首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimethyl fumarate (DMF) depletes intracellular glutathione (GSH) by covalent bond formation in a reaction mediated by GSH-S-transferase. Treatment of hypoxic Chinese hamster V79 cells with 5 mM DMF before irradiation radiosensitizes the cells, resulting in an enhancement ratio (ER) of about 2.7 with minimal toxicity, when the end point is clonogenic cell survival. Under the same conditions aerobic cells are sensitized, and ER of about 1.3 is found, and GSH is reduced to about 3% of control. Very similar results were obtained previously with Chinese hamster ovary (CHO) cells. In addition, new data presented here show that DMF treatment of V79 or CHO cells immediately after irradiation under hypoxic conditions sensitizes the cells, resulting in an ER of about 1.5, DMF treatment after irradiation under aerobic conditions results in an ER of 1.3, and this DMF treatment reduces protein thiols (PSH) to about 70% of control. When induction of DNA damage is measured using the neutral elution assay, treatment of V79 or CHO cells with DMF prior to irradiation under hypoxic conditions results in an ER of 1.9-2.0, but there is no enhancement of DNA damage when DMF is added after irradiation under hypoxic conditions or when cells are treated with DMF before or after irradiation under aerobic conditions. Based on these data we postulate that DMF radiosensitizes killing of hypoxic cells by two actions: depletion of GSH interferes with the chemical competition between damage fixation and repair, and depletion of PSH causes an inhibition of enzymatic repair processes. We also suggest that DMF sensitizes aerobic cells only by inhibition of enzymatic repair processes.  相似文献   

2.
The hypoxic and euoxic radiation response for Chinese hamster lung and A549 human lung carcinoma cells was obtained under conditions where their nonprotein thiols, consisting primarily of glutathione (GSH), were depleted by different mechanisms. The GSH conjugating reagent diethylmaleate (DEM) was compared to DL-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutathionine biosynthesis. Each reagent depleted cellular GSH to less than 5% of control values. A 2-hr exposure to 0.5 mM DEM or a 4- or 24-hr exposure to BSO at 10 or 1 mM, respectively, depleted cellular GSH to less than 5% of control values. Both agents sensitized cells irradiated under air or hypoxic conditions. When GSH levels are lowered to less than 5% by both agents, hypoxic DEM-treated cells exhibited slightly greater X-ray sensitization than hypoxic BSO-treated cells. The D0's for hypoxic survival curves were as follows: control, 4.87 Gy; DEM, 3.22 Gy; and BSO, 4.30 Gy for the V79 cells and 5.00 Gy versus 4.02 Gy for BSO-treated A549 cells. The D0's for aerobic V79 cells were 1.70 Gy versus 1.13 Gy, DEM, and 1.43 Gy for BSO-treated cells. The D0's for the aerobic A549 were 1.70 and 1.20 for BSO-treated cells. The aerobic and anoxic sensitization of the cells results in the OER's of 2.8 and 3.0 for the DEM- and BSO-treated cells compared to 2.9 for the V79 control A549. BSO-treated cells showed an OER of 3.3 versus 3 for the control. Our results suggest that GSH depletion by either BSO or DEM sensitizes aerobic cells to radiation but does not appreciably alter the OER.  相似文献   

3.
Replicative bypass repair of UV damage to DNA was studied in wide variety of human, mouse and hamster cells in culture. Survival curve analysis revealed that in established cell lines (mouse L, Chinese hamster V79, HeLa S3 and SV40-transformed xeroderma pigmentosum (XP)), post-UV caffeine treatment potentiated cell killing by reducing the extrapolation number and mean lethal UV fluence (Do). In the Do reduction as the result of random inactivation by caffeine of sensitive repair there were marked clonal differences among such cell lines, V79 being most sensitive to caffeine potentiation. However, other diploid cell lines (normal human, excision-defective XP and Syrian hamster) exhibited no obvious reduction in Do by caffeine. In parallel, alkaline sucrose sedimentation results showed that the conversion of initially smaller segments of DNA synthetized after irradiation with 10 J/m2 to high-molecular-weight DNA was inhibited by caffeine in transformed XP cells, but not in the diploid human cell lines. Exceptionall, diploid XP variants had a retarded ability of bypass repair which was drastically prevented by caffeine, so that caffeine enhanced the lethal effect of UV. Neutral CsCl study on the bypass repair mechanism by use of bromodeoxyuridine for DNA synthesis on damaged template suggests that the pyrimidine dimer acts as a block to replication and subsequently it is circumvented presumably by a new process involving replicative bypassing following strand displacement, rather than by gap-filling de novo. This mechanism worked similarly in normal and XP cells, whether or not caffeine was present, indicating that excision of dimer is not always necessary. However, replicative became defective in XP variant and transformed XP cells when caffeine was present. It appears, therefore, that the replicative bypass repair process is either caffeine resistant or sensitive, depending on the cell type used, but not necessarily on the excision repair capability.  相似文献   

