首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Dynamin-related proteins (DRPs) are key components of the organelle division machineries, functioning as molecular scissors during the fission process. In Arabidopsis, DRP3A and DRP3B are shared by peroxisomal and mitochondrial division, whereas the structurally-distinct DRP5B (ARC5) protein is involved in the division of chloroplasts and peroxisomes. Here, we further investigated the roles of DRP3A, DRP3B, and DRP5B in organelle division and plant development. Despite DRP5B's lack of stable association with mitochondria, drp5B mutants show defects in mitochondrial division. The drp3A-2 drp3B-2 drp5B-2 triple mutant exhibits enhanced mitochondrial division phenotypes over drp3A-2 drp3B-2, but its peroxisomal morphology and plant growth phenotypes resemble those of the double mutant. We further demonstrated that DRP3A and DRP3B form a supercomplex in vivo, in which DRP3A is the major component, yet DRP5B is not a constituent of this complex. We thus conclude that DRP5B participates in the division of three types of organelles in Arabidopsis, acting independently of the DRP3 complex. Our findings will help elucidate the precise composition of the DRP3 complex at organelle division sites, and will be instrumental to studies aimed at understanding how the same protein mediates the morphogenesis of distinct organelles that are linked by metabolism.  相似文献   

2.
Peroxisomes are multi-functional organelles that differ in size and abundance depending on the species, cell type, developmental stage, and metabolic and environmental conditions. The PEROXIN11 protein family and the DYNAMIN-RELATED PROTEIN3A (DRP3A) protein have been shown previously to play key roles in peroxisome division in Arabidopsis. To establish a mechanistic model of peroxisome division in plants, we employed forward and reverse genetic approaches to identify more proteins involved in this process. In this study, we identified three new components of the Arabidopsis peroxisome division apparatus: DRP3B, a homolog of DRP3A, and FISSION1A and 1B (FIS1A and 1B), two homologs of the yeast and mammalian FIS1 proteins that mediate the fission of peroxisomes and mitochondria by tethering the DRP proteins to the membrane. DRP3B is partially targeted to peroxisomes and causes defects in peroxisome fission when the gene function is disrupted. drp3A drp3B double mutants display stronger deficiencies than each single mutant parent with respect to peroxisome abundance, seedling establishment and plant growth, suggesting partial functional redundancy between DRP3A and DRP3B. In addition, FIS1A and FIS1B are each dual-targeted to peroxisomes and mitochondria; their mutants show growth inhibition and contain peroxisomes and mitochondria with incomplete fission, enlarged size and reduced number. Our results demonstrate that both DRP3 and FIS1 protein families contribute to peroxisome fission in Arabidopsis, and support the view that DRP and FIS1 orthologs are common components of the peroxisomal and mitochondrial division machineries in diverse eukaryotic species.  相似文献   

3.
Mitochondrial fission is achieved partially by the activity of self-assembling dynamin-related proteins (DRPs) in diverse organisms. Mitochondrial fission in Arabidopsis thaliana is mediated by DRP3A and DRP3B, but the other genes and molecular mechanisms involved have yet to be elucidated. To identify these genes, we screened and analyzed Arabidopsis mutants with longer and fewer mitochondria than those of the wild type. ELM1 was found to be responsible for the phenotype of elongated mitochondria. This phenotype was also observed in drp3a plants. EST and genomic sequences similar to ELM1 were found in seed plants but not in other eukaryotes. ELM1:green fluorescent protein (GFP) was found to surround mitochondria, and ELM1 interacts with both DPR3A and DRP3B. In the elm1 mutant, DRP3A:GFP was observed in the cytosol, whereas in wild-type Arabidopsis, DRP3A:GFP localized to the ends and constricted sites of mitochondria. These results collectively suggest that mitochondrial fission in Arabidopsis is mediated by the plant-specific factor ELM1, which is required for the relocalization of DRP3A (and possibly also DRP3B) from the cytosol to mitochondrial fission sites.  相似文献   

