共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamin-related proteins (DRPs) are key components of the organelle division machineries, functioning as molecular scissors during the fission process. In Arabidopsis, DRP3A and DRP3B are shared by peroxisomal and mitochondrial division, whereas the structurally-distinct DRP5B (ARC5) protein is involved in the division of chloroplasts and peroxisomes. Here, we further investigated the roles of DRP3A, DRP3B, and DRP5B in organelle division and plant development. Despite DRP5B's lack of stable association with mitochondria, drp5B mutants show defects in mitochondrial division. The drp3A-2 drp3B-2 drp5B-2 triple mutant exhibits enhanced mitochondrial division phenotypes over drp3A-2 drp3B-2, but its peroxisomal morphology and plant growth phenotypes resemble those of the double mutant. We further demonstrated that DRP3A and DRP3B form a supercomplex in vivo, in which DRP3A is the major component, yet DRP5B is not a constituent of this complex. We thus conclude that DRP5B participates in the division of three types of organelles in Arabidopsis, acting independently of the DRP3 complex. Our findings will help elucidate the precise composition of the DRP3 complex at organelle division sites, and will be instrumental to studies aimed at understanding how the same protein mediates the morphogenesis of distinct organelles that are linked by metabolism. 相似文献
2.
Mano S Nakamori C Kondo M Hayashi M Nishimura M 《The Plant journal : for cell and molecular biology》2004,38(3):487-498
Peroxisomes undergo dramatic changes in size, shape, number, and position within the cell, but the division process of peroxisomes has not been characterized. We screened a number of Arabidopsis mutants with aberrant peroxisome morphology (apm mutants). In one of these mutants, apm1, the peroxisomes are long and reduced in number, apparently as a result of inhibition of division. We showed that APM1 encodes dynamin-related protein 3A (DRP3A), and that mutations in APM1/DRP3A also caused aberrant morphology of mitochondria. The transient expression analysis showed that DRP3A is associated with the cytosolic side of peroxisomes. These findings indicate that the same dynamin molecule is involved in peroxisomal and mitochondrial division in higher plants. We also report that the growth of Arabidopsis, which requires the cooperation of various organelles, including peroxisomes and mitochondria, is repressed in apm1, indicating that the changes of morphology of peroxisomes and mitochondria reduce the efficiency of metabolism in these organelles. 相似文献
3.
Peroxisomes are multi-functional organelles that differ in size and abundance depending on the species, cell type, developmental stage, and metabolic and environmental conditions. The PEROXIN11 protein family and the DYNAMIN-RELATED PROTEIN3A (DRP3A) protein have been shown previously to play key roles in peroxisome division in Arabidopsis. To establish a mechanistic model of peroxisome division in plants, we employed forward and reverse genetic approaches to identify more proteins involved in this process. In this study, we identified three new components of the Arabidopsis peroxisome division apparatus: DRP3B, a homolog of DRP3A, and FISSION1A and 1B (FIS1A and 1B), two homologs of the yeast and mammalian FIS1 proteins that mediate the fission of peroxisomes and mitochondria by tethering the DRP proteins to the membrane. DRP3B is partially targeted to peroxisomes and causes defects in peroxisome fission when the gene function is disrupted. drp3A drp3B double mutants display stronger deficiencies than each single mutant parent with respect to peroxisome abundance, seedling establishment and plant growth, suggesting partial functional redundancy between DRP3A and DRP3B. In addition, FIS1A and FIS1B are each dual-targeted to peroxisomes and mitochondria; their mutants show growth inhibition and contain peroxisomes and mitochondria with incomplete fission, enlarged size and reduced number. Our results demonstrate that both DRP3 and FIS1 protein families contribute to peroxisome fission in Arabidopsis, and support the view that DRP and FIS1 orthologs are common components of the peroxisomal and mitochondrial division machineries in diverse eukaryotic species. 相似文献
4.
