首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The gypsy moth, Lymantria dispar, produces two structurally and genetically distinct types of spermatozoa. The eupyrene spermatozoa are genetically haploid and structurally typical. The apyrene spermatozoa are anucleate and structurally different from eupyrene spermatozoa. To understand further the events contributing to meiotic chromosome missegregation in apyrene spermatocytes, we examined the progression of meiosis in these cells with respect to their eupyrene counterparts. Chromosomal bouquet formation and fusion of nucleolar organizing regions are disrupted in apyrene nuclei. In addition, the chromatin of apyrene nuclei is prematurely and extremely condensed compared with that of eupyrene nuclei. An antibody to the conserved synaptonemal complex protein 3 (SCP3) labeled eupyrene pachytene chromosomes, but not apyrene pachytene chromosomes. In addition, apyrene meiotic spindles are missing a subset of microtubules, which likely include kinetochore microtubules. Because the condensation behavior of meiotic chromatin in apyrene spermatocytes deviates from that of eupyrene spermatocytes, we examined the appearance and distribution of the phosphorylated form of histone H3, but no significant differences in histone H3 phosphorylation were found between apyrene and eupyrene spermatocytes. We argue that because a pachytene checkpoint is not initiated in apyrene spermatocytes, this system may provide a way to understand better the underlying biochemical connections between pairing, recombination, synapsis, kinetochore assembly and segregation of chromosomes during meiosis in a higher eukaryote.  相似文献   

2.
Silkworm (Lepidoptera) males produce dimorphic sperm: nucleate eupyrene sperm and anucleate apyrene sperm. The eupyrene sperm are ordinary sperm to fertilise the eggs, while the function of apyrene sperm remains uncertain. After meiosis, 256 sperm cells are enclosed by a layer of cyst cells, forming a sperm bundle. We have previously documented that the nucleus of eupyrene sperm anchors to the head cyst cell, which locates at the anterior apex of the bundle, by an acrosome tubule-basal body assembly. Neither the basal body attachment to the nucleus nor the acrosome is seen in apyrene sperm, and the nuclei remain in the middle region of the bundle. Peristaltic squeezing starts from the anterior of the bundles in both types of sperm, and cytoplasmic debris of the eupyrene sperm, and both the nuclei and debris of apyrene sperm, are eliminated at the final stage of spermatogenesis. Since the irregularity of meiotic division in apyrene sperm is known, we used triploid silkworm males that show irregular meiotic division even in eupyrene spermatocytes and are highly sterile. The irregular nuclei of the triploid are discarded by the peristaltic squeezing just as those of the apyrene sperm. Transmission electron microscopic observations disclose the abnormality in the acrosome tubule and in the connection to the basal body. The peristaltic squeezing of sperm bundles in the silkworm appears to be the final control mechanism to eliminate irregular nuclei before they enter female reproductive organs.  相似文献   

3.
Lepidopteran primary spermatocytes are bipotential leading first to regular (eupyrene) and later to irregular (apyrene) meiotic divisions. The kinetics of the lysine-rich proteins during this dichotomous meiosis was studied using the fluorescent dye sulfoflavine. Throughout the spermatogonial divisions, the chromatin fluoresces while the cytoplasm remains unstained. Reversely, during the meiotic prophase, the cytoplasm fluoresces strongly while the nuclei show only a few weakly fluorescing structures. From premetaphase to telophase the meiotic chromosomes fluoresce strongly again. But during this period, only in the eupyrene cells the cytoplasm remains strongly fluorescent; the fluorescence vanishs in the cytoplasm of the apyrene spermatocytes. Thus, the regular (eupyrene) meiotic divisions and the presence of a lysine-rich protein fraction in the cytoplasm of the dividing spermatocytes of Lepidoptera, are probably related.  相似文献   