4.
BACKGROUND AND AIMS: Recent reports have described dramatic alterations in mitochondrial morphology during metazoan apoptosis. A dynamin-related protein (DRP) associated with mitochondrial outer membrane fission is known to be involved in the regulation of apoptosis. This study analysed the relationship between mitochondrial fission and regulation of plant cell death. METHODS: Transgenic plants were generated possessing Arabidopsis DRP3B (K56A), the dominant-negative form of Arabidopsis DRP, mitochondrial-targeted green fluorescent protein and mouse Bax. KEY RESULTS: Arabidopsis plants over-expressing DRP3B (K56A) exhibited long tubular mitochondria. In these plants, mitochondria appeared as a string-of-beads during cell death. This indicates that DRP3B (K56A) prevented mitochondrial fission during plant cell death. However, in contrast to results for mammalian cells and yeast, Bax-induced cell death was not inhibited in DRP3B (K56A)-expressing plant cells. Similarly, hydrogen peroxide-, menadione-, darkness- and salicylic acid-induced cell death was not inhibited by DRP3B (K56A) expression. CONCLUSIONS: These results indicate that the systems controlling cell death in animals and plants are not common in terms of mitochondrial fission.  相似文献   

5.
Peroxisomes undergo dramatic changes in size, shape, number, and position within the cell, but the division process of peroxisomes has not been characterized. We screened a number of Arabidopsis mutants with aberrant peroxisome morphology (apm mutants). In one of these mutants, apm1, the peroxisomes are long and reduced in number, apparently as a result of inhibition of division. We showed that APM1 encodes dynamin-related protein 3A (DRP3A), and that mutations in APM1/DRP3A also caused aberrant morphology of mitochondria. The transient expression analysis showed that DRP3A is associated with the cytosolic side of peroxisomes. These findings indicate that the same dynamin molecule is involved in peroxisomal and mitochondrial division in higher plants. We also report that the growth of Arabidopsis, which requires the cooperation of various organelles, including peroxisomes and mitochondria, is repressed in apm1, indicating that the changes of morphology of peroxisomes and mitochondria reduce the efficiency of metabolism in these organelles.  相似文献   

6.
Peroxisomes are highly dynamic organelles involved in various metabolic pathways. The division of peroxisomes is regulated by factors such as the PEROXIN11 (PEX11) proteins that promote peroxisome elongation and the dynamin-related proteins (DRPs) and FISSION1 (FIS1) proteins that function together to mediate organelle fission. In Arabidopsis thaliana, DRP3A/DRP3B and FIS1A (BIGYIN)/FIS1B are two pairs of homologous proteins known to function in both peroxisomal and mitochondrial division. Here, we report that DRP5B, a DRP distantly related to the DRP3s and originally identified as a chloroplast division protein, also contributes to peroxisome division. DRP5B localizes to both peroxisomes and chloroplasts. Mutations in the DRP5B gene lead to peroxisome division defects and compromised peroxisome functions. Using coimmunoprecipitation and bimolecular fluorescence complementation assays, we further demonstrate that DRP5B can interact or form a complex with itself and with DRP3A, DRP3B, FIS1A, and most of the Arabidopsis PEX11 isoforms. Our data suggest that, in contrast with DRP3A and DRP3B, whose orthologs exist across plant, fungal, and animal kingdoms, DRP5B is a plant/algal invention to facilitate the division of their organelles (i.e., chloroplasts and peroxisomes). In addition, our results support the notion that proteins involved in the early (elongation) and late (fission) stages of peroxisome division may act cooperatively.  相似文献   

7.
Mitochondria are highly dynamic organelles that can change in number and morphology during cell cycle, development or in response to extracellular stimuli. These morphological dynamics are controlled by a tight balance between two antagonistic pathways that promote fusion and fission. Genetic approaches have identified a cohort of conserved proteins that form the core of mitochondrial remodelling machineries. Mitofusins (MFNs) and OPA1 proteins are dynamin-related GTPases that are required for outer- and inner-mitochondrial membrane fusion respectively whereas dynamin-related protein 1 (DRP1) is the master regulator of mitochondrial fission. We demonstrate here that the Drosophila PMI gene and its human orthologue TMEM11 encode mitochondrial inner-membrane proteins that regulate mitochondrial morphogenesis. PMI-mutant cells contain a highly condensed mitochondrial network, suggesting that PMI has either a pro-fission or an anti-fusion function. Surprisingly, however, epistatic experiments indicate that PMI shapes the mitochondria through a mechanism that is independent of drp1 and mfn. This shows that mitochondrial networks can be shaped in higher eukaryotes by at least two separate pathways: one PMI-dependent and one DRP1/MFN-dependent.  相似文献   