Nagotu S Krikken AM Otzen M Kiel JA Veenhuis M van der Klei IJ 《Traffic (Copenhagen, Denmark)》2008,9(9):1471-1484
We show that Mdv1 and Caf4, two components of the mitochondrial fission machinery in Saccharomyces cerevisiae , also function in peroxisome proliferation. Deletion of MDV1 , CAF4 or both, however, had only a minor effect on peroxisome numbers at peroxisome-inducing growth conditions, most likely related to the fact that Vps1 – and not Dnm1 – is the key player in peroxisome fission in this organism. In contrast, in Hansenula polymorpha , which has only a Dnm1-dependent peroxisome fission machinery, deletion of MDV1 led to a drastic reduction of peroxisome numbers. This phenotype was accompanied by a strong defect in mitochondrial fission. The MDV1 paralog CAF4 is absent in H. polymorpha . In wild-type H. polymorpha , cells Dnm1–mCherry and green fluorescent protein (GFP)–Mdv1 colocalize in spots that associate with both peroxisomes and mitochondria. Furthermore, Fis1 is essential to recruit Mdv1 to the peroxisomal and mitochondrial membrane. However, formation of GFP–Mdv1 spots – and related to this normal organelle fission – is strictly dependent on the presence of Dnm1. In dnm1 cells, GFP–Mdv1 is dispersed over the surface of peroxisomes and mitochondria. Also, in H. polymorpha mdv1 or fis1 cells, the number of Dnm1–GFP spots is strongly reduced. These spots still associate to organelles but are functionally inactive. 相似文献
5.
FtsZ ring formation at the chloroplast division site in plants 总被引:15,自引:0,他引:15
Among the events that accompanied the evolution of chloroplasts from their endosymbiotic ancestors was the host cell recruitment of the prokaryotic cell division protein FtsZ to function in chloroplast division. FtsZ, a structural homologue of tubulin, mediates cell division in bacteria by assembling into a ring at the midcell division site. In higher plants, two nuclear-encoded forms of FtsZ, FtsZ1 and FtsZ2, play essential and functionally distinct roles in chloroplast division, but whether this involves ring formation at the division site has not been determined previously. Using immunofluorescence microscopy and expression of green fluorescent protein fusion proteins in Arabidopsis thaliana, we demonstrate here that FtsZ1 and FtsZ2 localize to coaligned rings at the chloroplast midpoint. Antibodies specific for recognition of FtsZ1 or FtsZ2 proteins in Arabidopsis also recognize related polypeptides and detect midplastid rings in pea and tobacco, suggesting that midplastid ring formation by FtsZ1 and FtsZ2 is universal among flowering plants. Perturbation in the level of either protein in transgenic plants is accompanied by plastid division defects and assembly of FtsZ1 and FtsZ2 into filaments and filament networks not observed in wild-type, suggesting that previously described FtsZ-containing cytoskeletal-like networks in chloroplasts may be artifacts of FtsZ overexpression. 相似文献
6.
The WD repeat protein,Mdv1p,functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission
下载免费PDF全文

Yeast mitochondrial fission is a multistep process during which the dynamin-related GTPase, Dnm1p, assembles into punctate structures that associate with the outer mitochondrial membrane and mediate mitochondrial division. Steps in the Dnm1p-dependent process of fission are regulated by the actions of the WD repeat protein, Mdv1p, and the mitochondrial outer membrane protein, Fis1p. Our previous studies suggested a model where Mdv1p functions to regulate fission at a post-Dnm1p assembly step and Fis1p functions at two distinct steps, at an early point, to regulate Dnm1p assembly, and later, together with Mdv1p, to facilitate Dnm1p-dependent mitochondrial fission. To test this model, we have examined the physical and functional relationship between Mdv1p and Fis1p and present genetic, biochemical, and two-hybrid data indicating that a Fis1p-Mdv1p complex is required to regulate mitochondrial fission. To further define the role of Mdv1p in fission, we examined the structural features of Mdv1p required for its interactions with Dnm1p and Fis1p. Data from two-hybrid analyses and GFP-tagged domains of Mdv1p indicate that it contains two functionally distinct domains that enable it to function as a molecular adaptor to regulate sequential interactions between Dnm1p and Fis1p and catalyze a rate-limiting step in mitochondrial fission. 相似文献
7.
