberculosis. These findings confirm that M. avium subsp. paratuberculosis is present in raw milk from subclinically infected dairy cows. The culture of M. avium subsp. paratuberculosis in the Czech Republic from retail milk that had been pasteurized locally or commercially to the required national and European Union standards is in agreement with similar research on milk destined for consumers in the United Kingdom and the United States and shows that humans are being exposed to this chronic enteric pathogen by this route.  相似文献   

16.
Reduced to near extinction in the late 1800s, a number of wood bison populations (Bison bison athabascae) have been re-established through reintroduction initiatives. Although an invaluable tool for conservation, translocation of animals can spread infectious agents to new areas or expose animals to pathogens in their new environment. Mycobacterium avium subsp. paratuberculosis, a bacterium that causes chronic enteritis in ruminants, is among the pathogens of potential concern for wood bison management and conservation. In order to inform translocation decisions, our objectives were to determine the M. avium subsp. paratuberculosis infection status of wood bison herds in Canada and to culture and genetically characterize the infective strain(s). We tested fecal samples from bison (n = 267) in nine herds using direct PCR for three M. avium subsp. paratuberculosis-specific genetic targets with different copy numbers within the M. avium subsp. paratuberculosis genome. Restriction enzyme analysis (REA) and sequencing of IS1311 were performed on seven samples from five different herds. We also evaluated a panel of different culture conditions for their ability to support M. avium subsp. paratuberculosis growth from feces and tissues of direct-PCR-positive animals. Eighty-one fecal samples (30%) tested positive using direct IS900 PCR, with positive samples from all nine herds; of these, 75% and 21% were also positive using ISMAP02 and F57, respectively. None of the culture conditions supported the growth of M. avium subsp. paratuberculosis from PCR-positive samples. IS1311 REA and sequencing indicate that at least two different M. avium subsp. paratuberculosis strain types exist in Canadian wood bison. The presence of different M. avium subsp. paratuberculosis strains among wood bison herds should be considered in the planning of translocations.  相似文献   

17.
The study assessed the effect of soil slope on Mycobacterium avium subsp. paratuberculosis transport into rainwater runoff from agricultural soil after application of M. avium subsp. paratuberculosis-contaminated slurry. Under field conditions, 24 plots of undisturbed loamy soil 1 by 2 m2 were placed on platforms. Twelve plots were used for water runoff: 6 plots at a 3% slope and 6 plots at a 15% slope. Half of the plots of each slope were treated with M. avium subsp. paratuberculosis-contaminated slurry, and half were not treated. Using the same experimental design, 12 plots were established for soil sampling on a monthly basis using the same spiked slurry application and soil slopes. Runoff following natural rainfall was collected and analyzed for M. avium subsp. paratuberculosis, coliforms, and turbidity. M. avium subsp. paratuberculosis was detected in runoff from all plots treated with contaminated slurry and one control plot. A higher slope (15%) increased the likelihood of M. avium subsp. paratuberculosis detection but did not affect the likelihood of finding coliforms. Daily rainfall increased the likelihood that runoff would have coliforms and the coliform concentration, but it decreased the M. avium subsp. paratuberculosis concentration in the runoff. When there was no runoff, rain was associated with increased M. avium subsp. paratuberculosis concentrations. Coliform counts in runoff were related to runoff turbidity. M. avium subsp. paratuberculosis presence/absence, however, was related to turbidity. Study duration decreased bacterial detection and concentration. These findings demonstrate the high likelihood that M. avium subsp. paratuberculosis in slurry spread on pastures will contaminate water runoff, particularly during seasons with high rainfall. M. avium subsp. paratuberculosis contamination of water has potential consequences for both animal and human health.  相似文献   