8.
Mitochondria and peroxisomes can be fragmented by the process of fission. The fission machineries of both organelles share a set of proteins. GDAP1 is a tail‐anchored protein of mitochondria and induces mitochondrial fragmentation. Mutations in GDAP1 lead to Charcot‐Marie‐Tooth disease (CMT), an inherited peripheral neuropathy, and affect mitochondrial dynamics. Here, we show that GDAP1 is also targeted to peroxisomes mediated by the import receptor Pex19. Knockdown of GDAP1 leads to peroxisomal elongation that can be rescued by re‐expressing GDAP1 and by missense mutated forms found in CMT patients. GDAP1‐induced peroxisomal fission is dependent on the integrity of its hydrophobic domain 1, and on Drp1 and Mff, as is mitochondrial fission. Thus, GDAP1 regulates mitochondrial and peroxisomal fission by a similar mechanism. However, our results reveal also a more critical role of the amino‐terminal GDAP1 domains, carrying most CMT‐causing mutations, in the regulation of mitochondrial compared to peroxisomal fission.  相似文献   

9.
In plants, the division of peroxisomes is mediated by several classes of proteins, including PEROXIN11 (PEX11), FISSION1 (FIS1) and DYNAMIN-RELATED PROTEIN3 (DRP3). DRP3A and DRP3B are two homologous dynamin-related proteins playing overlapping roles in the division of both peroxisomes and mitochondria, with DRP3A performing a stronger function than DRP3B in peroxisomal fission. Here, we report the identification and characterization of the peroxisome division defective 2 (pdd2) mutant, which was later proven to be another drp3A allele. The pdd2 mutant generates a truncated DRP3A protein and exhibits pale green and retarded growth phenotypes. Intriguingly, this mutant displays much stronger peroxisome division deficiency in root cells than in leaf mesophyll cells. Our data suggest that the partial GTPase effector domain retained in pdd2 may have contributed to the distinct mutant phenotype of this mutant.Key words: peroxisome division, dynamin-related protein, arabidopsisIn eukaryotic cells, peroxisomes are surrounded by single membranes and house a variety of oxidative metabolic pathways such as lipid metabolism, detoxification and plant photorespiration.1,2 To accomplish multiple tasks, the morphology, abundance and positioning of peroxisomes need to be highly regulated. Three families of proteins, whose homologs are present across different kingdoms, have been shown to be involved in peroxisome division in Arabidopsis. The PEX11 protein family is composed of five integral membrane proteins with primary roles in peroxisome elongation/tubulation, the initial step in peroxisome division.35 Although the exact function of PEX11s has not been demonstrated, these proteins are believed to participate in peroxisome membrane modification.6,7 The FIS1 family consists of two isoforms, which are C-terminal tail-anchored membrane proteins with rate limiting functions at the fission step.8,9 DRP3A and DRP3B belong to a superfamily of dynamin-related proteins, which are large and self-assembling GTPases involved in the fission and fusion of membranes by acting as mechanochemical enzymes or signaling GTPases.10 The function of PEX11 seems to be exclusive to peroxisomes, whereas DRP3 and FIS1 are shared by the division machineries of both peroxisomes and mitochondria in Arabidopsis.8,9,1116 FIS1 proteins are believed to tether DRP proteins to the peroxisomal membrane,17,18 but direct evidence has not been obtained from plants. DRP3A and DRP3B share 77% sequence identity at the protein level and are functionally redundant in regulating mitochondrial division; however, DRP3A''s role on the peroxisome seems stronger and cannot be substituted by DRP3B in peroxisome division.8,13,15In a continuous effort to identify components of the plant peroxisome division apparatus from Arabidopsis, we performed genetic screens in a peroxisomal marker background expressing the YFP (yellow fluorescent protein)-PTS1 (peroxisome targeting signal 1, containing Ser-Lys-Leu) fusion protein. Mutants with defects in the morphology and abundance of fluorescently labeled peroxisomes are characterized. Following our analysis of the pdd1 mutant, which turned out to be a strong allele of DRP3A,8 we characterized the pdd2 mutant.In root cells of the pdd2 mutant, extremely elongated peroxisomes and a beads-on-a-string peroxisomal phenotype are frequently observed (Fig. 1A and B). These peroxisome phenotypes resemble those of pdd1 and other strong drp3A alleles previously reported.8,15 However, the peroxisome phenotype seems to be less dramatic in leaf mesophyll cells. For instance, in addition to the decreased number of total peroxisomes, peroxisomes in leaf cells are only slightly elongated or exhibit a beads-on-a-string phenotype (Fig. 1C and D). Previously, we reported the phenotypes of three strong drp3A alleles, all of which contain a large number of peroxules, long and thin membrane extensions from the peroxisome,8 yet such peroxisomal structures are not observed in pdd2. On the other hand, pdd2 has a more severe growth phenotype than most drp3A alleles, as it is slow in growth and has pale green leaves (Fig. 1E). Genetic analysis showed that pdd2 segregates as a single recessive mutation (data not shown).Open in a separate windowFigure 1Phenotypic analyses of pdd2 and identification of the PDD2 gene. (A–D) Confocal micrographs of root and mesophyll cells in 3-week-old wild type and pdd2 mutant plants. Green signals show peroxisomes; red signals show chloroplasts. Scale bars = 20 µm. (E) Growth phenotype of 3-week-old mutants. (F) Map-based cloning of the PDD2 gene. Genetic distance from PDD2 is shown under each molecular marker. Positions for mutations in previously analyzed drp3A alleles and pdd2 are indicated in the gene schematic. drp3A-1 and drp3A-2 are T-DNA insertion mutants, whereas pdd1 is an EMS mutant containing a premature stop codon in exon 6. (G) A schematic of the DRP3A (PDD2) protein with functional domains indicated. The pdd2 allele encodes a truncated protein lacking part of the GED domain.The unique combination of peroxisomal and growth phenotypes of pdd2 prompted us to use map-based cloning to identify the PDD2 gene, with the hope to discover novel proteins in the peroxisome division machinery. A population of approximately 6,000 F2 plants (pdd2 × Ler) was generated. After screening 755 F2 mutants, the pdd2 mutation was mapped to the region between markers T10C21 and F4B14 on the long arm of chromosome 4 (Fig. 1F). Since this region contains DRP3A, we sequenced the entire DRP3A gene in pdd2 and identified a G→A transition at the junction of the 18th exon and intron (Fig. 1F). Further analysis revealed that the point mutation at this junction caused mis-splicing of intron 18, introducing a stop codon in the GTPase effector domain GED near the C terminus (Fig. 1G).DRPs share with the classic dynamins an N-terminal GTPase domain, a middle domain (MD), and a regulatory motif named the GTPase effector domain (GED) (Fig. 1G). To date, a total of 26 drp3A mutant alleles carrying missense or nonsense mutations along the length of the DRP3A gene have been isolated.8,15 The combined peroxisomal and growth phenotype of pdd2 and the nature of the mutation in this allele are unique among all the drp3A alleles, indicating that the partial GED domain retained in pdd2 may have created some novel function for this protein. Further analysis of the truncated protein may be necessary to test this prediction.  相似文献   

