首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
1. The St. Johns River Water Management District removed over 5.4 million kg of gizzard shad (Dorosoma cepedianum) from Lake Apopka, FL during 1993–2005, as a means of reducing lake phosphorus and phytoplankton concentrations and improving water clarity. Other steps included reduction of external nutrient inputs and operation of a treatment wetland. We measured nutrient excretion by Lake Apopka gizzard shad to quantify the nutrient effect of this biomanipulation. 2. Both N and P excretion were significantly affected by fish body mass and temperature. Larger fish had lower mass‐specific rates of excretion than smaller fish. 3. High water temperature increased P excretion to a much greater extent than N, resulting in a low N : P of nutrient excretion in midsummer. The N : P of excretion was lower than has been observed in other systems, probably because of higher water temperature. 4. Removal of gizzard shad >200 g prevented the annual release of 45 800 kg N year?1 (3.46 kg N ha?1 year?1) and 7700 kg P year?1 (0.62 kg P ha?1 year?1) on average. The actual impact on the P cycle varied substantially from year to year (range 7900–78 800 kg N year?1; 1200–14 800 kg P year?1), primarily because of fluctuations in the catch. 5. On an annual basis, the P directly removed in fish tissues was similar to that removed by the treatment wetland. The P excretion prevented by the removal of fish was approximately 20% of the reduction in external P loading achieved during 1993–2005. 6. In the short term, most of the P demand of planktonic primary producers is met through recycling of P, which greatly exceeds external P loading. Depending on population biomass, phosphorus excretion by the resident gizzard shad population was similar in magnitude to the P release by diffusive flux from the sediments.  相似文献   

2.
Animals transform and translocate nutrients at ecologically relevant rates, contributing to eutrophication in aquatic ecosystems by mobilizing otherwise unavailable nutrients. Yet we know little about how animal-mediated nutrient cycling compares with external abiotic nutrient sources over long periods (years–decades) and at multiple timescales. To address this, we conducted a 19-year study in a eutrophic reservoir examining nitrogen (N) and phosphorus (P) inputs from watershed streams versus excretion by an abundant fish (gizzard shad, Dorosoma cepedianum) at weekly, monthly and seasonal timescales. Over the entire time period, watershed N and P loading was 33- and 3-fold greater than fish N and P excretion, respectively. However, fish N excretion exceeded watershed nutrient loading in 36% of weeks and 43% of months, and fish P excretion in 68% of weeks and 58% of months during the growing season. Fish excretion had lower temporal variability in both supply rate and N:P ratio than watershed loading. Fish excretion also supplied nutrients at a much lower molar N:P ratio than the watershed (mean of daily N:P supply ratios were 15 and 723, respectively). In eutrophic lakes with high fish biomass, fish excretion can strongly influence algal biomass and community composition. Eutrophication management efforts should consider removal of benthivorous fish, like gizzard shad, in addition to other watershed management practices to improve water quality. Future climate change will modulate the interplay between fish- and watershed-mediated nutrient dynamics by altering the geographic distribution of detritivorous fish and the frequency and severity of storm and drought events.  相似文献   

3.
Little is known about the stoichiometry of nutrient cycling by detritivores. Therefore, we explored stoichiometric relationships in an omnivorous/detritivorous fish (gizzard shad, Dorosoma cepedianum) in three lakes that differed in productivity. Gizzard shad can feed on plankton and sediment detritus, but in all three lakes adult gizzard shad derived >98% of carbon (C) and phosphorus (P), and >90% of nitrogen (N) from sediment detritus, and the remainder from zooplankton.
Gizzard shad selectively consumed detritus with higher C, N and P concentrations than ambient lake sediments. Selective detritivory (i.e. the nutrient content of consumed detritus divided by the nutrient content of ambient detritus) was most pronounced in the lake with the lowest detrital nutrient concentrations. N and P cycling rates per fish were also consistently higher in this lake, in agreement with the prediction of stoichiometry theory that excretion rates should increase with food nutrient content. Among-lake differences in nutrient cycling rates were unrelated to inter-lake variation in fish body nutrient contents, which was minimal. The N:P ratio excreted was near Redfield (∼14:1) in all three lakes.
Stoichiometric analyses showed that the C:N and C:P ratios of sediment detritus were much higher (∼2.8×) than ratios of gizzard shad bodies, revealing substantial N and P imbalances between consumers and their food source. Gizzard shad alleviate N imbalance by selectively feeding on high N detritus (low C:N, high N:P), and apparently alleviate P imbalance by excreting nutrients at a higher N:P than that of their food or their bodies. Thus, this detritivore apparently regulates nutrient acquisition and allocation via both pre-absorption processes (selective feeding) and post-absorptive processes (differential N and P excretion).  相似文献   

