首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Liver X receptors (LXRs) play an important role in the regulation of cholesterol by regulating several transporters. In this study, we investigated the role of LXRs in the regulation of human organic anion transporter 1 (hOAT1), a major transporter localized in the basolateral membrane of the renal proximal tubule. Exposure of renal S2 cells expressing hOAT1 to LXR agonists (TO901317 and GW3965) and their endogenous ligand [22(R)-hydroxycholesterol] led to the inhibition of hOAT1-mediated [(14)C]PAH uptake. This inhibition was abolished by coincubation of the above agonists with 22(S)-hydroxycholesterol, an LXR antagonist. Moreover, it was found that the effect of LXR agonists was not mediated by changes in intracellular cholesterol levels. Interestingly, the inhibitory effect of LXRs was enhanced in the presence of 9-cis retinoic acid, a retinoic X receptor agonist. Kinetic analysis revealed that LXR activation decreased the maximum rate of PAH transport (J(max)) but had no effect on the affinity of the transporter (K(t)). This result correlated well with data from Western blot analysis, which showed the decrease in hOAT1 expression following LXR activation. Similarly, TO901317 inhibited [(14)C]PAH uptake by the renal cortical slices as well as decreasing mOAT1 protein expression in mouse kidney. Our findings indicated for the first time that hOAT1 was downregulated by LXR activation in the renal proximal tubule.  相似文献   

2.
The purpose of this study was to investigate the characteristics of ochratoxin A (OTA) transport by multispecific human organic anion transporters (hOAT1 and hOAT3, respectively) using the second segment of proximal tubule (S2) cells from mice stably expressing hOAT1 and hOAT3 (S2 hOAT1 and S2 hOAT3). S2 hOAT1 and S2 hOAT3 exhibited a time- and dose-dependent, and a saturable increase in uptake of [3H]-OTA, with apparent Km values of 0.42 microM (hOAT1) and 0.75 microM (hOAT3). These OTA uptakes were inhibited by several substrates for the OATs. Para-aminohippuric acid (PAH), probenecid, piroxicam, octanoate and citrinin inhibited [3H]-OTA uptake by hOAT1 and hOAT3 in a competitive manner (Ki = 4.29-3080 microM), with the following order of potency: probenecid > octanoate > PAH > piroxicam > citrinin for hOAT1; probenecid > piroxicam > octanoate> citrinin > PAH for hOAT3. These results indicate that hOAT1, as well as hOAT3, mediates a high-affinity transport of OTA on the basolateral side of the proximal tubule, but hOAT1- and hOAT3-mediated OTA transport are differently influenced by the substrates for the OATs. These pharmacological characteristics of hOAT1 and hOAT3 may be significantly related with the events in the development of OTA-induced nephrotoxicity in the human kidney.  相似文献   

3.
In the intact kidney, renal proximal tubule cells accumulate p-aminohippurate (PAH) via a basolateral, probenecid- and sodium-sensitive transport system. Primary cultures of rabbit proximal tubule cells retain sodium-glucose co-transport in culture, but little is known about PAH transport in this system. Purified proximal tubule cells from a rabbit were grown in culture and assessed for PAH and alpha-methyl-D-glucoside uptake capacities as well as proximal tubule marker enzyme activities. Control PAH uptake on collagen-coated filters (20 +/- 3 pmol/mg protein.min; n = 8) was not significantly different from uptake in the presence of 1 mM probenecid (19 +/- 4 pmol/mg protein.min; n = 8). Uptake from the basal side of the cell was 3.9 +/- 0.7 times greater than that from the apical side. In multi-well plate studies, the uptake was significantly reduced by removing sodium from the medium and stimulated by coating the wells with collagen. Glutarate (10 mM) had no effect on the uptake of PAH. Other differentiated proximal tubule characteristics were retained in culture, including the ability to form domes and to transport glucose by a phlorizin-sensitive system. Phlorizin-sensitive 1 mM alpha-methyl-D-glucoside uptake was 134 +/- 42 pmol/mg protein.min (n = 7; P less than 0.02). The proximal tubule marker enzymes alkaline phosphatase and gamma-glutamyltranspeptidase, increased in activity in the cultures after confluence. It was concluded that whereas some differentiated properties were retained during primary culture of rabbit proximal tubule cells, the PAH transport system was selectively lost or modified from that present in the intact kidney.  相似文献   