10.
The mammalian dynamin-like protein DLP1/Drp1 has been shown to mediate both mitochondrial and peroxisomal fission. In this study, we have examined whether hFis1, a mammalian homologue of yeast Fis1, which has been shown to participate in mitochondrial fission by an interaction with DLP1/Drp1, is also involved in peroxisomal growth and division. We show that hFis1 localizes to peroxisomes in addition to mitochondria. Through differential tagging and deletion experiments, we demonstrate that the transmembrane domain and the short C-terminal tail of hFis1 is both necessary and sufficient for its targeting to peroxisomes and mitochondria, whereas the N-terminal region is required for organelle fission. hFis1 promotes peroxisome division upon ectopic expression, whereas silencing of Fis1 by small interfering RNA inhibited fission and caused tubulation of peroxisomes. These findings provide the first evidence for a role of Fis1 in peroxisomal fission and suggest that the fission machinery of mitochondria and peroxisomes shares common components.  相似文献   

11.
Tanaka A  Youle RJ 《Molecular cell》2008,29(4):409-410
DRP1, a member of the dynamin family of large GTPases, mediates mitochondrial fission. In a recent issue of Developmental Cell, Cassidy-Stone et al. (2008) identified mdivi-1, a new DRP1 inhibitor that prevents mitochondria division and Bax-mediated mitochondrial outer membrane permeabilization during apoptosis.  相似文献   

12.
Mitochondria play a critical role in regulation of apoptosis, a form of programmed cell death, by releasing apoptogenic factors including cytochrome c. Growing evidence suggests that dynamic changes in mitochondrial morphology are involved in cellular apoptotic response. However, whether DRP1-mediated mitochondrial fission is required for induction of apoptosis remains speculative. Here, we show that siRNA-mediated DRP1 knockdown promoted accumulation of elongated mitochondria in HCT116 and SW480 human colon cancer cells. Surprisingly, DRP1 down-regulation led to decreased proliferation and increased apoptosis of these cells. A higher rate of cytochrome c release and reductions in mitochondrial membrane potential were also revealed in DRP1-depleted cells. Taken together, our present findings suggest that mitochondrial fission factor DRP1 inhibits colon cancer cell apoptosis through the regulation of cytochrome c release and mitochondrial membrane integrity.  相似文献   