4.
Ontogeny, diet shifts, and nutrient stoichiometry in fish   总被引:1,自引:0,他引:1  
Alberto Pilati  Michael J. Vanni 《Oikos》2007,116(10):1663-1674
Most stoichiometric models do not consider the importance of ontogenetic changes in body nutrient composition and excretion rates. We quantified ontogenetic variation in stoichiometry and diet in gizzard shad, Dorosoma cepedianum , an omnivorous fish with a pronounced ontogenetic diet shift; and zebrafish, Danio rerio, grown in the lab with a constant diet. In both species, body stoichiometry varied considerably along the life cycle. Larval gizzard shad and zebrafish had higher molar C:P and N:P ratios than larger fish. Variation in body nutrient ratios was driven mainly by body P, which increased with size. Gizzard shad body calcium content was highly correlated with P content, indicating that ontogenetic P variation is associated with bone formation. Similar trends in body stoichiometry of zebrafish, grown under constant diet in the laboratory, suggest that ontogeny (e.g. bone formation) and not diet shift is the main factor affecting fish body stoichiometry in larval and juvenile stages. The N:P ratio of nutrient excretion also varied ontogenetically in gizzard shad, but the decline from larvae to juveniles appears to be largely associated with variation in the N:P of alternative food resources (zooplankton vs detritus) rather than by fish body N:P. Furthermore, the N:P ratio of larval gizzard shad excretion appears to be driven more by the N:P ratio at which individuals allocate nutrients to growth, more so than static body N:P, further illustrating the need to consider ontogenetic variation. Our results thus show that fish exhibit considerable ontogenetic variation in body stoichiometry, driven by an inherent increase in the relative allocation of P to bones, whereas ontogenetic variation in excretion N:P ratio of gizzard shad is driven more by variation in food N:P than by body N:P.  相似文献   

5.
Effects of gizzard shad on benthic communities in reservoirs   总被引:1,自引:0,他引:1  
Effects of gizzard shad Dorosoma cepedianum on benthic communities in a large southern reservoir (Lake Texoma, U.S.A.) were examined during two field enclosure and exclosure experiments in which enclosures were stocked at high and low densities in 1998 and 1999, respectively. In both years, chironomid abundance significantly increased in treatments that excluded large fishes from foraging on sediments. Mean abundance of chironomids and ostracods were significantly higher ( P  < 0·05) in exclosures than enclosures stocked with gizzard shad at 1140–1210 kg ha−1. In 1999, benthic invertebrate abundances did not differ ( P  > 0·08) between exclosure and enclosures stocked at 175–213 kg ha−1. Per cent organic matter, algal abundance and abundance of other macroinvertebrates in sediments did not differ significantly among treatments in either year. Although chironomid abundance was reduced in gizzard shad enclosures in 1998, food habits from this and other studies showed that adult gizzard shad in Lake Texoma only consumed detritus and algae. It is likely that high sedimentation rates in Lake Texoma limit the ability of gizzard shad to regulate algae and detritus in benthic sediments. Thus, it is concluded that disturbance of benthic sediments by gizzard shad caused the observed reduction in chironomid abundance, rather than through consumption or competition for resources.  相似文献   