4.
The comparative photosensitizing effects to near-UV irradiation (UVA) of several naturally occurring furocoumarins, 5-methoxypsoralen (5MOP), psoralen, 8-methoxypsoralen (8MOP) and angelicin in producing chromosome damage in vitro in cells derived from hamster, normal human, ataxia telangiectasia (AT) and xeroderma pigmentosum (XP) patients were studied. In Chinese hamster cells, lethality was greatest with psoralen and least with angelicin; 8MOP and 5MOP were intermediate. 8MOP and 5MOP produced sister-chromatid exchanges with almost equal efficiency and to a larger extent by far than angelicin. In all human cell lines studied 8MOP and 5MOP were similarly effective in the production of sister-chromatid exchanges and chromosomal aberrations. AT and XP cells responded with higher frequencies of sister-chromatid exchanges as well as chromosomal aberrations than normal human cells to 5MOP, 8MOP and angelicin. Evidence is presented which suggests that cell death in Chinese hamster cells following angelicin photosensitization is not clearly related to the production of sister-chromatid exchanges. AT cells were unexpectedly more sensitive to angelicin than normal cells. The presence of 5MOP in some sun-tan preparations is not acceptable in view of the present evidence of its biological activity.  相似文献   

5.
The effects of the radioprotector 2-[(aminopropyl)amino] ethanethiol (WR-1065) on radiation-induced cell killing and mutagenesis at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in V79 Chinese hamster cells under hypoxic or aerobic conditions were examined. Conditions of acute hypoxia were attained by gassing 10(6) cells in 1-ml volumes in individual glass ampoules for 2 min with nitrogen. Ampoules were then sealed and incubated at 37 degrees C for 60 min. Following this treatment, cell survival after irradiation as expected was significantly enhanced. The effect of acute hypoxia on the formation of HGPRT mutants by irradiation was also investigated. Mutation frequencies were determined with a 6-day expression time and corrected for the number of spontaneous background mutants. Although mutation induction was approximately linear as a function of radiation dose under most conditions tested, it was significantly reduced in cell populations made acutely hypoxic prior to irradiation. Protection against mutation induction was apparent and similar when cells were irradiated in the presence of the radioprotector, regardless of whether they were also hypoxic or aerated. If cells were irradiated in air and then made hypoxic, no significant protection was still observed. These results suggest that the antimutagenic effect of WR-1065 is not due solely to its ability to scavenge radiation-induced oxygen-free radicals, but rather that it may also modulate these effects through the scavenging of metabolically induced free radicals and/or the chemical repair of radiation-induced DNA lesions.  相似文献   

6.
We investigated the lethal, UV killing-potentiating and repair-inhibiting effects of trivalent arsenic trioxide (As2O3) and pentavalent sodium arsenate (Na2HAsO4) in normal human and xeroderma pigmentosum (XP) fibroblasts. The presence of As2O3 for 24 h after UV irradiation inhibited the thymine dimer excision from the DNA of normal and XP variant cells and thus the subsequent unscheduled DNA synthesis (UDS): excision inhibitions were partial, 30-40%, at a physiological dose of 1 microgram/ml and 100% at a supralethal dose of 5 micrograms/ml. Correspondingly, As2O3 also potentiated the lethal effect of UV on excision-proficient normal and XP variant cells in a concentration-dependent manner, but not on excision-defective XP group A cells. Na2HAsO4 (As5+) was approximately an order of magnitude less effective in preventing all the above repair events than As2O3 (As3+) which is highly affinic to SH-containing proteins. The above results provide the first evidence that arsenic inhibits the excision of pyrimidine dimers. Partially repair-suppressing small doses of As2O3 (0.5 microgram/ml) and Na2HAsO4 (5 micrograms/ml) enhanced co-mutagenically the UV induction of 6-thioguanine-resistant mutations of V79 Chinese hamster cells. Thus, such a repair inhibition may be one of the basic mechanisms for the co-mutagenicity and presumably co-carcinogenicity of arsenic. XP group A and variant strains showed a unique higher sensitivity to As2O3 and Na2HAsO4 killing by a yet unidentified mechanism.  相似文献   