13.
Drp1 (dynamin-related protein 1) is recruited to both mitochondrial and peroxisomal membranes to execute fission. Fis1 and Mff are Drp1 receptor/effector proteins of mitochondria and peroxisomes. Recently, MiD49 and MiD51 were also shown to recruit Drp1 to the mitochondrial surface; however, different reports have ascribed opposing roles in fission and fusion. Here, we show that MiD49 or MiD51 overexpression blocked fission by acting in a dominant-negative manner by sequestering Drp1 specifically at mitochondria, causing unopposed fusion events at mitochondria along with elongation of peroxisomes. Mitochondrial elongation caused by MiD49/51 overexpression required the action of fusion mediators mitofusins 1 and 2. Furthermore, at low level overexpression when MiD49 and MiD51 form discrete foci at mitochondria, mitochondrial fission events still occurred. Unlike Fis1 and Mff, MiD49 and MiD51 were not targeted to the peroxisomal surface, suggesting that they specifically act to facilitate Drp1-directed fission at mitochondria. Moreover, when MiD49 or MiD51 was targeted to the surface of peroxisomes or lysosomes, Drp1 was specifically recruited to these organelles. Moreover, the Drp1 recruitment activity of MiD49/51 appeared stronger than that of Mff or Fis1. We conclude that MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and suggest that they provide specificity to the division of mitochondria.  相似文献   

14.
Ligand-induced endocytosis of the immune receptor FLAGELLIN SENSING2 (FLS2) is critical for maintaining its proper abundance in the plasma membrane (PM) to initiate and subsequently down regulate cellular immune responses to bacterial flagellin or flg22-peptide. The molecular components governing PM abundance of FLS2, however, remain mostly unknown. Here, we identified Arabidopsis (Arabidopsis thaliana) DYNAMIN-RELATED PROTEIN1A (DRP1A), a member of a plant-specific family of large dynamin GTPases, as a critical contributor to ligand-induced endocytosis of FLS2 and its physiological roles in flg22-signaling and immunity against Pseudomonas syringae pv. tomato DC3000 bacteria in leaves. Notably, drp1a single mutants displayed similar flg22-defects as those previously reported for mutants in another dynamin-related protein, DRP2B, that was previously shown to colocalize with DRP1A. Our study also uncovered synergistic roles of DRP1A and DRP2B in plant growth and development as drp1a drp2b double mutants exhibited severely stunted roots and cotyledons, as well as defective cell shape, cytokinesis, and seedling lethality. Furthermore, drp1a drp2b double mutants hyperaccumulated FLS2 in the PM prior to flg22-treatment and exhibited a block in ligand-induced endocytosis of FLS2, indicating combinatorial roles for DRP1A and DRP1B in governing PM abundance of FLS2. However, the increased steady-state PM accumulation of FLS2 in drp1a drp2b double mutants did not result in increased flg22 responses. We propose that DRP1A and DRP2B are important for the regulation of PM-associated levels of FLS2 necessary to attain signaling competency to initiate distinct flg22 responses, potentially through modulating the lipid environment in defined PM domains.

A plant-specific large dynamin GTPase is required for plant responses against bacterial pathogens and, with another dynamin, regulates the cell surface composition for plant growth and defense.  相似文献   

15.
Mitochondrial fission requires the evolutionarily conserved dynamin related protein (DRP1), which is recruited from the cytosol to the mitochondrial outer membrane to coordinate membrane scission. Currently, the mechanism of recruitment and assembly of DRP1 on the mitochondria is unclear. Here, we identify Ubc9 and Sumo1 as specific DRP1-interacting proteins and demonstrate that DRP1 is a Sumo1 substrate. In addition, a surprising number of Sumo1 conjugates were observed in the mitochondrial fractions, suggesting that sumoylation is a common mitochondrial modification. Video microscopy demonstrates that YFP:Sumo1 is often found at the site of mitochondrial fission and remains tightly associated to the tips of fragmented mitochondria. Consistent with this, fluorescence microscopy revealed that a portion of total cytosolic YFP:Sumo1 colocalizes with endogenous mitochondrial DRP1. Finally, transient transfection of Sumo1 dramatically increases the level of mitochondrial fragmentation. Analysis of endogenous DRP1 levels indicates that overexpression of Sumo1 specifically protects DRP1 from degradation, resulting in a more stable, active pool of DRP1, which at least partially accounts for the excess fragmentation. Together, these data are the first to identify a function for Sumo1 on the mitochondria and suggest a novel role for the participation of Sumo1 in mitochondrial fission.  相似文献   