4.
Kidney weight, length of superficial and juxtamedullary proximal tubules, glomerular diameter, kidney filtration rate and PAH clearance, sodium excretion and intrarenal distribution of filtration (with 14C-ferrocyanide) were measured in the remaining hypertrophic kidneys of dogs 10 days after unilateral nephrectomy. Whereas kidney weight increased to 75 percent of the original total renal mass, proximal tubule length and mean glomerular diameter remained unchanged. PAH and creatinine clearance, and absolute, but not fractional, sodium excretion, rose significantly. The ratio superficial/juxtamedullary filtration rate remained unchanged, indicating parallel increases of filtration in both cortical regions of hypertrophied kidneys.  相似文献   

5.
Hagos Y  Braun IM  Krick W  Burckhardt G  Bahn A 《Biochimie》2005,87(5):421-424
With the cloning of pig renal organic anion transporter 1 (pOAT1) (Biochimie 84 (2002) 1219) we set up a model system for comparative studies of cloned and natively isolated membrane located transport proteins. Meanwhile, another transport protein involved in p-aminohippurate (PAH) uptake on the basolateral side of the proximal tubule cells was identified, designated organic anion transporter 3 (OAT3). To explore the contribution of pOAT1 to the PAH clearance in comparison to OAT3, it was the aim of this study to extend our model by cloning of the pig ortholog of OAT3. Sequence comparisons of human organic anion transporter 3 (hOAT3) with the expressed sequence tag (EST) database revealed a clone and partial sequence of the pig renal organic anion transporter 3 (pOAT3) ortholog. Sequencing of the entire open reading frame resulted in a protein of 543 amino acid residues encoded by 1632 base pairs (EMBL Acc. No. AJ587003). It showed high homologies of 81%, 80%, 76%, and 77% to the human, rabbit, rat, and mouse OAT3, respectively. A functional characterization of pOAT3 in Xenopus laevis oocytes yielded an apparent Km (Kt) for [3H]estrone sulfate of 7.8 +/- 1.3 microM. Moreover, pOAT3 mediated [3H]estrone sulfate uptake was almost abolished by 0.5 mM of glutarate, dehydroepiandosterone sulfate, or probenecid consistent with the hallmarks of OAT3 function.  相似文献   

6.
The reabsorption of horseradish peroxidase (HRP) by the proximal tubule cells of rat kidneys was investigated by measuring the concentration of HRP in total particulate fractions of the cortex 1/4 and 1 hr after intravenous injection, and by correlated cytochemical observations. When compared to the corresponding values of the control animals, the concentration of HRP 1 hr after injection was decreased approximately 10-fold in the renal cortex of rats which had received an intravenous injection of hypertonic saline or two subcutaneous injections of mannitol. The plasma clearance and the urinary excretion of HRP were not altered significantly after injection of hypertonic saline, but the plasma clearance was decreased and the urinary excretion increased after injection of mannitol. When the dose of injected HRP was varied, the reabsorption of HRP by the renal cortex was proportional to the dose in the experimental and the control animals. Cytochemical staining for peroxidase activity also showed that the phagosomes and phagolysosomes of the proximal tubule cells contained much less peroxidase in the experimental rats than in the control rats. After injection of mannitol, large vacuoles appeared in the proximal tubule cells. The vacuoles often contained peroxidase-positive granules (phagosomes) which varied in diameter from the limit of microscopic visibility up to several microns. Most of the vacuoles did not react for acid phosphatase activity, but lysosomes were often aggregated around the vacuoles and seemed to release acid phosphatase into the cytoplasm. Certain analogies between the reabsorption of protein and that of water by the proximal tubule cells are discussed.  相似文献   