Jos M Cuezva Ana I Flores Antonio Liras Juan F Santarn Agustín Alconada 《Biology of the cell / under the auspices of the European Cell Biology Organization》1993,77(1):47-62
Summary— A review of the proteinaceous machinery involved in protein sorting pathways and protein folding and assembly in mitochondria and peroxisomes is presented. After considering the various sorting pathways and targeting signals of mitochondrial and peroxisomal proteins, we make a comparative dissection of the protein factors involved in: i) the stabilization of cytosolic precursor proteins in a translocation competent conformation; ii) the membrane import apparatus of mitochondria and peroxisomes; iii) the processing of mitochondrial precursor proteins, and the eventual processing of certain peroxisomal precursor, in the interior of the organelles; and iv) the requirement of molecular chaperones for appropriate folding and assembly of imported proteins in the matrix of both organelles. Those aspects of mitochondrial biogenesis that have developed rapidly during the last few years, such as the requirement of molecular chaperones, are stressed in order to stimulate further parallel investigations aimed to understand the origin, biochemistry, molecular biology and pathology of peroxisomes. In this regard, a brief review of findings from our group and others is presented in which the role of the F1-ATPase α-subunit is pointed out as a molecular chaperone of mitochondria and chloroplasts. In addition, data are presented that could question our previous indication that the immunoreactive protein found in the rat liver peroxisomes is due to the presence of the F1-ATPase α-subunit. 相似文献
8.
Bonekamp NA Sampaio P de Abreu FV Lüers GH Schrader M 《Traffic (Copenhagen, Denmark)》2012,13(7):960-978
Peroxisomes and mitochondria show a much closer interrelationship than previously anticipated. They co-operate in the metabolism of fatty acids and reactive oxygen species, but also share components of their fission machinery. If peroxisomes - like mitochondria - also fuse in mammalian cells is a matter of debate and was not yet systematically investigated. To examine potential peroxisomal fusion and interactions in mammalian cells, we established an in vivo fusion assay based on hybridoma formation by cell fusion. Fluorescence microscopy in time course experiments revealed a merge of different peroxisomal markers in fused cells. However, live cell imaging revealed that peroxisomes were engaged in transient and long-term contacts, without exchanging matrix or membrane markers. Computational analysis showed that transient peroxisomal interactions are complex and can potentially contribute to the homogenization of the peroxisomal compartment. However, peroxisomal interactions do not increase after fatty acid or H(2) O(2) treatment. Additionally, we provide the first evidence that mitochondrial fusion proteins do not localize to peroxisomes. We conclude that mammalian peroxisomes do not fuse with each other in a mechanism similar to mitochondrial fusion. However, they show an extensive degree of interaction, the implication of which is discussed. 相似文献
9.
10.
Chris Carrie Kristina Kühn Monika W. Murcha Owen Duncan Ian D. Small Nicholas O'Toole James Whelan 《The Plant journal : for cell and molecular biology》2009,57(6):1128-1139
A variety of approaches were used to predict dual-targeted proteins in Arabidopsis thaliana . These predictions were experimentally tested using GFP fusions. Twelve new dual-targeted proteins were identified: five that were dual-targeted to mitochondria and plastids, six that were dual-targeted to mitochondria and peroxisomes, and one that was dual-targeted to mitochondria and the nucleus. Two methods to predict dual-targeted proteins had a high success rate: (1) combining the AraPerox database with a variety of subcellular prediction programs to identify mitochondrial- and peroxisomal-targeted proteins, and (2) using a variety of prediction programs on a biochemical pathway or process known to contain at least one dual-targeted protein. Several technical parameters need to be taken into account before assigning subcellular localization using GFP fusion proteins. The position of GFP with respect to the tagged polypeptide, the tissue or cells used to detect subcellular localization, and the portion of a candidate protein fused to GFP are all relevant to the expression and targeting of a fusion protein. Testing all gene models for a chromosomal locus is required if more than one model exists. 相似文献
11.
12.