16.
Aung K  Hu J 《The Plant cell》2011,23(12):4446-4461
Peroxisomes and mitochondria are multifunctional eukaryotic organelles that are not only interconnected metabolically but also share proteins in division. Two evolutionarily conserved division factors, dynamin-related protein (DRP) and its organelle anchor FISSION1 (FIS1), mediate the fission of both peroxisomes and mitochondria. Here, we identified and characterized a plant-specific protein shared by these two types of organelles. The Arabidopsis thaliana PEROXISOMAL and MITOCHONDRIAL DIVISION FACTOR1 (PMD1) is a coiled-coil protein tethered to the membranes of peroxisomes and mitochondria by its C terminus. Null mutants of PMD1 contain enlarged peroxisomes and elongated mitochondria, and plants overexpressing PMD1 have an increased number of these organelles that are smaller in size and often aggregated. PMD1 lacks physical interaction with the known division proteins DRP3 and FIS1; it is also not required for DRP3's organelle targeting. Affinity purifications pulled down PMD1's homolog, PMD2, which exclusively targets to mitochondria and plays a specific role in mitochondrial morphogenesis. PMD1 and PMD2 can form homo- and heterocomplexes. Organelle targeting signals reside in the C termini of these proteins. Our results suggest that PMD1 facilitates peroxisomal and mitochondrial proliferation in a FIS1/DRP3-independent manner and that the homologous proteins PMD1 and PMD2 perform nonredundant functions in organelle morphogenesis.  相似文献   

17.
The modification of proteins by the small ubiquitin‐like modifier (SUMO) is known to regulate an increasing array of cellular processes. SUMOylation of the mitochondrial fission GTPase dynamin‐related protein 1 (DRP1) stimulates mitochondrial fission, suggesting that SUMOylation has an important function in mitochondrial dynamics. The conjugation of SUMO to its substrates requires a regulatory SUMO E3 ligase; however, so far, none has been functionally associated with the mitochondria. By using biochemical assays, overexpression and RNA interference experiments, we characterized the mitochondrial‐anchored protein ligase (MAPL) as the first mitochondrial‐anchored SUMO E3 ligase. Furthermore, we show that DRP1 is a substrate for MAPL, providing a direct link between MAPL and the fission machinery. Importantly, the large number of unidentified mitochondrial SUMO targets suggests a global role for SUMOylation in mitochondrial function, placing MAPL as a crucial component in the regulation of multiple conjugation events.  相似文献   