6.
This study investigates how nutrient cycling rates and ratios vary among fish species, with a particular focus on comparing an ecologically dominant detritivore (gizzard shad) to other fishes in a productive lake. We also examined how nutrient cycling rates are mediated by body size (as predicted by allometry theory), and how variation in nutrient cycling is related to body and food nutrient contents (according to predictions of ecological stoichiometry). As predicted by allometry, per capita nitrogen and phosphorus excretion rates increased and mass-specific excretion rates decreased, with increasing mass. Body phosphorus content was correlated with body mass only in one species, bluegill. Contrary to stoichiometric predictions, there was no relationship between body P and mass-normalized P excretion rate, or between body N:P and excreted N:P, when all individuals of all species were considered.
However, at the species level, we observed some support for a body nutrient content effect on excretion as predicted by stoichiometry theory. For example, gizzard shad had lower body P (high body N:P) and also excreted P at higher rates (lower N:P) than bluegill, which had high body P (lower body N:P). We applied the Sterner (1990) homeostatic stoichiometry model to the two most common species in the study – gizzard shad and bluegill and found that food N:P had a greater effect than consumer body N:P on excreted N:P. This indicates that, in terms of variation among these species, nutrient excretion may be more of a function of food nutrient content than the nutrient content of the consumer. These results suggest that stoichiometry can provide a framework for variation among species in nutrient cycling and for evaluating the ecosystem consequences of biodiversity loss.  相似文献   

7.
1. We derived models of nutrient release [nitrogen (N) and phosphorus (P)] by fish based on studies that directly measured the release rates from 56 species across a broad range of fish mass, feeding histories and temperature. 2. We developed four separate models of nutrient release from multiple regression analysis: detritivore release rates of N and P, and non‐detritivore release rates of N and P. 3. Fish mass explained most of the variance (78–92%) in release rates. 4. Our predicted rates of release of P by fish (g ha?1 day?1) were similar to observed rates in the literature from other lakes. 5. The influence of a shift in diet (planktivory to detritivory) by a single species (gizzard shad, Dorosoma cepedianum, a facultative detritivore) on nutrient release rates was estimated. During periods of detritivory, gizzard shad accounted for on average 39% (<1–96%) of all nutrients released by the fish assemblage, and increased total fish assemblage release rates on average by 59% (<1–331%) compared to when gizzard shad were modelled as planktivores. 6. These models provide a rapid means for predicting the release of nutrients by fish assemblages and may facilitate more comprehensive comparisons of nutrient cycling by fish with other internal pathways.  相似文献   

8.
A spatially explicit plant-herbivore model composed of planktonic herbivores, algal preys and nutrients was constructed to examine the effects of consumer-driven nutrient recycling (CNR) on the algal species richness with and without spatial structure. The model assumed that either of two essential nutrients (N and P) limited growth of algal populations and that consumer individuals moved randomly in the lattice and grazed all the algal species with the same efficiency. The results showed that when there was no CNR, the number of persistent algal species was affected by neither supply rates of external nutrients nor spatial structure and was consistently low. When consumers recycled nutrients according to their stoichiometry, the algal species richness changed with supply rates of external nutrients depending on spatial structure: the algal species richness decreased with increasing nutrient loadings when there were no spatial structure because CNR increased the probability of stochastic extinction of algal species by amplifying the oscillation of algae-consumer dynamics. However, when spatial structures were created by the migration of consumers, CNR increased the algal species richness in a range of nutrient loadings because spatial variation of grazing pressure functioned to stabilize the algal-consumer dynamics. The present study suggests that through grazing and nutrient recycling, consumer individuals can create ephemeral heterogeneity in growth environments for algal species and that this ephemerality is one of the keys to understanding algal species in nature.  相似文献   