7.
Zhu Y  Meng Q  Wang C  Liu Q  Sun H  Kaku T  Liu K 《Peptides》2012,33(2):265-271
Bestatin, a dipeptide, a low molecular weight aminopeptidase inhibitor, has been demonstrated to be an immunomodulator with an antitumor activity. However, the transporter-mediated renal excretion of bestatin is not fully understood. The purpose of this study was to elucidate the transporter-mediated renal excretion mechanism for bestatin. The plasma concentration of bestatin was increased markedly and both the accumulative renal excretion and renal clearance of bestatin were decreased significantly after intravenous administration of bestatin in combination with probenecid. p-Aminohippuric acid (PAH), a substrate of organic anion transporter (OAT) 1, benzylpenicillin (PCG), a substrate of OAT3 and JBP485, a substrate of OAT1 and OAT3, reduced the uptake of bestatin in rat kidney slices and in hOAT1- or hOAT3-HEK 293 cells. The accumulation of bestatin in hOAT1-HEK and hOAT3-HEK 293 cells was significantly greater than that in vector-HEK, and the K(m) and V(max) were 0.679 ± 0.007 mM and 0.807 ± 0.006 nmol/mg protein/30s for OAT1, 0.632 ± 0.014 mM and 1.303 ± 0.015 nmol/mg protein/30s for OAT3 respectively. PAH and JBP485 inhibited significantly the uptake of bestatin in hOAT1-HEK with the K(i) values of 92 ± 9 μM and 197 ± 21 μM; and PCG, JBP485 inhibited significantly the uptake of bestatin in hOAT3-HEK 293 cells with the K(i) values of 88 ± 12 μM and 160 ± 16 μM. Our results are novel in demonstrating for the first time that OAT1 and OAT3 are involved in the renal excretion of bestatin.  相似文献   

8.
Hydrogen peroxide (H2O2) is known to be involved in drug-induced and ischemic proximal tubular damage. The purpose of this study was to elucidate the effects of hydrogen peroxide on organic anion transport mediated by human organic anion transporters 1 and 3 (hOAT1 and hOAT3), which are localized at the basolateral side of the proximal tubule. For this purpose, we established and utilized the second segment of the proximal tubule cells from mice stably expressing hOAT1 or hOAT3 (S2 hOAT1 or S2hOAT3, respectively). H2O2 induced a dose- and a time-dependent decrease in organic anion transport mediated by hOAT1 and hOAT3. Kinetic analysis revealed that H2O2 decreased the Vmax, but not Km of organic anion transport both in S2hOAT1 and S2hOAT3. The effects of gentamicin, known to induce proximal tubular damage via the production of H2O2, on the organic anion transporters were also examined. Gentamicin induced a significant decrease in organic anion transport in S2hOAT1 but not S2hOAT3. H2O2-induced decrease in organic anion transport was significantly inhibited by pretreatment with pyruvate as well as catalase, whereas the gentamicin-induced decrease was significantly inhibited by pretreatment with pyruvate but not with catalase. In conclusion, these results suggest that H2O2, which is produced during tubular injuries, downregulates organic anion transport mediated by both hOAT1 and hOAT3, leading to further modulation of pathophysiology.  相似文献   

9.
The organic anion p-aminohippurate (PAH) is specifically secreted by the renal proximal tubule. The possibility was examined that the probenecid sensitive PAH transport system (which is involved in this secretory process in renal proximal tubule cells in vivo) is retained in primary cultures of rabbit kidney proximal tubule cells. Significant 3H-PAH uptake into primary cultures of proximal tubule cells was observed. After 10 min, 150 pmole PAH/mg protein had accumulated intracellularly. Given an intracellular fluid volume of 10 microliter/mg protein, the intracellular PAH concentration was estimated to be 15 microM. The initial rate of PAH uptake (when 50 microM PAH was in the uptake buffer) was inhibited 50% by 2 mM probenecid. Intact monolayers also exhibited Na+-dependent alpha methyl-D-glucoside uptake (an apical marker). Basolateral membranes were purified from primary rabbit kidney proximal tubule cell cultures. Probenecid sensitive PAH uptake into the membrane vesicles derived from the primary cultures was observed. The rate of PAH uptake was equivalent to that obtained with vesicles obtained from the rabbit renal cortex. No significant Na+-dependent D-glucose uptake into the vesicles was observed, indicating that primarily basolateral membrane vesicles had indeed been obtained.  相似文献   