18.
Attachment of Mycobacterium avium subsp. paratuberculosis to soil particles could increase their availability to farm animals, as well as influence the transportation of M. avium subsp. paratuberculosis to water sources. To investigate the possibility of such attachment, we passed a known quantity of M. avium subsp. paratuberculosis through chromatography columns packed with clay soil, sandy soil, pure silica, clay-silica mixture, or clay-silica complexes and measured the organisms recovered in the eluent using culture or quantitative PCR. Experiments were repeated using buffer at a range of pH levels with pure silica to investigate the effect of pH on M. avium subsp. paratuberculosis attachment. Linear mixed-model analyses were conducted to compare the proportional recovery of M. avium subsp. paratuberculosis in the eluent between different substrates and pH levels. Of the organisms added to the columns, 83 to 100% were estimated to be retained in the columns after adjustment for those retained in empty control columns. The proportions recovered were significantly different across different substrates, with the retention being significantly greater (P < 0.05) in pure substrates (silica and clay-silica complexes) than in soil substrates (clay soil and sandy soil). However, there were no significant differences in the retention of M. avium subsp. paratuberculosis between silica and clay-silica complexes or between clay soil and sandy soil. The proportion retained decreased with increasing pH in one of the experiments, indicating greater adsorption of M. avium subsp. paratuberculosis to soil particles at an acidic pH (P < 0.05). The results suggest that under experimental conditions M. avium subsp. paratuberculosis adsorbs to a range of soil particles, and this attachment is influenced by soil pH.Mycobacterium avium subsp. paratuberculosis is a pathogen of great significance for livestock since it causes a fatal and economically important disease called paratuberculosis or Johne''s disease (JD). The significance of M. avium subsp. paratuberculosis has further increased due to speculation over its role in the causation of Crohn''s disease in humans (10). Although reports trying to establish a causative association between M. avium subsp. paratuberculosis and Crohn''s disease are conflicting and inconclusive, they have aroused concerns among public health authorities (13); therefore, greater attention is now being paid to understand the natural ecology of M. avium subsp. paratuberculosis (32, 34). We investigated a largely unexplored aspect of the natural ecology of M. avium subsp. paratuberculosis: its attachment to soil particles, which could influence its availability to farm animals and humans (see below).Bacteria can become loosely associated with clay or soil particles through reversible adsorption mediated by electrostatic and van der Waals'' forces or by cell surface hydrophobicity (20). An irreversible firm attachment may later occur usually mediated by extracellular bridging polymers (8). The attachment of microbiota such as Escherichia coli, Arthrobacter spp., and poliovirus to soil or clay particles has been reported previously (2, 3, 11, 22, 26), but there is only indirect evidence of the association of mycobacteria with soil particles. A study reported the recovery of only 3.5% of nontuberculous mycobacteria inoculated into soil samples and attributed this to their adsorption to clay particles (5). Later, a similar phenomenon was inferred for M. avium subsp. paratuberculosis because 99% of these organisms in feces could not be detected upon culture of feces mixed with soil, suggesting the binding of M. avium subsp. paratuberculosis to soil particles (33). An association between M. avium subsp. paratuberculosis and clay particles was also suggested by an epidemiological study conducted to investigate the risk factors for ovine JD, indicating the possibility of bacterial attachment to clay particles (6).M. avium subsp. paratuberculosis is transmitted primarily by the feco-oral route. Infected animals shed huge numbers of M. avium subsp. paratuberculosis in their feces (29, 35), thus contaminating soil and the farm environment. The ability of M. avium subsp. paratuberculosis to survive for extended periods in an external environment, in spite of it being an obligate parasite (32, 34), facilitates the build-up of soil and pasture contamination levels over time. The attachment of M. avium subsp. paratuberculosis to soil particles could help retain the bacteria in the upper layers of the soil, thus further enhancing contamination levels. The contaminated farm environment thus becomes a potential source of infection for farm animals because grazing ruminants normally consume soil with pasture, and the amounts can be substantial, up to 300 or more grams per day for sheep (9, 21).In addition, runoff from contaminated farm soils can contaminate water bodies (23), which can be a potential health hazard for humans because the routine chlorine disinfection of water is not able to eliminate M. avium subsp. paratuberculosis completely (28). The transportation of bacteria from the farm environment to water sources is influenced by their attachment to soil or clay particles (11, 12). Generally, bacterial adsorption to soil particles decreases the rate of transportation through soil (3), but it also helps retain bacteria in the top surface layers of the soil, thus increasing the possibility of the contamination of runoff water (24). Note that soil particles can be dislodged and moved by wind, water, and mechanical factors.The aim of the present study was to verify whether M. avium subsp. paratuberculosis attaches to clay and other soil particles and whether this attachment is influenced by soil pH. The study findings improve our knowledge and understanding of the natural ecology of M. avium subsp. paratuberculosis.  相似文献   