9.
1. Elevated allochthonous inputs of nutrients and sediments to aquatic ecosystems are associated with eutrophication and sedimentation. Reservoirs receive substantial subsidies of nutrients and sediments from catchments due to their large catchment : lake area ratios. We examined the effect of elevated subsidies of sediments and/or dissolved nutrients on the success (survival, growth, biomass and condition factor) of larval gizzard shad (Dorosoma cepedianum), a widespread and dominant omnivorous fish in reservoir ecosystems. 2. We simulated allochthonous agricultural subsides by manipulating dissolved nutrients and sediment inputs in a 2 × 2 factorial design in experimental mesocosms. We predicted that larval fish success would be greater under elevated nutrients. However, we propose two alternative hypotheses with respect to the overall effect of allochthonous sediment inputs. If sediment inputs negatively affect larval gizzard feeding success, larval success would be highest when only nutrients are added and lowest when only sediments are added (+N > +N+S ≥ C > +S). If high turbidity enhances larval foraging activity (due to greater contrast between prey and background), we predict that larval success would be highest when both subsidy types (nutrients and sediment) are elevated, intermediate when either nutrients or sediments are added and the lowest when no subsidies are added (+N+S > +N ≥ +S > C). 3. Our results indicate that elevated nutrient and sediment conditions enhanced larval gizzard shad biomass, but the overall nutrient addition effect was greater than the sediment addition effect (+N ~ +N+S > +S > C). We observed differential effects of nutrient and sediment inputs on larval survival, growth and condition factors. 4. The enhancement of fish biomass in elevated nutrients (+N, +N+S) relative to control conditions was associated with improved gizzard shad survival and not greater growth. The enhancement of fish biomass in the elevated sediment treatment (+S) relative to the control conditions was caused by an increase in survival that more than compensated for a negative effect of sediment addition on growth. 5. Our findings support the recommendation that reservoir management practices must consider the links between land use practices and food web dynamics. Our results suggest that reduction of subsidies of nutrients and sediments to productive reservoirs would decrease survival of larval gizzard shad due to lower food availability.  相似文献   

10.
Nutrient recycling by consumers in streams can influence ecosystem nutrient availability and the assemblage and growth of photoautotrophs. Stream fishes can play a large role in nutrient recycling, but contributions by other vertebrates to overall recycling rates remain poorly studied. In tributaries of the Pacific Northwest, coastal giant salamanders (Dicamptodon tenebrosus) occur at high densities alongside steelhead trout (Oncorhynchus mykiss) and are top aquatic predators. We surveyed the density and body size distributions of D. tenebrosus and O. mykiss in a California tributary stream, combined with a field study to determine mass-specific excretion rates of ammonium (N) and total dissolved phosphorus (P) for D. tenebrosus. We estimated O. mykiss excretion rates (N, P) by bioenergetics using field-collected data on the nutrient composition of O. mykiss diets from the same system. Despite lower abundance, D. tenebrosus biomass was 2.5 times higher than O. mykiss. Mass-specific excretion summed over 170 m of stream revealed that O. mykiss recycle 1.7 times more N, and 1.2 times more P than D. tenebrosus, and had a higher N:P ratio (8.7) than that of D. tenebrosus (6.0), or the two species combined (7.5). Through simulated trade-offs in biomass, we estimate that shifts from salamander biomass toward fish biomass have the potential to ease nutrient limitation in forested tributary streams. These results suggest that natural and anthropogenic heterogeneity in the relative abundance of these vertebrates and variation in the uptake rates across river networks can affect broad-scale patterns of nutrient limitation.  相似文献   

11.
In laboratory experiments we tested the hypothesis that nutrients supplied by fish and zooplankton affect the structure and dynamics of phytoplankton communities. As expected from their body size differences, fish released nutrients at lower mass-specific rates than Daphnia. On average, these consumers released nutrients at similar N:P ratios, although the ratios released by Daphnia were more variable than those released by fish. Nutrient supply by both fish and Daphnia reduced species richness and diversity of phytoplankton communities and increased algal biomass and dominance. However, nutrient recycling by fish supported a more diverse phytoplankton community than nutrient recycling by Daphnia. We conclude that nutrient recycling by zooplankton and fish have different effects on phytoplankton community structure due to differences in the quality of nutrients released. Received: 21 December 1998 / Accepted: 31 May 1999  相似文献   