4.
Dichotomous spermatogenesis was examined in relation to diapause in the sweet potato hornworm, Agrius convolvuli. In non-diapause individuals, eupyrene metaphase began during the fifth larval instar and eupyrene spermatids appeared in wandering larvae. Bundles of mature sperm were found after pupation. Apyrene spermatocytes also appeared during the fifth larval instar, but meiotic divisions occurred irregularly and their nuclei were discarded from the cells during spermiogenesis. Morphometric analyses of flagellar axonemes showed a variable sperm number in apyrene bundles. The variation ranging from 125 to 256 sperm per bundle indicated abnormal divisions or the elimination of apyrene spermatocytes. In diapause-induced hornworms, spermatogenesis progressed similarly during the larval stages. The cessation of spermatogenesis during diapause is characterized by 1) secondary spermatocytes and sperm bundles degenerating gradually as the diapause period lengthens, and 2) spermatogonia or primary spermatocytes appearing throughout diapause. A TUNEL (TdT-mediated dUTP-biotin nick end-labeling) assay revealed that DNA fragmentation occurred in the nuclei of secondary spermatocytes and early spermatids. Aggregates of heterochromatin along the nuclear membrane indicated the onset of apoptosis, and condensed chromatin was confirmed by electron microscopy to be the apoptotic body. These results show that the degenerative changes in spermatogenic cells during pupal diapause were controlled by apoptosis.  相似文献   

5.
张冰  邱礽  阚云超 《昆虫学报》2021,64(3):302-308
【目的】探究组蛋白H3Ser10磷酸化(H3Ser10ph)在家蚕Bombyx mori精母细胞减数分裂中的功能。【方法】解剖并分离家蚕4龄幼虫至蛹期精巢组织,通过丙烯酰胺凝胶包埋制备处于减数分裂不同时期的精巢组织玻片,以免疫荧光标记检测H3Ser10ph抗体在精母细胞减数分裂不同时期的定位特点。【结果】在家蚕有核精子精母细胞减数分裂过程中,组蛋白H3Ser10的磷酸化发生在粗线期染色体的特定位置,双线期H3Ser10ph信号逐渐减弱,至终变期时在染色体上完全检测不到磷酸化信号。随着细胞周期的进行,磷酸化信号又开始逐渐增强,减数第一次分裂中期时达到最高水平。当细胞进入减数第二次分裂前中期时,染色体臂上的H3Ser10ph信号消失,在靠近纺锤体微管的分裂面处有弥散的H3Ser10ph抗体的信号,减数第二次分裂末期,仅剩余非常微弱的H3Ser10ph信号残留于染色体的特定位置。在无核精子精母细胞减数分裂过程中,在中期I至末期I一直在染色体上有较均一的3Ser10ph信号,后期I时纺锤丝微管与赤道面平行。【结论】组蛋白H3Ser10磷酸化与家蚕有核精子和无核精子精母细胞减数分裂中染色质的动态变化相关。  相似文献   

6.
Summary

Eupyrene and apyrene spermatozoa are contained in separate cysts in the testis of the butterfly Atrophaneura alcinous. Spermatozoa of both types from various parts of the male reproductive tract were examined with particular reference to their morphological characteristics. All spermatozoa collected from the vas deferens and the vesicula seminalis were found to be immotile under a dissecting microscope. No spermatozoa of either type were recognized in any part of the ejaculatory duct. Within the testis, eupyrene spermatozoa are present in bundles and each spermatozoon has a slender nucleus with an acrosome and a long flagellum containing mitochondrial derivatives. Two kinds of appendages, lacinate and reticular, are present on the surface of the sperm membrane. They are replaced with an extracellular sheath during passage through the vas deferens. In contrast, apyrene spermatozoa have neither nucleus nor acrosome, whereas a cup-shaped structure was found at the sperm tip instead of the acrosome. Unlike eupyrene spermatozoa, they are surrounded by a concentric sheath outside the sperm membrane in the vas deferens. Individual apyrene spermatozoa and coiled bundles of eupyrene spermatozoa were both found to accumulate in the vesicula seminalis before mating. These morphological changes during passage through the male reproductive tract suggests the occurrence of a kind of maturation and capacitation process reminiscent of mammalian spermatozoa.  相似文献   