10.
Role of human organic anion transporter 4 in the transport of ochratoxin A   总被引:6,自引:0,他引:6  
The purpose of this study was to investigate the characteristics of ochratoxin A (OTA) transport by multispecific human organic anion transporter 4 (hOAT4) using mouse proximal tubule cells stably transfected with hOAT4 (S(2) hOAT4). Immunohistochemical analysis revealed that hOAT4 protein was localized to the apical side of the proximal tubule. S(2) hOAT4 expressed hOAT4 protein in the apical side as well as basolateral side and the cells were cultured on the plastic dish for experiments. S(2) hOAT4 exhibited a time- and concentration-dependent, and a saturable increase in OTA uptake, with an apparent K(m) value of 22.9+/-2.44 microM. The OTA uptakes were inhibited by several substrates for the OATs. Probenecid, piroxicam, octanoate and citrinin inhibited OTA uptake by hOAT4 in a competitive manner (K(i)=44.4-336.4 microM), with the following order of potency: probenecid > piroxicam > octanoate >citrinin. The efflux of OTA by S(2) hOAT4 was higher than that by mock. Addition of OTA resulted in slight decrease in viability of S(2) hOAT4 compared with mock. These results indicate that hOAT4 mediates the high-affinity transport of OTA on the apical side of the proximal tubule, whereas the transport characteristics of OTA are distinct from those by basolateral OATs.  相似文献   

11.
Regulation of bilirubin glucuronide transporters during hyperbilirubinemia in hepatic and extrahepatic tissues is not completely clear. In the present study, we evaluated the regulation of the bilirubin glucuronide transporters, multidrug resistance-associated proteins (MRP)2 and 3, in rats with obstructive jaundice. Bile duct ligation (BDL) or sham operation was performed in Wistar rats. Liver and kidneys were removed 1, 3, and 5 days after BDL (n = 4, in each group). Serum and urine were collected to measure bilirubin levels just before animal killing. MRP2 And MRP3 mRNA expressions were determined by real-time RT-PCR. Protein expression of MRP2 and MRP3 was determined by Western blotting. Renal MRP2 function was evaluated by para-aminohippurate (PAH) clearance. The effect of conjugated bilirubin, unconjugated bilirubin, human bile, and sulfate-conjugated bile acid on MRP2 gene expression was also evaluated in renal and hepatocyte cell lines. Serum bilirubin and urinary bilirubin excretion increased significantly after BDL. In the liver, the mRNA expression of MRP2 decreased 59, 86, and 82%, and its protein expression decreased 25, 74, and 93% compared with sham-operated animals after 24, 72, and 120 h of BDL, respectively. In contrast, the liver expression of MRP3 mRNA increased 138, 2,137, and 3,295%, and its protein expression increased 560, 634, and 612% compared with sham-operated animals after 24, 72, and 120 h of BDL, respectively. On the other hand, in the kidneys, the mRNA expression of MRP2 increased 162, 73, and 21%, and its protein expression increased 387, 558, and 472% compared with sham-operated animals after 24, 72, and 120 h of BDL, respectively. PAH clearance was significantly increased after BDL. The mRNA expression of MRP2 increased in renal proximal tubular epithelial cells after treatment with conjugated bilirubin, sulfate-conjugated bile acid or human bile. Upregulation of MRP2 in the kidneys and MRP3 in the liver may be a compensatory mechanism to improve bilirubin clearance during obstructive jaundice.  相似文献   

12.
Gender differences in the renal handling on drugs and toxins have received too little attention. In the present study, a variety of preparations were used to examine the basis for the greater effectiveness of the male kidneys in the elimination of p-aminohippurate (PAH) in rats. Renal clearance of PAH was significantly lower in female rats as consequence of its smaller filtered and secreted load. The gender difference in the filtered load may be accounted for the lower value of glomerular filtration rate (GFR) displayed by female rats as compared with males. The lower value of the renal blood flow observed in females might explain, at least in part, the decrease in the GFR and in the secreted load of PAH. In females, maximal uptake for PAH transport into renal basolateral membrane vesicles decreased to 52+/-9% (P < 0.05) and Michaelis-Menten constant for PAH uptake into renal brush border membrane vesicles was increased to 163+/-8% (P < 0.05). These changes might also explain the lower secreted load of PAH. The sex difference in the renal clearance of PAH was also evidenced by the reduced systemic clearance observed in female rats.  相似文献   