12.
Cultivating algae on nitrogen (N) and phosphorus (P) in animal manure effluents presents an alternative to the current practice of land application. The objective of this study was to determine values for productivity, nutrient content, and nutrient recovery using filamentous green algae grown in outdoor raceways at different loading rates of raw and anaerobically digested dairy manure effluent. Algal turf scrubber raceways (30m(2) each) were operated in central Maryland for approximately 270 days each year (roughly April 1-December 31) from 2003 to 2006. Algal biomass was harvested every 4-12 days from the raceways after daily additions of manure effluent corresponding to loading rates of 0.3 to 2.5g total N (TN) and 0.08 to 0.42g total P (TP) m(-2)d(-1). Mean algal productivity values increased from approximately 2.5g DW m(-2)d(-1) at the lowest loading rate (0.3g TN m(-2)d(-1)) to 25g DW m(-2)d(-1) at the highest loading rate (2.5g TN m(-2)d(-1)). Mean N and P contents in the dried biomass increased 1.5-2.0-fold with increasing loading rate up to maximums of 7% N and 1% P (dry weight basis). Although variable, algal N and P accounted for roughly 70-90% of input N and P at loading rates below 1g TN, 0.15g TP m(-2)d(-1). N and P recovery rates decreased to 50-80% at higher loading rates. There were no significant differences in algal productivity, algal N and P content, or N and P recovery values from raceways with carbon dioxide supplementation compared to values from raceways without added carbon dioxide. Projected annual operational costs are very high on a per animal basis ($780 per cow). However, within the context of reducing nutrient inputs in sensitive watersheds such as the Chesapeake Bay, projected operational costs of $11 per kgN are well below the costs cited for upgrading existing water treatment plants.  相似文献   

13.
1. The relative importance of zooplankton grazing and nutrient limitation in regulating the phytoplankton community in the non-stratified Lake Kvie, Denmark, were measured nine times during the growing season.
2. Natural phytoplankton assemblage bioassays showed increasing importance of nutrient limitation during summer. Growth rates at ambient nutrient concentrations were continually below 0.12 per day, while co-enrichment with nitrogen (N) and phosphorus (P) to above concentration-saturated conditions enhanced growth rates from May to the end of July.
3. Stoichiometric ratios of important elements in seston (C : N, C : P, N : P), in lake water (TN : TP), in external loading (TN : TP) and in internal loading (DIN : DIP) were measured to determine whether N or P could be the limiting nutrient. TN : TP molar ratio of both lake water, benthic fluxes and external loading suggested P limitation throughout the growing season. However, seston molar ratios suggested moderate P-deficiency only during mid-summer.
4. Abundance and community structure of the zooplankton varied considerably through the season and proved to be important in determining the responses of algal assemblages to grazing. High abundance of cladocerans and rotifers resulted in significant grazing impact, while cyclopoid copepods had no significant effect on the phytoplankton biomass.
5. Regeneration of ammonium and phosphate by zooplankton were periodically important for phytoplankton growth. A comparison of nutrient regeneration by zooplankton with nutrient inputs from sediment and external sources indicated that zooplankton may contribute significantly in supplying N and P for the growth of phytoplankton.  相似文献   

14.
Harnessing solar energy to grow algal biomass on wastewater nutrients could provide a holistic solution to nutrient management problems on dairy farms. The production of algae from a portion of manure nutrients to replace high-protein feed supplements which are often imported (along with considerable nutrients) onto the farm could potentially link consumption and supply of on-farm nutrients. The objective of this research was to assess the ability of benthic freshwater algae to recover nutrients from dairy manure and to evaluate nutrient uptake rates and dry matter/crude protein yields in comparison to a conventional cropping system. Benthic algae growth chambers were operated in semi-batch mode by continuously recycling wastewater and adding manure inputs daily. Using total nitrogen (TN) loading rates of 0.64-1.03 g m(-2) d(-1), the dried algal yields were 5.3-5.5 g m(-2) d(-1). The dried algae contained 1.5-2.1% P and 4.9-7.1% N. At a TN loading rate of 1.03 g m(-2) d(-1), algal biomass contained 7.1% N compared to only 4.9% N at a TN loading rate of 0.64 g m(-2) d(-1). In the best case, algal biomass had a crude protein content of 44%, compared to a typical corn silage protein content of 7%. At a dry matter yield of 5.5 g m(-2) d(-1), this is equivalent to an annual N uptake rate of 1,430 kg ha(-1) yr(-1). Compared to a conventional corn/rye rotation, such benthic algae production rates would require 26% of the land area requirements for equivalent N uptake rates and 23% of the land area requirements on a P uptake basis. Combining conventional cropping systems with an algal treatment system could facilitate more efficient crop production and farm nutrient management, allowing dairy operations to be environmentally sustainable on fewer acres.  相似文献   