Little is known about the genetic control of mitochondrial morphology and dynamics in higher plants. We used a genetic screen involving fluorescence microscopic analysis of ethyl methane sulphonate (EMS)-mutated Arabidopsis thaliana seedlings expressing GFP targeted to mitochondria to isolate eight mutants displaying distinct perturbations of the normal mitochondrial morphology or distribution. We describe five mutants with distinct and unique mitochondrial phenotypes, which map to five different loci, not previously implicated in mitochondrial behaviour in plants. We have used a combination of forward and reverse genetics to identify one of the genes, friendly mitochondria (FMT), a homologue of the CluA gene of Dictyostelium discoideum, which is involved in the correct distribution of mitochondria in the cell. The five mutants constitute a powerful resource to aid our understanding of mitochondrial dynamics in higher plants. 相似文献
13.
14.
Xiulin Tian Xingjuan Wang Yan Li 《The Plant journal : for cell and molecular biology》2021,108(4):1145-1161
The movement of organelles and vesicles in pollen tubes depends on F-actin. However, the molecular mechanism through which plant myosin XI drives the movement of organelles is still controversial, and the relationship between myosin XI and vesicle movement in pollen tubes is also unclear. In this study, we found that the siliques of the myosin xi-b/e mutant were obviously shorter than those of the wild-type (WT) and that the seed set of the mutant was severely deficient. The pollen tube growth of myosin xi-b/e was significantly inhibited both in vitro and in vivo. Fluorescence recovery after photobleaching showed that the velocity of vesicle movement in the pollen tube tip of the myosin xi-b/e mutant was lower than that of the WT. It was also found that peroxisome movement was significantly inhibited in the pollen tubes of the myosin xi-b/e mutant, while the velocities of the Golgi stack and mitochondrial movement decreased relatively less in the pollen tubes of the mutant. The endoplasmic reticulum streaming in the pollen tube shanks was not significantly different between the WT and the myosin xi-b/e mutant. In addition, we found that myosin XI-B-GFP colocalized obviously with vesicles and peroxisomes in the pollen tubes of Arabidopsis. Taken together, these results indicate that myosin XI-B may bind mainly to vesicles and peroxisomes, and drive their movement in pollen tubes. These results also suggest that the mechanism by which myosin XI drives organelle movement in plant cells may be evolutionarily conserved compared with other eukaryotic cells. 相似文献
15.
Ryan W. Clinton Christopher A. Francy Rajesh Ramachandran Xin Qi Jason A. Mears 《The Journal of biological chemistry》2016,291(1):478-492
Mitochondrial fission is a crucial cellular process mediated by the mechanoenzymatic GTPase, dynamin-related protein 1 (Drp1). During mitochondrial division, Drp1 is recruited from the cytosol to the outer mitochondrial membrane by one, or several, integral membrane proteins. One such Drp1 partner protein, mitochondrial fission factor (Mff), is essential for mitochondrial division, but its mechanism of action remains unexplored. Previous studies have been limited by a weak interaction between Drp1 and Mff in vitro. Through refined in vitro reconstitution approaches and multiple independent assays, we show that removal of the regulatory variable domain (VD) in Drp1 enhances formation of a functional Drp1-Mff copolymer. This protein assembly exhibits greatly stimulated cooperative GTPase activity in solution. Moreover, when Mff was anchored to a lipid template, to mimic a more physiologic environment, significant stimulation of GTPase activity was observed with both WT and ΔVD Drp1. Contrary to recent findings, we show that premature Drp1 self-assembly in solution impairs functional interactions with membrane-anchored Mff. Instead, dimeric Drp1 species are selectively recruited by Mff to initiate assembly of a functional fission complex. Correspondingly, we also found that the coiled-coil motif in Mff is not essential for Drp1 interactions, but rather serves to augment cooperative self-assembly of Drp1 proximal to the membrane. Taken together, our findings provide a mechanism wherein the multimeric states of both Mff and Drp1 regulate their collaborative interaction. 相似文献
16.