13.
Membrane traffic after inhibition of endocytosis in renal proximal tubules   总被引:3,自引:0,他引:3  
This study was performed to examine quantitatively the cellular organelles involved in membrane recycling after inhibition of luminal endocytosis in renal proximal tubules. Paraffin oil was microinfused into rat renal proximal convoluted tubules to prevent luminal endocytosis. After 1-2 hr the kidneys were fixed by perfusion and prepared for electron microscopy. Segment 1 proximal tubules infused with paraffin oil and control tubules from the same kidney were studied. In addition we examined proximal tubules from kidneys fixed by immersion 30 sec after removal of the kidney. In the oil-infused tubules the large endocytic vacuoles (greater than 0.5 micron) disappeared, the amount of small endocytic vacuoles (less than 0.5 micron) was reduced to about 10%, and the amount of dense apical tubules was significantly increased. The dense apical tubules were very seldom seen connected to the apical plasma membrane in controls but this was occasionally observed in tubules fixed by immersion and relatively often in oil-infused tubules. An ultrastructural morphometric analysis substantiated and extended the qualitative observations and provided quantitative estimates of volumes and surface areas for large endocytic vacuoles, lysosomes, mitochondria, small endocytic vacuoles, and dense apical tubules in control and experimental tubules. The results strongly support the suggestion that the dense apical tubules located in the apical cytoplasm represent the vehicle for the recycling of membrane from endocytic vacuoles back to the plasma membrane, and show that in renal proximal tubule cells small and large endocytic vacuoles are transformed into dense apical tubules when endocytosis is stopped.  相似文献   

14.
脑室内注射高张盐水抑制近曲小管对水和钠的重吸收   总被引:3,自引:1,他引:2  
何小瑞  张继峰 《生理学报》1989,41(5):421-427
实验在麻醉大鼠上进行。用锂清除率为指标观察脑室内注射高张盐水对近曲小管重吸收水和钠的影响。在切断单侧肾神经的动物中,脑室内注射高张盐水后的锂清除率与肾小球滤过率比值在去神经侧肾脏从0.37±0.04增加至0.51±0.05(P<0.01);神经完好侧肾脏则从0.26±0.03增加至0.31±0.04(P<0.05);双侧肾脏的肾小球滤过率、尿量、尿钠和尿钾量均增加,且去肾神经肾脏的增加幅度高于肾神经完好肾脏。在肾小管微穿刺实验中,脑室内注射高张盐水后,近曲小管末段小管液流量从24.42±1.84nl/min增加至31.86±3.09nl/min(P<0.01),小管液的渗透压无显著变化。以上实验结果表明,脑室内注射高张盐水引起的利尿、尿钠增多反应与肾小球滤过率增加和近曲小管对水、钠重吸收减少有关,体液因素在该反应中可能起主要作用。  相似文献   

15.
In ischemic acute kidney injury, renal blood flow is decreased. We have previously shown that reperfused, transplanted kidneys exhibited ischemic injury to vascular endothelium and that preservation of peritubular capillary endothelial integrity may be critical to recovery from ischemic injury. We hypothesized that bone marrow–derived (BMD) endothelial progenitor cells (EPCs) might play an important role in renal functional recovery after ischemia. We tested this hypothesis in recipients of cadaveric renal allografts before and for 2 weeks after transplantation. We found that the numbers of circulating CD34-positive EPCs and CD146-positive endothelial cells (ECs) decreased immediately after ischemia–reperfusion. In renal allograft tissues obtained 1 hr after reperfusion, CD34-positive cells were more frequently observed along the endothelial lining of peritubular capillaries compared with non-ischemic controls. Moreover, 0–17.5% of peritubular capillary ECs were of recipient origin. In contrast, only 0.1–0.7% of tubule cells were of recipient origin. Repeat graft biopsy samples obtained 35 and 73 days after transplant did not contain capillary ECs of recipient origin, whereas 1.4% and 12.1% of tubule cells, respectively, were of recipient origin. These findings suggest that BMD EPCs and ECs may contribute to endothelial repair immediately after ischemia–reperfusion. (J Histochem Cytochem 58:687–694, 2010)  相似文献   