7.
Binding of two hypoxia probes, [3H]misonidazole and AF-2 (2-(2-Furyl)-3-(5-nitro-2-furyl)acrylamide), was compared in Chinese hamster V79 spheroids incubated under different oxygen concentrations. Fluorescence-activated cell sorting based on Hoechst 33342 penetration was used to obtain populations of cells from different depths within the spheroid, and sorted cells were analyzed by cytofluorometry for AF-2 content and by liquid scintillation counting for [3H]misonidazole content. The patterns of AF-2 and misonidazole binding were very similar, with about 20-fold more localization of both drugs in anoxic compared to aerobic cells. Similar results were obtained when cells were sorted on the basis of AF-2 rather than Hoechst 33342 fluorescence. When mean cellular fluorescence of AF-2 was plotted versus cpm misonidazole/cell for different oxygen tensions, it appeared that oxygen was equally effective in inhibiting AF-2 and misonidazole binding. Internal cells of anoxic spheroids bound about twice as much AF-2 and misonidazole as external cells, apparently due to an increased rate of nitroreduction by chronically hypoxic cells. AF-2 was found to enhance the retention of misonidazole in oxic and hypoxic spheroids when both drugs were present.  相似文献   

8.
The survival of the wild-type parent and two mutant lines of Chinese hamster cells, known to be defective in DNA repair, has been determined as a function of exposure to gamma rays under aerobic and hypoxic conditions. When compared to the wild-type line, one of the mutants selected for sensitivity to ethyl methyl sulfonate (EMS), and known to be defective in the repair of DNA strand breaks, exhibits a markedly enhanced sensitivity to aerobic irradiation but a reduced enhancement to hypoxic irradiation and thus an enhanced oxygen enhancement ratio (OER). In contrast, the other line, known to be defective in the incision step of excision repair, exhibits the reverse pattern of sensitivity and hence a reduced OER. The results are compared to findings in bacterial mutants and cells obtained from ataxia telangiectasia (AT) patients and heterozygotes.  相似文献   

9.
Cell density (no. of cells per unit area or volume) during drug treatment may play a role of considerable importance in the interpretation of drug toxicity experiments performed in vitro. Chinese hamster V-79 and mouse L-929 cells exposed to nitroheterocycles under aerobic conditions are considerably more sensitive to the cytotoxic effects of these drugs when incubated at low cell density (102 cells/cm2 or 104 cells/ml) than at higher cell density (104 cells/cm2 or 106 cells/ml). This may be related to diffusion limitations when cells are in contact and to the ability of dense cell suspensions to inactivate drugs. In contrast, under anaerobic conditions, more toxicity is observed at high cell density than at low cell density, perhaps due to local effects of toxic metabolites. Toxicity appears to correlate with intracellular drug levels under both aerobic and hypoxic conditions.The chemical nature of the fluorescent species has not yet been determined. However, it is likely that loss of the nitro group reduces but does not abolish fluorescence. When L-cells were used to metabolize AF-2 under hypoxia so that only 20% of the parent compound remained (with nitro group intact), 50% of the fluorescence was still present (unpublished results). Cells incubated with AF-2 under air or nitrogen show little decrease in fluorescence intensity for several hours after drug removal suggesting that the fluorescent compound being observed was bound intracellularly. As yet, we have no reason to suspect that the fluorescent products bound under hypoxia differ from those bound under air. Therefore, cell density dependent toxicity of nitroheterocycles under aerobic conditions may be related to diffusion limitations when cells are in close contact, as well as drug inactivation by cells at high cell densities.  相似文献   