15.
1. Anthropogenic activities in prairie streams are increasing nutrient inputs and altering stream communities. Understanding the role of large consumers such as fish in regulating periphyton structure and nutritional content is necessary to predict how changing diversity will interact with nutrient enrichment to regulate stream nutrient processing and retention. 2. We characterised the importance of grazing fish on stream nutrient storage and cycling following a simulated flood under different nutrient regimes by crossing six nutrient concentrations with six densities of a grazing minnow (southern redbelly dace, Phoxinus erythrogaster) in large outdoor mesocosms. We measured the biomass and stoichiometry of overstory and understory periphyton layers, the stoichiometry of fish tissue and excretion, and compared fish diet composition with available algal assemblages in pools and riffles to evaluate whether fish were selectively foraging within or among habitats. 3. Model selection indicated nutrient loading and fish density were important to algal composition and periphyton carbon (C): nitrogen (N). Nutrient loading increased algal biomass, favoured diatom growth over green algae and decreased periphyton C : N. Increasing grazer density did not affect biomass and reduced the C : N of overstory, but not understory periphyton. Algal composition of dace diet was correlated with available algae, but there were proportionately more diatoms present in dace guts. We found no correlation between fish egestion/excretion nutrient ratios and nutrient loading or fish density despite varying N content of periphyton. 4. Large grazers and nutrient availability can have a spatially distinct influence at a microhabitat scale on the nutrient status of primary producers in streams.  相似文献   

16.
1. Nutrients released from lake sediments can influence water column nutrient concentrations and planktonic productivity. We examined sediment nutrient release [soluble reactive phosphorus (SRP) and ammonia (NH)] at two sites in a eutrophic reservoir (Acton Lake, OH, U.S.A.) that differed in physical mixing conditions (a thermally stratified and an unstratified site). 2. Sediment nutrient release rates were estimated with three methods: sediment core incubations, seasonal in situ hypolimnetic accumulation and a published regression model that predicted sediment phosphorous (P) release rate from sediment P concentration. All three methods were applied to the deeper stratified site in the reservoir; however, we used only sediment core incubations to estimate SRP and NH release rates at the shallow unstratified site because of the lack of thermal stratification. We also compared the total P concentration (TPS) of sediments and the concentration of P in various sediment fractions at both sites. 3. Anoxic sediments at the stratified site released SRP at rates more than an order of magnitude greater than oxic sediments at the shallow unstratified site. However, P accumulated in the hypolimnion at much lower rates than predicted by sediment core incubations. In contrast, NH was released at similar rates at both sites and accumulated in the hypolimnion at close to the expected rate, indicating that P was ‘lost’ from the hypolimnion through biogeochemical pathways for P, such as precipitation with inorganic material or biological uptake and sedimentation. 4. TPS was significantly greater at the deeper stratified site and organically bound P accounted for >50% of TPS at both sites. 5. We examined the magnitude of SRP fluxes into the study reservoir in 1996 by comparing the mean summer daily SRP fluxes from anaerobic sediments, aerobic sediments, stream inflows and gizzard shad excretion. While the SRP release from anaerobic sediments was high, we hypothesise that little of this SRP gained access to the epilimnion in mid‐summer. SRP flux to the reservoir from aerobic sediments was less than from gizzard shad excretion and streams. Large interannual variability in thermocline stability, gizzard shad biomass and stream discharge volumes, will affect SRP loading rates from different sources in different years. Therefore, construction of P budgets for different years should account for interannual variation in these parameters.  相似文献   