16.
ABSTRACT

The purpose of this study was to explore the functional implication of microRNA-218 (miR-218) in diabetic nephropathy (DN) through high-glucose-stimulated renal proximal tubule impairment. Biological function experiments showed that miR-218 and inflammatory factors TNF-α and IL-1β were highly expressed in renal proximal tubule under high-glucose conditions. Inhibiting miR-218 alleviated renal tubular cell injury, which was represented by miR-218 inhibitor facilitating renal tubular cell vitality whilst reducing its apoptosis and levels of inflammation factors. In addition, we confirmed that miR-218 directly targeted GPRC5A and negatively regulated its expression. Co-transfection assay showed that overexpression of GPRC5A accentuated the mitigated action of miR-218 inhibitor on renal proximal tubule cell injury induced by high-glucose. Accordingly, these data indicated that downregulation of miR-218 can assuage high-glucose-resulted renal tubular cell damage, and its ameliorative effect was achieved by negative regulation of GPRC5A, which provides a novel direction for unearthing the pathogenesis and even further biological treatment of DN.  相似文献   

17.
Basolateral transport of organic anions (OAs) into mammalian renal proximal tubule cells is a tertiary active transport process. The final step in this process involves movement of OA into the cells against its electrochemical gradient in exchange for alpha-ketoglutarate (alphaKG) moving down its electrochemical gradient. Two homologous transport proteins (OAT1 and OAT3) that function as basolateral OA/alphaKG exchangers have been cloned and sequenced. We are in the process of determining the functional distribution and regulation of OAT1 and OAT3 in renal tubules. We are using rabbit OAT1 (rbOAT1) and OAT3 (rbOAT3) expressed in heterologous cell systems to determine substrate specificity and putative regulatory steps and isolated rabbit proximal renal tubule segments to determine functional distribution and physiological regulation of these transporters within their native epithelium. Rabbit OAT1 and OAT3 differ distinctly in substrate specificity. For example, rbOAT1 has a high affinity for the classical renal OA transport substrate, p-aminohippurate (PAH), whereas rbOAT3 has no affinity for PAH. In contrast, rbOAT3 has a high affinity for estrone sulfate (ES), whereas rbOAT1 has only a very slight affinity for ES. Both rbOAT1 and rbOAT3 appear to have about the same affinity for fluorescein (FL). These differences and similarities in substrate affinities make it possible to functionally map transporters along the renal tubules. Initial data indicate that OAT1 predominates in S2 segments of the rabbit proximal tubules, but studies of other segments are just beginning. Transport of a given substrate in any tubule segment depends on both the affinity of each transporter which can accept that substrate as well as the level of expression of each of those processes in that particular tubule segment. Basolateral PAH transport (presumably OAT1 activity) appears to be down-regulated by activation of protein kinase C (PKC) and up-regulated via mitogen-activated protein kinase (MAPK) through phospholipase A(2) (PLA(2)), prostaglandin E(2) (PGE(2)), cyclic AMP, and protein kinase A (PKA) activation.  相似文献   

18.
19.
Out of 250 patients with renal failure, seven (2.8%) treated by regular haemodialysis alone (four) or given cadaveric allografts (three) later showed recovery of function of their own kidneys lasting from one to four years. In the patients receiving haemodialysis alone recovery was easily recognised from their serum creatinine concentrations, but in those with transplants recovery was discovered unexpectedly during radionuclide scanning. These findings suggest that recovery of renal function may be more common than generally recognised, which should be borne in mind when beginning renal replacement treatment and particularly when contemplating bilateral nephrectomy.  相似文献   

20.
The expression of both OAT1 and OAT3 along the isolated rabbit renal proximal tubule (RPT) was determined using RT-PCR. They were found to be very strong in S2 segment and weak in S1 and S3 segments. We further examined the relative transport activity of these transporters in isolated perfused rabbit RPT using [(3)H]para-aminohippurate ([(3)H]PAH), and estrone sulfate ([(3)H]ES) as specific substrates for rbOAT1 and rbOAT3, respectively. The transport activity of OAT1 was in the order S2>S1=S3 segments and that of OAT3 was in the order S1=S2>S3 segments. The addition of alpha-ketoglutarate (100 muM) in the bathing medium increased both OAT1 and OAT3 transport activities in all segments of proximal tubule. The kinetics of [(3)H]succinic acid transport, used to measure the activity of sodium dicarboxylate transporter 3 (NaDC3), were examined. The J(max) for succinic acid was in the order S2>S3 and unmeasurable in the S1 segment. Our data indicate that both OAT1 and OAT3 play quantitatively significant roles in the renal transport of organic anions along the proximal tubule but predominately in S2 segment. The relative contribution of both transporters depends on their relative expression levels and may possibly be affected by the activity of NaDC3 in RPT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号