10.
Cells in tumors that are deprived of their blood supply become hypoxic. These stressed cells adapt to their new environments by altering their metabolic regimen which in time induces cellular structure changes. The morphologic make-up of these O2-deprived cells is the focal point of this electron microscopy study. V-79 hamster lung fibroblast cells grown as monolayer cultures were examined under controlled culture density and oxygen tensions - normal aerobia (2.1 X 10(5) ppm O2), and extreme hypoxia (less than 10 ppm O2). Electron micrographs of these cells demonstrated a loss of structural mitochondrial integrity accompanied with large increases in both mitochondrial and lipid vacuole size following exposure to extreme hypoxia. When these cells were reoxygenated, those mitochondria which had not become degenerate returned to their normal state however, lipids still continued to accumulate in vacuoles for a further 6 h. Addition of 1 mM palmitic acid to aerobic cultures evoked similar lipid and mitochondrial irregularities as were observed in hypoxic cells although, the latter were not as marked. When this saturated fatty acid was added to hypoxic cells no further structural alterations were seen. The cellular changes manifested during this study were subjected to quantitative measurements and these results have given an insight into the scope and variety of ultrastructural changes which have resulted from exposure of cultured cells to hypoxic conditions.  相似文献   

11.
The effects of hypoxia and reoxygenation on the conversion of xanthine dehydrogenase to the free radical-producing xanthine oxidase in Chinese hamster V79 cells have been investigated using a newly developed fluorimetric enzyme assay. Hypoxia caused an increase in xanthine oxidase activity from 25% to 80% of the total activity of xanthine oxidase and dehydrogenase. The ratio returned to normal levels within 24 h of aerobic incubation. Hypoxia caused the release of xanthine oxidase in the medium of V79 cells and an increase in total protein concentration in the medium. There was an early change induced in lipid peroxidation markers and this was inhibited by allopurinol. The effects of glucose deprivation and calcium blockers were also investigated. Fura-2 AM was found to interact with V79 cells, making it impossible to determine intracellular calcium levels in V79 cells by this reagent.  相似文献   

12.
Dehydroascorbate, an electron affinic metabolite of vitamin C, sensitized Ehrlich ascites tumor cells, in vivo, to radiation and was selectively toxic to V79 Chinese hamster lung cells under hypoxic conditions (without radiation). The radiosensitization may involve both the electron affinic nature of dehydroascorbate as well as its ability to oxidize the intracellular NAD(P)H and non-protein sulfhydryl. Dehydroascorbate's oxidation of NAD(P)H required higher concentrations than other sulfhydryl oxidants such as N-ethylmaleimide and diamide. The oxidation of NAD(P)H by dehydroascorbate could be reversed by glucose. Hypoxic cell radiosensitization of V79 cells in tissue culture by dehydroascorbate could not be easily demonstrated because of the rapid breakdown and appreciable cytotoxicity of the drug at high concentration. The cytotoxicity was found to occur with both high and low densities of V79 cells. With low cell densities small amounts of oxygen did not reduce the cytotoxicity of dehydroascorbate, but virtually eliminated the cytotoxicity of nitroaromatic electron affinic compounds (metronidazole and Ro-07-0582). The cytotoxicity to dense cell suspensions was found to depend upon the type of buffer included in the reaction medium. The maximum cytotoxicity was obtained in buffer free saline. The reduced form of dehydroascorbate, vitamin C, was found to be toxic only under aerobic conditions. The aerobic cytotoxicity could be prevented by the addition of catalase to the growth medium or by an increase in cell density, suggesting it was caused entirely by the production of H2O2 from the oxidation of vitamin C.  相似文献   