7.
Lepidopteran spermatogenesis is dichotomous, producing eupyrene (nucleated) and apyrene (anucleated) spermatozoa. The eupyrene precedes the apyrene spermatogenesis. The timing of the switchover from eupyrene to apyrene spermatogenesis was determined by cultivating testes of accurately aged codling moth larvae in a medium containing mammalian serum but neither hemolymph nor insect hormones. In cultures, eupyrene spermatogenesis occurred in testes dissected from either 4th or 5th instar larvae, probably due to macromolecular factor-like activity of the serum of the medium. But apyrene spermatogenesis occurred only in testes explanted during or after the fourth day of the 5th instar larva. It is concluded that: (1) An apyrene spermatogenesis inducing factor (ASIF) becomes active on the fourth day of the 5th instar larva in addition to the already existing macromolecular factor. (2) Primary spermatocytes can develop into either eupyrene or apyrene spermatozoa. (3) The apyrene spermatogenesis commitment and pupal commitment of other tissues coincide about the fourth day of the 5th instar larva.  相似文献   

8.
Control of the eupyrene-apyrene sperm dimorphism in Lepidoptera   总被引:1,自引:0,他引:1  
Lepidoptera males bear concomitantly nucleate (eupyrene) and anucleate (apyrene) spermatozoa. Both kinds of spermatozoa reach the spermatheca of inseminated females but only the eupyrene ones fertilize the eggs. The functions of the apyrene spermatozoa are still uncertain. Eupyrene spermatogenesis is regular and highly sensitive to genetic and experimental manipulations while apyrene spermatogenesis is irregular and withstands these manipulations. Both kinds of spermatozoa derive from the same kind of bipotential spermatocytes. The shift of spermatocyte commitment from eupyrene to apyrene spermatogenesis is induced by a haemolymph factor that becomes active just before or after pupation, depending on species. Accordingly, eupyrene spermatogenesis starts during larval instars and stops after pupation while apyrene spermatogenesis begins just before or after pupation, depending on the species, and persists in the imago. The shift is related to shortening of meiotic prophases and blocking synthesis of a meiotic lysine-rich protein fraction in apyrene cells. From spermatogonia proliferation to early spermatocytes, spermatogenesis is a quasi-independent process. Afterwards, it becomes discontinuous and is punctuated by predetermined stations. Progress to a subsequent station is an 'all or none' phenomenon, regulated by cues linked to fluctuations of the main morphogenetic hormones titers. In absence of a particular cue, the cells stop advancing towards the next station and eventually degenerate.  相似文献   

9.
Bombyx spermatogonia are bipotential, producing nucleate eupyrene sperm and anucleate apyrene sperm. An in vitro cultivation of spermatocysts of Bombyx mori from spermatocytes to matured sperm was established. The present experiment made clear that: (i) spermatocysts must be isolated; (ii) constant shaking at 45 r.p.m. was necessary; and (iii) the addition of Bombyx hemolymph (BH) was indispensable for successful cultivation. In the absence of BH, spermatogenesis proceeded normally for 2 or 3 days and, thereafter, spermatocytes and sperm bundles began to degenerate. The best results for normal eupyrene spermatogenesis were obtained when culture medium containing BH of the corresponding stage was used in every exchange of the medium at 72 h intervals. None or only a small number of apyrene sperm bundles was produced by this culture system when spermatocysts from larval testes were used, although eupyrene spermatogenesis proceeded normally to form matured, or squeezed, sperm bundles.  相似文献   

10.
Changes in nuclear structure during eupyrene spermatogenesis of Murex brandaris have been studied using light and electron microscopy. In the first phases, spermatogonia show round nuclei, with several electrodense masses of chromatin and a thin layer of heterochromatin associated with the nuclear membrane. Primary spermatocytes possess larger nucleii, with less condensed chromatin, and the synaptonemal complexes are apparent. During spermiogenesis, chromatin becomes lamellar, and the nucleus twists about its principal axis while it elongates. The nuclear twisting is accompanied by a progressive chromatin condensation, which causes a highly electrodense nucleus at the end of the process.  相似文献   