Mitochondria are the primary source of ATP needed for the steps of the synaptic vesicle cycle. Dynamin-related protein (DRP) is involved in the fission of mitochondria and peroxisomes. To assess the role of mitochondria in synaptic function, we characterized a Drosophila DRP mutant combination that shows an acute temperature-sensitive paralysis. Sequencing of the mutant reveals a single amino acid change in the guanosine triphosphate hydrolysing domain (GTPase domain) of DRP. The synaptic mitochondria in these mutants are remarkably elongated, suggesting a role for DRP in mitochondrial fission in Drosophila. There is a loss of neuronal transmission at restrictive temperatures in electroretinogram (ERG) recordings. Like stress-sensitive B (sesB), a mitochondrial adenosine triphosphate (ATP) translocase mutant we studied earlier for its effects on synaptic vesicle recycling, an allele-specific reduction in the temperature of paralysis of Drosophila synaptic vesicle recycling mutant shibire was seen in the DRP mutant background. These data, in addition to depletion of vesicles observed in electron microscopic sections of photoreceptor synapses at restrictive temperatures, suggest a block in synaptic vesicle recycling due to reduced mitochondrial function. 相似文献
17.
《Molecular cell》2023,83(12):2045-2058.e9
- Download : Download high-res image (212KB)
- Download : Download full-size image
18.
Yoshinaga K Fujimoto M Arimura S Tsutsumi N Uchimiya H Kawai-Yamada M 《Annals of botany》2006,97(6):1145-1149
BACKGROUND AND AIMS: Recent reports have described dramatic alterations in mitochondrial morphology during metazoan apoptosis. A dynamin-related protein (DRP) associated with mitochondrial outer membrane fission is known to be involved in the regulation of apoptosis. This study analysed the relationship between mitochondrial fission and regulation of plant cell death. METHODS: Transgenic plants were generated possessing Arabidopsis DRP3B (K56A), the dominant-negative form of Arabidopsis DRP, mitochondrial-targeted green fluorescent protein and mouse Bax. KEY RESULTS: Arabidopsis plants over-expressing DRP3B (K56A) exhibited long tubular mitochondria. In these plants, mitochondria appeared as a string-of-beads during cell death. This indicates that DRP3B (K56A) prevented mitochondrial fission during plant cell death. However, in contrast to results for mammalian cells and yeast, Bax-induced cell death was not inhibited in DRP3B (K56A)-expressing plant cells. Similarly, hydrogen peroxide-, menadione-, darkness- and salicylic acid-induced cell death was not inhibited by DRP3B (K56A) expression. CONCLUSIONS: These results indicate that the systems controlling cell death in animals and plants are not common in terms of mitochondrial fission. 相似文献
19.
20.
Most proteins located in chloroplasts are encoded by nuclear genes, synthesized in the cytoplasm, and transported into the organelle. The study of protein uptake by chloroplasts has greatly expanded over the past few years. The increased activity in this field is due, in part, to the application of recombinant DNA methodology to the analysis of protein translocation. Added interest has also been gained by the realization that the transport mechanisms that mediate protein uptake by chloroplasts, mitochondria and the endoplasmic reticulum display certain characteristics in common. These include amino terminal sequences that target proteins to particular organelles, a transport process that is mechanistically independent from the events of translation, and an ATP-requiring transport step that is thought to involve partial unfolding of the protein to be translocated. In this review we examine recent studies on the binding of precursors to the chloroplast surface, the energy-dependent uptake of proteins into the stroma, and the targeting of proteins to the thylakoid lumen. These aspects of protein transport into chloroplasts are discussed in the context of recent studies on protein uptake by mitochondria.Abbrevlations CAT
chloramphenicol acetyl transferase
- CCCP
carbonylcyanide m-chlorophenylhydrazone
- DHFR
dihydrofolate reductase
- EPSP
5-enol-pyruvylshikimate-3-phosphate
- ER
endoplasmic reticulum
- LHCP
light harvesting chlorophyll a/b apoprotein
- NPT
neomycin phosphotransferase
- oATP
adenosine-2,3-dialdehyde-5-triphosphate
- P-inorganic phosphate Rubisco
ribulose-1,5-bisphosphate carboxylase/oxygenase
- SSU
small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase
- SRP
signal recognition particle 相似文献