18.
Peroxisomes are eukaryotic organelles highly versatile and dynamic in content and abundance. Plant peroxisomes mediate various metabolic pathways, a number of which are completed sequentially in peroxisomes and other subcellular organelles, including mitochondria and chloroplasts. To understand how peroxisomal dynamics contribute to changes in plant physiology and adaptation, the multiplication pathways of peroxisomes are being dissected. Research in Arabidopsis thaliana has identified several evolutionarily conserved families of proteins in peroxisome division. These include five PEROXIN11 proteins (PEX11a to -e) that induce peroxisome elongation and the fission machinery, which is composed of three dynamin-related proteins (DRP3A, -3B and -5B) and DRP''s membrane receptor, FISSION1 (FIS1A and -1B). While the function of PEX11 is restricted to peroxisomes, the fission factors are more promiscuous. DRP3 and FIS1 proteins are shared between peroxisomes and mitochondria, and DRP5B plays a dual role in the division of chloroplasts and peroxisomes. Analysis of the Arabidopsis genome suggests that higher plants may also contain functional homologs of the yeast Mdv1/Caf4 proteins, adaptor proteins that link DRPs to FIS1 on the membrane of both peroxisomes and mitochondria. Sharing a conserved fission machine between these metabolically linked subcellular compartments throughout evolution may have some biological significance.Key words: Arabidopsis, peroxisomal and mitochondrial division, dynamin-related protein (DRP), FISSION1 (FIS1), mitochondrial division 1 (Mdv1), CCR4p-associated factor 4 (Caf4)Peroxisomes are single membrane-delimited organelles involved in a variety of metabolic pathways essential to development.1 Plant peroxisomes participate in processes such as lipid mobilization, photorespiration, detoxification, hormone biosynthesis and metabolism, and plant-pathogen interaction.2,3 A number of these metabolic functions, such as photorespiration, fatty acid metabolism and jasmonic acid biosynthesis, are accomplished through the cooperative efforts of peroxisomes and other subcellular compartments, such as mitochondria and chloroplasts.35 The function, morphology and abundance of peroxisomes can vary depending on the organism, cell type, developmental stage and prevailing environmental conditions in which the organism resides.6,7 It is now believed that in addition to budding from the endoplasmic reticulum (ER), peroxisomes also multiply from pre-existing peroxisomes via division, going through steps including peroxisome elongation/tubulation, membrane constriction and fission.7,8In the reference plant Arabidopsis thaliana, three evolutionarily conserved families of proteins have been identified as key components of the peroxisome division apparatus. Five integral membrane proteins, named PEX11a to -e, are mainly responsible for inducing the elongation and tubulation of peroxisomes in the early stage of peroxisome division.911 DRP3A and DRP3B are members of a dynamin-related protein family that powers the fission of membranes and FIS1A and FIS1B are homologous proteins believed to anchor the DRP proteins to the membrane.1219 Similar to their counterparts in yeasts and mammals, DRP3 and FIS1 are shared by the fission machineries of peroxisomes and mitochondria.1219 We recently reported the unexpected finding that DRP5B, a plant/algal-specific DRP distantly related to the DRP3 proteins and originally discovered for its function in chloroplast division, is also involved in the division of peroxisomes. Using co-immunoprecipitation (co-IP) and bimolecular fluorescence complementation (BiFC) assays, we further demonstrated that DRP5B and the two DRP3 proteins can homo- and hetero-dimerize and each DRP can form a complex with FIS1A and/or FIS1B and most of the Arabidopsis PEX11 isoforms.20 These results together demonstrate that, despite their distinct evolutionary origins, structures and functions, peroxisomes, mitochondria and chloroplasts use some of the same factors for fission. These data also revealed that, like in yeasts and mammals, the FIS1-DRP complex exits on peroxisomes and mitochondria in plants.DRP5B, a DRP unique in the plant and photosynthetic algae lineages, seems to be the sole component shared by the division of chloroplasts and peroxisomes.20 However, both FIS1 and DRP are found to be required for the division of peroxisomes and mitochondria throughout eukaryotic evolution,21,22 prompting the question: to what extent is the FIS1-DRP complex conserved among diverse species? In the yeast Saccharomyces cerevisiae, this fission complex also contains an adaptor encoded by two homologous WD40 proteins, Mdv1 and Caf4, which are partially redundant in function with Mdv1 playing the major role. Mdv1 and Caf4 share an N-terminal extension (NTE) domain with two α-helices, a middle coiled-coil domain (CC) and C-terminal WD40 repeat. Both proteins use the NTE to interact with the tetratricopeptide repeat (TPR) domain-containing N-terminus of Fis1, the CC domain to dimerize and the C-terminal WD40 repeat to interact with and recruit the DRP protein, Dnm1.23,24 The Hansenula polymorpha Mdv1 (Hp Mdv1) also has a dual function in the division of peroxisomes and mitochondria.25 In addition, a Mdv1/Caf4 homolog, Mda1, was identified from the primitive red algae Cyanidioschyzon merolae and found to be involved at least in mitochondrial fission.26 However, higher eukaryotes do not seem to have obvious homologs of Mdv1/Caf4. For example, mammals contain Fis1 and Drp (called DLP1 or Drp1) but no apparent homologs to Mdv1 and Caf4. Instead, a metazoan-specific tail-anchored protein, Mitochondrial Fission Factor (Mff), was recently found to regulate the fission of mitochondria and peroxisomes in a similar manner to Fis1. Mff is essential in recruiting Drp1, at least in mitochondrial division, yet it functions in a Fis1-independent pathway.27,28To determine whether plants contain structural or functional homologs of Mdv1 and Caf4, we performed blast searches of the Arabidopsis genome, which resulted in the retrieval of ∼300 WD40 proteins. However, just like the search results from mammals, none of these proteins show significant sequence similarity with Mdv1 and Caf4 beyond the WD40 repeats. To identify proteins with similar domain structures with Mdv1/Caf4, we further analyzed these WD40 proteins, using the online Simple Modular Architecture Research Tool (smart.embl-heidelberg.de/). After eliminating proteins apparently inappropriate to be part of this complex, such as kinases and proteins with drastically distinct domain organizations despite of having both WD40 repeats and CC domains, we were able to narrow down to eight proteins. These proteins, which are encoded by At1g04510, At2g32950, At2g33340, At3g18860, At4g05410, At4g21130, At5g50230 and At5g67320, respectively, each contain a central CC domain in addition to the WD40 repeat region and are ranging from 450 to 900 amino acids in length (Fig. 1A). Subcellular localization studies will need to be performed to determine whether some of these proteins are associated with peroxisomes and mitochondria. If such a WD40 protein is proven to be part of the FIS1-DRP complex in Arabidopsis, it will be important to determine whether it simply acts as an adaptor or it also plays other roles, such as to promote and maintain the active structure and conformation of DRP3A/3B at the division site (Fig. 1B). Consistent with the latter scenario, it was found that Sc Mdv1 accumulates at the division sites after Dnm1 assembles and that the mammalian Fis1 and Drp1 proteins physically interact.29,30 Peroxisomes and mitochondria are functionally linked in a number of metabolic pathways. For example, in plants, they act cooperatively in important processes such as fatty acid metabolism and photorespiration.3 An interesting question to address in the future is whether sharing such a conserved fission machine between peroxisomes and mitochondria throughout evolution has critical biological consequences.Open in a separate windowFigure 1Domain structure of Mdv1/Caf4 and their homologs or putative homologs. (A) Domain structure of Sc Mdv1 and Sc Caf4 from S. cerevisiae, their homologs from H. polymorpha and C. merolae, and the eight Arabidopsis proteins with similar domain organization. Grey boxes indicate the CC domain and black boxes are Wd40 repeats. (B) The putative FIS1-WD40-DRP complex in Arabidopsis. CC, coiled-coil; NTE, N-terminal extension; TPR, tetratricopeptide repeat; TMD, transmembrane domain.  相似文献   