19.
Low pH and salt are two factors contributing to the inactivation of bacterial pathogens during a 60-day curing period for cheese. The kinetics of inactivation for Mycobacterium avium subsp. paratuberculosis strains ATCC 19698 and Dominic were measured at 20°C under different pH and NaCl conditions commonly used in processing cheese. The corresponding D values (decimal reduction times; the time required to kill 1 log10 concentration of bacteria) were measured. Also measured were the D values for heat-treated and nonheated M. avium subsp. paratuberculosis in 50 mM acetate buffer (pH 5.0, 2% [wt/vol] NaCl) and a soft white Hispanic-style cheese (pH 6.0, 2% [wt/vol] NaCl). Samples were removed at various intervals until no viable cells were detected using the radiometric culture method (BACTEC) for enumeration of M. avium subsp. paratuberculosis. NaCl had little or no effect on the inactivation of M. avium subsp. paratuberculosis, and increasing NaCl concentrations were not associated with decreasing D values (faster killing) in the acetate buffer. Lower pHs, however, were significantly correlated with decreasing D values of M. avium subsp. paratuberculosis in the acetate buffer. The D values for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese were higher than those predicted by studies done in acetate buffer. The heat-treated M. avium subsp. paratuberculosis strains had lower D values than the nonheated cells (faster killing) both in the acetate buffer (pH 5, 2% [wt/vol] NaCl) and in the soft white cheese. The D value for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese (36.5 days) suggests that heat treatment of raw milk coupled with a 60-day curing period will inactivate about 103 cells of M. avium subsp. paratuberculosis per ml.  相似文献   

20.
Mycobacterium avium subsp. paratuberculosis is the known cause of Johne's disease of both domestic and wild ruminants and has been implicated as a possible cause of Crohn's disease in humans. The organism is shed in the feces of infected animals and can survive for protracted periods in the environment and hence could be present in catchment areas receiving agricultural runoff. A limited survey was undertaken in Northern Ireland to test for M. avium subsp. paratuberculosis in untreated water entering nine water treatment works (WTWs) over a 1-year period. Three detection methods were employed, viz., immunomagnetic separation-PCR and culture on Herrold's egg yolk medium (HEYM) and BACTEC 12B medium, the latter both supplemented with mycobactins. Of the 192 untreated water samples tested, 15 (8%) tested M. avium subsp. paratuberculosis positive by one or more of the three detection methods. M. avium subsp. paratuberculosis was successfully isolated from eight untreated water samples, three by BACTEC culture and five by culture on HEYM. Although the highest incidence of M. avium subsp. paratuberculosis was found in spring, overall, there was no statistically significant difference between the seasons. No significant correlation was found between numbers of coliforms or fecal coliforms and the presence of M. avium subsp. paratuberculosis. In general, a higher incidence of M. avium subsp. paratuberculosis was found in untreated water entering those WTWs that had a high mean water pH value over the sampling period. This work indicates the need to determine the efficacy of water treatment processes to either kill or remove M. avium subsp. paratuberculosis from untreated water and the possible risks posed by contact with recreational water sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号