11.
Lepidoptera males bear two kinds of meiotic divisions. One is regular (eupyrene) and leads to nucleate, fertilizing spermatozoa. The other (apyrene) shows metaphase I chromosomes clumping together into irregular masses which later split forming daughter cells with unbalanced sets of chromosomes which are eventually extruded from the cells; hence, the spermatids develop into anucleate spermatozoa of unknown function. The apyrene divisions are induced by a haemolymph factor which becomes functional towards pupation. Using incorporation of tritiated thymidine at the premeiotic S-phase as a marker for timing, it was found that the prophase of the apyrene spermatocyte is shorter than that of the eupyrene spermatocyte. It is proposed that meiosis-specific proteins cannot be synthesized during the shortened apyrene prophase and that this is correlated with the irregular chromosome behaviour during the subsequent metaphase-telophase of these spermatocytes.  相似文献   

12.
N. Kawamura  N. Yamashiki  H. Bando 《Protoplasma》1998,202(3-4):223-231
Summary Changes in the morphology and quantity of mitochondria and mitochondrial DNA during eupyrene and apyrene spermatogenesis in the silkworm were examined by electron microscopy and by fluorescence in situ hybridization with a 2 kb silkworm mitochondrial DNA clone (pBmMtE2). In the eupyrene spermatogenesis, the spermatocytes at early prophase I contained only a small amount of cytoplasm and showed a rather faint signal. As the cells grew larger in the later prophase I, the signal grew stronger. In the eupyrene spermatids, an especially strong signal was evident in the nebenkerns, in which all the cell's mitochondria were aggregated, and the strong fluorescence was maintained in mitochondrial derivatives. On the other hand, the apyrene cells were markedly smaller throughout spermatogenesis, showing much fainter signals for mitochondrial DNA than the eupyrene. Electron microscopy disclosed considerable differences in the behavior of mitochondria between the apýrene and the eupyrene cells. The observed qualitative and/or quantitative differences in the mitochondria may have some physiological bearing on the spermatogenesis of the two types of sperm.Abbreviations FISH fluorescence in situ hybridization - FITC fluorescein isothiocyanate - kb kilo base pair - PI propidium iodide - PBS phosphate-buffered saline  相似文献   

13.
Two types of sperm, nucleate eupyrene and anucleate apyrene, occur in the silkworm as in other lepidopteran species. Hormones and other substances have been assumed to play important roles in sperm dimorphism. We established an in vitro cultivation system for silkworm spermatocytes, and found that apyrene sperm are not produced when spermatocytes from larval testes are cultivated, though eupyrene spermatocytes develop normally into mature sperm. Based on the fact that ecdysteroid titers increase rapidly and peak 1 day after spinning, and that the amount of glycogen reaches its peak 1 day before the spinning stage, we studied the effects of adding glucose and/or 20-hydroxyecdysone to the culture medium. The experiments disclosed a significant additive effect of both substances on apyrene sperm production.  相似文献   

14.
The dichotomous spermatogenesis of many Lepidopterans results in the production of two types of sperm: eupyrene sperm possessing a cell nucleus which participates in fertilisation, and apyrene ones, which lose their nuclei during development and whose function remains a mystery. The goal of our study was to analyse spermatogenesis at the end of the larval development of the wax moth, Galleria mellonella, at an optimal temperature of 30 degrees C as well as to describe how they are affected by diapause brought on by a reduction of temperature to 18 degrees C. Spermatogenesis in non-diapausing insects did not differ significantly from that described in other species of Lepidoptera, and any differences found were compared against available literature. Based on the results presented, it may be unequivocally stated that changes in spermatogenesis occur in diapause caused by a suboptimal temperature of 18 degrees C. The main effect of diapause observed in the testes is the degeneration of germ cells, immediately following their differentiation from bipotential spermatocytes. Eupyrene cells seem to reach a more advanced stage of development. Due to the absence of secondary eupyrene spermatocytes in the testis of diapausing insects, it may be surmised that the meiotic divisions, which lead to the formation of secondary spermatocytes and eventually spermatids, do not occur, or are somehow altered. Lastly, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling (TUNEL) analyses we performed show that the degenerative changes of eupyrene cells are apoptotic in character.  相似文献   