17.
1. The inter‐ and intra‐annual changes in the biomass, elemental (carbon (C), nitrogen (N) and phosphorus (P)) and taxonomical composition of the phytoplankton in a high mountain lake in Spain were studied during 3 years with different physical (fluctuating hydrological regime) and chemical conditions. The importance of internal and external sources of P to the phytoplankton was estimated as the amount of P supplied via zooplankton recycling (internal) or through ice‐melting and atmospheric deposition (external). 2. Inter‐annual differences in phytoplankton biomass were associated with temperature and total dissolved phosphorus. In 1995, phytoplankton biomass was positively correlated with total dissolved phosphorus. In contrast, the negative relationship between zooplankton and seston biomass (direct predatory effects) and the positive relationship between zooplankton P excretion and phytoplankton biomass in 1997 (indirect P‐recycling effects), reinforces the primary role of zooplankton in regulating the total biomass of phytoplankton but, at the same time, encouraging its growth via P‐recycling. 3. Year‐to‐year variations in seston C : P and N : P ratios exceeded intra‐annual variations. The C : P and N : P ratios were high in 1995, indicating strong P limitation. In contrast, in 1996 and 1997, these ratios were low during ice‐out (C : P < 100 and N : P < 10) and increased markedly as the season progressed. Atmospheric P load to the lake was responsible for the decline in C : P and N : P ratios. 4. Intra‐annual variations in zooplankton stoichiometry were more pronounced than the overall differences between 1995 and 1996. Thus, the zooplankton N : P ratio ranged from 6.9 to 40.1 (mean 21.4) in 1995, and from 10.4 to 42.2 (mean 24.9) in 1996. The zooplankton N : P ratio tended to be low after ice‐out, when the zooplankton community was dominated by copepod nauplii, and high towards mid‐ and late‐season, when these were replaced by copepodites and adults. 5. In 1995, the minimum demands for P of phytoplankton were satisfied by ice‐melting, atmospheric loading and zooplankton recycling over 100%. In order of importance, atmospheric inputs (> 1000%), zooplankton recycling (9–542%), and ice‐melting processes (0.37–5.16%) satisfied the minimum demand for P of phytoplankton during 1996 and 1997. Although the effect of external forces was rather sporadic and unpredictable in comparison with biologically driven recycle processes, both may affect phytoplankton structure and elemental composition. 6. We identified three conceptual models representing the seasonal phosphorus flux among the major compartments of the pelagic zone. While ice‐melting processes dominated the nutrient flow at the thaw, biologically driven processes such as zooplankton recycling became relevant as the season and zooplankton ontogeny progressed. The stochastic nature of P inputs associated with atmospheric events can promote rapid transitional changes between a community limited by internal recycling and one regulated by external load. 7. The elemental composition of the zooplankton explains changes in phytoplankton taxonomic and elemental composition. The elemental negative balance (seston N : P < zooplankton N : P, low N : P recycled) during the thaw, would promote a community dominated by species with a high demand for P (Cryptophyceae). The shift to an elemental positive balance (seston N : P > zooplankton N : P, high N : P recycled) in mid‐season would skew the N : P ratio of the recycled nutrients, favouring dominance by chrysophytes. The return to negative balance, as a consequence of the ontogenetic increase in zooplankton N : P ratio and the external P inputs towards the end of the ice‐free season, could alleviate the limitation of P and account for the appearance of other phytoplankton classes (Chlorophyceae or Dinophyceae).  相似文献   