19.
Mitochondria are dynamic organelles that have inner and outer membranes. In plants, the inner membrane has been well studied but relatively little is known about the outer membrane. Here we report that Arabidopsis cells have mitochondrial outer membrane-derived structures, some of which protrude from the main body of mitochondria (mitochondrial outer-membrane protrusions; MOPs), while others form vesicle-like structures without a matrix marker. The latter vesicle-like structures are similar to some mammalian MDVs (mitochondrial-derived vesicles). Live imaging demonstrated that a plant MDV budded off from the tip of a MOP. MDVs were also observed in the drp3a drp3b double mutant, indicating that they could be formed without the mitochondrial fission factors DRP3A and DRP3B. Double staining studies showed that the MDVs were not peroxisomes, endosomes, Golgi apparatus or trans-Golgi network (TGN). The numbers of MDVs and MOPs increased in senescent leaves and after dark treatment. Together, these results suggest that MDVs and MOPs are related to leaf senescence.  相似文献   

20.
RALA and RALBP1 regulate mitochondrial fission at mitosis   总被引:2,自引:0,他引:2  
Mitochondria exist as dynamic interconnected networks that are maintained through a balance of fusion and fission. Equal distribution of mitochondria to daughter cells during mitosis requires fission. Mitotic mitochondrial fission depends on both the relocalization of the large GTPase DRP1 to the outer mitochondrial membrane and phosphorylation of Ser 616 on DRP1 by the mitotic kinase cyclin B-CDK1 (ref. 2). We now report that these processes are mediated by the small Ras-like GTPase RALA and its effector RALBP1 (also known as RLIP76, RLIP1 or RIP1; refs 3, 4). Specifically, the mitotic kinase Aurora A phosphorylates Ser 194 of RALA, relocalizing it to the mitochondria, where it concentrates RALBP1 and DRP1. Furthermore, RALBP1 is associated with cyclin B-CDK1 kinase activity that leads to phosphorylation of DRP1 on Ser 616. Disrupting either RALA or RALBP1 leads to a loss of mitochondrial fission at mitosis, improper segregation of mitochondria during cytokinesis and a decrease in ATP levels and cell number. Thus, the two mitotic kinases Aurora A and cyclin B-CDK1 converge on RALA and RALBP1 to promote mitochondrial fission, the appropriate distribution of mitochondria to daughter cells and ultimately proper mitochondrial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号