15.
Observations with immunostaining for tubulin and electron microscopy revealed that silkworm eupyrene spermiogenesis was characterized by an attachment of the basal body to the nucleus except in the period of movement for unidirectional arrangement. In young eupyrene sperm, a microtubule basket caught the nucleus, which thereafter was transformed elliptically. Microtubules were also observed along the elongated acrosome and mitochondrial derivatives. During apyrene spermiogenesis, however, the basal body was not attached to the nucleus and approached the head cyst cell after the completion of unidirectional arrangement, leaving the round nucleus in the middle of the cell. The presence or absence of the phenomenon in which the basal body attaches to the nucleus seems to be essential in the course of diverse spermatogenesis of the silkworm.  相似文献   

16.
The lepidopteran primary spermatocytes produce first eupyrene (nucleated) and later apyrene (anucleated) spermatozoa. The shift to apyrene commitment of the spermatocytes is related to an apyrene-spermatogenesis-inducing factor (ASIF) becoming active towards pupation. During diapause, the primary spermatocytes lyse and spermatogenesis ceases. The renewal of the dichotomous spermatogenesis in the testes of post-diapausing, last-instar larvae of the codling moth was studied in vivo and in vitro. In vivo, the post-diapausing larvae resume the two types of spermatogenesis. Since ASIF activity is related to pupation, the earliest apyrene spermatids appear one day before pupation, as in non-diapausing larvae. In vitro, renewal of spermatogenesis occurs if 20-hydroxy-ecdysone is added to the medium, but only eupyrene spermatids occur since the testes are explanted before ASIF activity has started. These spermatids are unreduced and develop directly from primary spermatocytes which do not undergo meiotic divisions. Moreover, only flagella develop in these spermatids and the nuclei remain spherical. Post-diapause resumption of spermatogenesis is thus a complex process in which meiosis-blocking and meiosis-deblocking factors, ecdysteroids, and the ASIF play regulative roles.  相似文献   

17.
Summary

The present study was undertaken to describe the morphological and organizational modifications that occur in apyrene and eupyrene spermatozoa along the male adult reproductive tract of the butterfly, Euptoieta hegesia. Testis, vas deferens, vesicula seminalis and ductus ejaculatorius were studied by transmission electron microscopy. In the testis, both sperm types are organized into cysts; apyrene sperm are devoid of extracellular structures while eupyrene ones have lacinate and reticular appendages. In the testis basal region, both sperm pass through an epithelial barrier and lose their cystic envelope. The eupyrene morphological and organizational modifications are more drastic than the apyrene ones. From the vas deferens to the ductus ejaculatorius, apyrene sperm are dispersed in the lumen and acquire several concentric layers that are formed by the folding of their abundant cell membrane. The apyrene distribution observed here suggests that their functions include eupyrene transportation. Eupyrene sperm, however, remain aggregated along the tract. In the vas deferens, they are covered by a filamentous material that develops into a homogeneous matrix surrounding the spermatozoa coat in the vesicula seminalis and the ductus ejaculatorius. Eupyrene sperm undergo complex morphological changes that include the loss of lacinate appendages and the formation of a dense and heterogeneous extracellular coat. The formation of the matrix and the coat in eupyrene extratesticular sperm is related to the loss of lacinate appendages. These changes are in general extracellular and are probably important for sperm maturation.  相似文献   