13.
Y Kuroda 《Mutation research》1975,30(2):229-238
Trans-2-(2-furyl)-3-(5-nitro-2-furyl) acrylamide (furylfuramide: FF or AF2) was tested for ability to induce 8-azaguanine (8AG) resistant mutations in cultured human diploid cells. FF had a relatively severe cytotoxic effect on the cells. From the concentration-survival curve, the D0 value for 2-h treatment with FF was estimated to be 11 mug/ml. When cells were treated with FF at various concentrations for 2 h, cultured in normal medium for 48 h, and then selected in medium containing 8AG at 30 mug/ml, the induced mutation frequency increased gradually with increase in concentration of FF. When cells were treated with FF at 10 mug/ml for 2 h, cultured in normal medium for various periods of mutation expression time, and selected with 8AG at 30 mug/ml, the highest induced mutation frequency was obtained with 48 h of mutation expression time. Microscopic examination of the numbers of cells in colonies indicated that the total number of cells increased by half during this mutation expression time of 48 h.  相似文献   

14.
Chinese hamster cells (V79) and glutathione-proficient (GSH+/+) and glutathione-deficient (GSH-/-) human fibroblasts were treated with a glutathione (GSH)-depleting agent buthionine sulphoximine (BSO) and the hypoxic radiosensitizer misonidazole (MISO), separately or in combination. Subsequently, the cells were exposed to X-rays. Determination of the yield of single-strand DNA breaks (ssb) immediately after irradiation indicated no effect of BSO or MISO treatment when radiation exposure was made aerobically. Assuming that ssb determined immediately after irradiation reflects mainly the effect of radical processes, the results obtained with BSO and MISO, singly and in combination, agreed well with the predictions of a modified version of the 'competition model' using V79 and GSH+/+ cells. Some results obtained with GSH-/- cells could not be so explained.  相似文献   

15.
The effects of the subcellular localization of overexpressed bioreductive enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) on the activity of the antineoplastic agent mitomycin C (MC) under aerobic and hypoxic conditions were examined. Chinese hamster ovary (CHO-K1/dhfr(-)) cells were transfected with NQO1 cDNA to produce cells that overexpressed NQO1 activity in the nucleus (148-fold) or the cytosol (163-fold) over the constitutive level of the enzyme in parental cells. Subcellular localization of the enzyme was confirmed using antibody-assisted immunofluorescence. Nuclear localization of transfected NQO1 activity increased the cytotoxicity of MC over that produced by overexpression in the cytosol under both aerobic and hypoxic conditions, with greater cytotoxicity being produced under hypoxia. The greater cytotoxicity of nuclear localized NQO1 was not attributable to greater metabolic activation of MC but instead was the result of activation of the drug in close proximity to its target, nuclear DNA. A positive relationship existed between the degree of MC-induced cytotoxicity and the number of MC-DNA adducts produced. The findings indicate that activation of MC proximal to nuclear DNA by the nuclear localization of transfected NQO1 increases the cytotoxic effects of MC regardless of the degree of oxygenation and support the concept that the mechanism of action of MC involves alkylation of DNA.  相似文献   

16.
Flow cytometry and cell sorting techniques have been used together with repeated measurement in an attempt to define better the radiation survival response of asynchronously dividing Chinese hamster V79-171 cells under aerobic and hypoxic conditions. Although the first two decades of cell inactivation have been examined, particular attention has been given to the low-dose range of a few grays, as used in individual radiation therapy treatments. A single linear-quadratic dose-response function was consistently unable to fit both the low-dose and high-dose data satisfactorily, suggesting a two-component response. Separate fitting of the low-dose and high-dose portions of the response yielded alpha and beta values which differed significantly (P = 0.001 to 0.002). The data are consistent with the hypothesis that the observed substructure simply reflects the presence of subpopulations of sensitive (G1-, G2-phase) and resistant (late S-phase) cells, which are resolved in these measurements. These results may have significance for certain situations in radiation therapy and in biophysical modeling of the radiation response.  相似文献   

17.
R Sridhar  E C Stroude  W R Inch 《In vitro》1979,15(9):685-690
2-Deoxy-D-glucose (2DG) and 5-thio-D-glucose (5TG) are glucose antimetabolites that are known to be selectively toxic to hypoxic cells grown as single cells or as monolayer cultures. These analogues were toxic to Chinese hamster V79 cells grown as multicell spheroids even under aerobic conditions. When spheroids, 500- to 600-microns diameter, were exposed to 7.5 mM of these chemicals for 3 days, the number of clonogenic cells per spheroid dropped to 50% for 5-thio-D-glucose and 20% for 2-deoxy-D-glucose, relative to control values. Survivals were reduced to less than 1% when the experiment was repeated in glucose-free medium. Scanning electron photomicrographs of spheroids treated with 7.5 mM of either analogue showed extensive damage to the outer cells. The cell killing observed was much more than could be predicted on the basis of the hypoxic fraction known to be present in these spheroids. The crowded tumor-like environment may make the cells vulnerable to the cytotoxic action of glucose analogues and other glycolytic inhibitors.  相似文献   