18.
Gizzard shad (Dorosoma cepedianum), a filter feeding omnivore, can consume phytoplankton, zooplankton and detritus and is a common prey fish in U.S. water bodies. Because of their feeding habits and abundance, shad have the potential to affect primary productivity (and hence water quality) directly through phytoplankton grazing and indirectly through zooplankton grazing and nutrient recycling. To test the ability of shad to influence primary productivity, we conducted a 16-day enclosure study (in 2.36-m3 mesocosms) and a 3-year whole-pond manipulation in 2–5 ha earthen ponds. In the mesocosm experiment, shad reduced zooplankton density and indirectly enhanced chlorophyll a concentration, primary productivity, and photosynthetic efficiency (assimilation number). While shad did not affect total phytoplankton density in the mesocosms, the density of large phytoplankton was directly reduced with shad. Results from the pond study were not consistent as predicted. There were few changes in the zooplankton and phytoplankton communities in ponds with versus ponds without gizzard shad. One apparent difference from systems in which previous work had been conducted was the presence of high densities of a potential competitor (i.e., larval bluegill) in our ponds. We suggest that the presence of these extremely high larval bluegill densities (20–350 larval bluegill m–3; 3–700 times higher density than that of larval gizzard shad) led to the lack of differences between ponds with versus ponds without gizzard shad. That is, the influence of gizzard shad on zooplankton or phytoplankton was less than the influence of abundant bluegill larvae. Differences in systems across regions must be incorporated into our understanding of factors affecting trophic interactions in aquatic systems if we are to be able to manage these systems for both water quality and fisheries.  相似文献   

19.
Bukaveckas  Paul A.  Crain  Angela S. 《Hydrobiologia》2002,481(1-3):19-31
We characterize seasonal and spatial patterns in phytoplankton abundance, production and nutrient limitation in a mesotrophic river impoundment located in the southeastern United States to assess variation arising from inter-annual differences in watershed inputs. Short-term (48 h) in situ nutrient addition experiments were conducted between May and October at three sites located along the longitudinal axis of the lake. Nutrient limitation was detected in 12 of the 18 experiments conducted over 2 years. Phytoplankton responded to additions of phosphorus alone although highest chlorophyll concentrations were observed in enclosures receiving combined (P and N) additions. Growth responses were greatest at downstream sites and in late summer suggesting that those populations experience more severe nutrient limitation. Interannual variation in nutrient limitation and primary production corresponded to differences in the timing of hydrologic inputs. Above average rainfall and discharge in late-summer (July–October) of 1996 coincided with higher in-lake nutrient concentrations, increased production, and minimal nutrient limitation. During the same period in 1995, discharge was lower, nutrient concentrations were lower, and nutrient limitation of phytoplankton production was more pronounced. Our results suggest that nutrient limitation is common in this river impoundment but that modest inter-annual variability in the timing of hydrologic inputs can substantially influence seasonal and spatial patterns.  相似文献   

20.
The hypothesis that the importance of dissolved organic matter (DOM) as a reservoir of C, N, and P declines, relative to that of the particulate pool, with increasing nutrient inputs was tested using mesocosms exposed to a gradient of nutrient inputs in the Spanish Mediterranean. The nutrient additions included a treatment equivalent to the loading in the coastal ecosystem studied (5 mmol N m–2 d–1), and mesocosms receiving half , 2-, 4-, 8-, and 16-fold this value, as well as a mesocosm to which no nutrients were added. Nutrients were added at ratios of 20 N (as ammonium) : 7 Si : 1 P. The initial concentration of dissolved inorganic nutrients was very low (dissolved inorganic nitrogen < 0.05 M, phosphate < 0.01) and comprised, together with the particulate pool < 25% of the total N and P in the system, with the bulk N and P in the system present as DOM (> 75%). Particulate and dissolved organic matter was depleted in N (C/N ratio > 15) and, particularly, P (C/P ratio > 1000), indicative of a strongly nutrient, particularly phosphorus, deficient ecosystem. Experimental nutrient additions lead to a parabolic change in C/N and C/P ratios in the dissolved organic matter with increasing nutrient inputs, which approached the Redfield stoichiometry at nutrient inputs > 8 fold above the ambient loading. The relative size of the dissolved inorganic nutrient pools (about 20% of the N and P) did not vary, but there was a tendency towards an increase in the relative size of the particulate pool at the expense of a decrease in the relative importance of DOM as a reservoir of N, P and C, with increasing nutrient inputs. The production of nutrient-depleted organic matter at low nutrient inputs likely prevents efficient recycling, leading to the dominance of nutrients in DOM in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号