18.
Apyrene meiosis was studied in two wild-type strains, L and Sbr, of the Mediterranean mealmoth, Ephestia kuehniella, using anti-tubulin immunofluorescence. The observations were supplemented by phase-contrast light microscopy of living spermatocytes from strain L. The study revealed that nuclear envelope breakdown, centrosome separation, migration of chromatin elements towards the poles, and spindle elongation also occur in apyrene spermatocytes. However, a conventional metaphase plate is never formed, and chromatin segregation is irregular and delayed. Chromosome laggards are frequent. As a rule, apyrene spindles have a low microtubule content. The two strains, L and Sbr, differ regarding the chromatin behavior during meiosis. In strain L, the developing spindles contain numerous small chromatin clumps which segregate asynchronously. The resulting daughter cells possess about the same amount of chromatin. In contrast, large chromatin clumps exist in strain Sbr at the onset of spindle formation. The chromatin blocks transiently occupy an equatorial position and elongate subsequently parallel to the spindle axis. These elongated chromatin bodies often divide highly unequally. As a consequence, secondary spermatocytes in strain Sbr differ greatly in chromatin content. Subjective assessment shows that the size of the microtubular cytoskeleton is positively correlated with the chromatin content of the cell. Hence, it is hypothesized that the chromatin content determines spindle size. This possibly comes about the number of available kinetochores which are exposed and able to stabilize microtubules of centrosomal origin attached with the kinetochores. However, a direct bearing of chromatin on spindle size is similarly conceivable. Other Lepidoptera species examined so far are compatible with a 'type L' or a 'type Sbr' pattern of apyrene meiosis.  相似文献   

19.
A comparative investigation of testicular eupyrene cysts (in larvae) and apyrene cysts (in pupae) of Ephestia kuehniella laboratory strains was conducted using light and electron microscopy. Eupyrene cysts in the first meiotic division contained 64 spermatocytes, which showed only moderate asynchrony. In one of the strains, a wild-type strain, L, normal-sized cysts occurred together with abnormally large cysts. These are called giant cysts in this article. One of the premeiotic cysts, early giant cysts, studied in detail, contained approximately a fourfold number of cells compared with the number in a eupyrene cyst of the same stage. In cysts harboring spermatocytes and spermatids, late giant cysts, cell differentiation was highly asynchronous. Failure in one of two control mechanisms in early cyst development may have caused the appearance of the cysts. Control of cell division might have been sloppy in apyrene spermatogonia. Hence, the spermatogonia within the cyst could have passed through additional division cycles. Alternatively, the giant cysts may have originated from more than one predefinitive gonial cell enclosed in a common envelope of sheath cells. As a third possibility, giant cysts could have arisen by fusion of normal cysts at a later stage. In either case, this is evidence that separation of eupyrene and apyrene pathways is earlier than was previously expected. In two other Ephestia strains, apyrene sperm development proceeded without formation of giant cysts. One was a mutant strain, a, and the other one was a recently established wild-type strain, Sbr. Apyrene sperm development is considered an example of degenerate evolution in which enhanced variability between species and even between populations of one species is a common phenomenon.  相似文献   

20.
Normal lepidopteran males produce two kinds of spermatozoa: nucleate (eupyrene) and anucleate (apyrene). Eupyrene spermatozoa have the usual type of elongate nuclei. But in apyrene spermatids, the nuclei never elongate and the chromatin remains in a telophase-like condition until enucleation occurs. The study of the differential nucleoprotein kinetics of the two types of spermatids, using the fluorescent dye sulfoflavine, shows that: (1) In the elongate eupyrene nuclei, lysine-rich nucleoproteins are replaced by arginine-rich ones, while in the non-elongating apyrene nuclei only lysine-rich nucleoproteins are detected. However, nuclear elongation is not causally related to nucleoprotein transitions as transitions occur in the eupyrene spermatids after nuclear elongation. (2) The replacement of the nucleoproteins occurs in the eupyrene nuclei in a polarized manner. This may be correlated with the heterogeneous ultrastructural configuration of the chromatin fibers in elongating spermatid nuclei, as shown in other insect species. (3) Concomitantly with the eupyrene spermatid nucleoprotein transition, the cytoplasm of the head cyst cell shows an increasing amount of cytoplasmic lysine-rich proteins, while no such a phenomenon occurs in apyrene cysts. This differential pattern distribution may reflact functional differences among the two types of cysts and is probably related to the regulation of the dichotomy in lepidopteran spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号