18.
NADH:cytochrome b(5) reductase (FpD) is an enzyme capable of converting the prodrug mitomycin C (MC) into a DNA alkylating agent via reduction of its quininone moiety. In this study, Chinese hamster ovary (CHO) cells were transfected with a cDNA encoding rat FpD. Despite the demonstrated ability of this enzyme to reduce MC in vitro, a modest 5-fold level of overexpression of FpD activity in CHO cells did not increase the cytotoxicity of the drug over that seen with the parental cell line under either aerobic or hypoxic conditions. When the enzyme, which is predominantly localized in the mitochondria, was instead directed to the nucleus of cells by the fusion of the SV40 large T antigen nuclear localization signal sequence to the amino terminus of an FpD gene that lacked the membrane anchor domain, drug sensitivity was significantly enhanced at all concentrations of MC examined (2-10 microm) under both aerobic and hypoxic conditions, with greater cell kill occurring under hypoxia. The marked increase in drug sensitivity under hypoxia at 10 microm MC corresponded to a measurable increase in total MC-DNA adducts at the same concentration. The results indicate that the cytotoxicity of MC is modulated by the subcellular location of FpD, with greater cell kill occurring when bioactivation occurs in the proximity of its target, nuclear DNA.  相似文献   

19.
Hypoxia affects the biochemistry of mammalian cells and thus alters their sensitivity to subsequent chemo- and radiotherapy. When V79 Chinese hamster lung fibroblasts were grown under conditions of extreme hypoxia (less than 10 ppm O2) there was a significant shift in the membrane glycoprotein composition. Scanning electron microscopy revealed altered cell surface morphology including loss of pseudopodial projections. Experiments to determine changes in interfacial free energy of these cells using equilibrium two phase systems of poly(ethylene glycol) (PEG) and dextran were carried out. Test fluid droplets of the denser dextran-rich phase were formed on layers of cells in the PEG-rich phase as the bathing medium, and the contact angles the droplets made with the cell layers were measured from photomicrographs. The contact angles on cells in the plateau phase increased significantly with time of exposure to hypoxia, from 25 degrees (zero time) to 35 degrees (6 h) to 60 degrees (9 h). Contact angles on cells in the exponential phase increased from 80 degrees (zero time) to 150 degrees after 20 h of hypoxia. It appears that the altered contact angles reflect changes in cell surface hydrophobicity that may, in part, reflect alterations in the membrane glycoprotein composition.  相似文献   

20.
Excision repair was measured in normal human and xeroderma pigmentosum group C fibroblasts treated with ultraviolet radiation and the carcinogens acridine mustard (ICR-170) or 4-nitroquinoline 1-oxide (4NQO) by the techniques of unscheduled synthesis, photolysis of bromodeoxyuridine incorporated into parental DNA during repair, and assays of sites sensitive to ultraviolet (UV)-endonuclease. Doses of ICR-170 and 4NQO, low enough not to inhibit unscheduled DNA synthesis (UDS), caused damage to DNA that was repaired by a long patch type mechanism and the rates of UDS decreased rapidly in the first 12 h after treatment. Repair after a combined action of UV plus ICR-170 or UV plus 4NQO was additive in normal cells and no inhibition of loss of endonuclease sensitive sites was detected. In xeroderma pigmentosum (XP) C cells there was less repair after UV plus ICR-170 than after each treatment separately; whereas there was an additive effect after UV plus 4NQO and no inhibition of loss of endonuclease sensitive sites. The results indicate that in normal human fibroblasts there are different rate limiting steps for removal of chemical and physical damages from DNA and that XP cells have a different repair system for ICR-170, not just a lower level, than normal cells. Possibly the same long patch repair system works on 4NQO damage in both normal and XP cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号