首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
To elucidate the relationship between intracellular free Ca2+ concentration ([Ca2+]i) and Ca2+-signalling by the sarcoplasmic reticulum (SR) in Ca2+-overloaded heart muscle cells, the direct effects of “basal” [Ca2+]i on calcium waves were investigated by altering the membrane potential. When basal inter-calcium wave (BCW) [Ca2+]i was maintained at a high level, (i) calcium waves showed more gradual and more rapidly suppressed increase in [Ca2+]-profile (P < 0.005), and (ii) calcium waves occurred at a significantly higher frequency and velocity (259% and 137%), than when low BCW [Ca2+]i was maintained. Similar investigations on inhibition of the Na+-Ca2+ exchanger, however, showed that membrane potential did not elicit direct effects on calcium waves. These results showed that the elevation of BCW [Ca2+]i per se directly influences Ca2+-signalling in heart muscle cells through non-equilibrated release-restoration Ca2+-handling by the SR.  相似文献   

2.
We investigated the effect of newborn bovine serum on the intracellular calcium [Ca2+]i response of primary cultured bone cells stimulated by fluid flow. As it has been previously established that these cells exhibit [Ca2+]i responses to fluid flow shear stress in saline media without growth factors or other chemically stimulatory factors, we hypothesized that the addition of serum to the flow medium would enhance the mechanosensitivity of the cells. We examined the effect of a short-term (10–15 min) exposure of the cells to 2 and 10% serum prior to flow stimulation (pretreated) compared to not exposing the cells prior to flow stimulation (unpretreated). The cells were subjected to a well-defined, 90-s flow stimulus with shear stress levels ranging from 0.02 to 3.5 Pa in a laminar flow chamber using a saline medium supplemented with 2 or 10% serum. For pretreatment, the serum concentration was the same from pre-flow to flow exposure. We observed a differential effect in the magnitude of the peak [Ca2+]i response modulated by the concentration of serum in the pre-flow medium. Additionally, ATP-supplemented flow was examined as a comparison to the serum-supplemented flow and exhibited a similar trend in the peak [Ca2+]i flow response that was dependent on ATP concentration and pre-flow exposure conditions. These findings demonstrate that under the conditions of this study, chemical agonist exposure can modulate the [Ca2+]i response in bone cells subjected to fluid flow-induced shear stress.  相似文献   

3.
The effects of PACAPs on [Ca2+]i were compared to those of carbachol in human neuroblastoma NB-OK-1 cells. PACAP(1–27) and PACAP(1–38) increased [Ca2+]i in a biphasic manner: a transient rise and a secondary plateau. The transient phase reflected the mobilization of [Ca2+]i pool(s) via the inositol phosphate pathway. The modest sustained plateau required extracellular Ca2+. Carbachol also increased [Ca2+]i in a biphasic manner, but it mobilized intracellular Ca2+ pool(s) with a higher efficacy than PACAPs, then greatly increased Ca2+ entry, this being accompanied by a more marked and prolonged elevation of IP3 and IP4 than with PACAPs. It is likely that cAMP-mediated phosphorylations due to PACAPs facilitated desensitization at the PACAP receptor-phospholipase C level, so that there was less Ca2+ handling through PACAP receptors than with muscarinic M1 receptors.  相似文献   

4.
This study examines the real-time intracellular calcium concentration, [Ca2+]i, response of canine medial collateral ligament (MCL) and anterior cruciate ligament (ACL) fibroblasts subjected to a fluid-induced shear stress of 25 dynes/cm2. In experiments using a modified Hanks' Balanced Salt Solution (HBSS) perfusate, both cell types demonstrated a significant increase in peak [Ca2+]i compared to respective no-flow controls, the response of MCL fibroblasts being nearly 2-fold greater than that of ACL fibroblasts. In studies where the cells were bathed in a medium of HBSS supplemented with 2% newborn bovine serum (NBS) and then introduced to flow with the same medium, ACL fibroblasts responded nearly 3-fold greater than MCL fibroblasts. Neomycin (10 mM), thapsigarigin (1 μM) and Ca2+-free media supplemented with EGTA (1 mM) were able to inhibit significantly the [Ca2+]i response to flow with HBSS in both fibroblasts. Thapsigargin also blocked the NBS flow response in both cell types, while neomycin and Ca2+-free media significantly inhibited the ACL response. Our findings demonstrate that ACL and MCL cells are not the same. These differences may be related to the disparate healing capacity of the ACL and MCL observed clinically.  相似文献   

5.
Ravier MA  Henquin JC 《FEBS letters》2002,530(1-3):215-219
Glucose-induced insulin secretion is pulsatile. We investigated how the triggering pathway (rise in β-cell [Ca2+]i) and amplifying pathway (greater Ca2+ efficacy on exocytosis) influence this pulsatility. Repetitive [Ca2+]i pulses were imposed by high K++ diazoxide in single mouse islets. Insulin secretion (measured simultaneously) tightly followed [Ca2+]i changes. Lengthening [Ca2+]i pulses increased the duration but not the amplitude of insulin pulses. Increasing glucose (5–20 mmol/l) augmented the amplitude of insulin pulses without changing that of [Ca2+]i pulses. Larger [Ca2+]i pulses augmented the amplitude of insulin pulses at high, but not low glucose. In conclusion, the amplification pathway ensures amplitude modulation of insulin pulses whose time modulation is achieved by the triggering pathway.  相似文献   

6.
We have studied the effects of cholinegic agonists on the rates of insulin release and the concentrations of diacylglycerol (DAG) and intracellular free Ca2+ ([Ca2+]i) in the β-cell line MIN6. Insulin secretion was stimulated by glucose, by glibenclamide and by bombesin. In the presence of glucose, both acetylcholine (ACh) and carbachol (CCh) produced a sustained increase in the rate of insulin release which was blocked by EGTA or verapamil. The DAG content of MIN6 β-cells was not affected by glucose. Both CCh and ACh evoked an increase in DAG which was maximal after 5 min and returned to basal after 30 min; EGTA abolished the cholinergic-induced increased in DAG. ACh caused a transient rise in [Ca2+]i which was abolished by omission of Ca2+ or by addition of devapamil. Thus, cholinergic stimulation of β-cell insulin release is associated with changes in both [Ca2+]i and DAG. The latter change persists longer than the former and activation of protein kinase C and sensitization of the secretory process to Ca2+ may underlie the prolonged effects of cholinergic agonists on insulin release. However, a secretory response to CCh was still evident after both [Ca2+]i and DAG had returned to control values suggesting that additional mechanisms may be involved.  相似文献   

7.
The effect of clomiphene, an ovulation-inducing agent, on cytosolic free Ca2+ levels ([Ca2+]i) in populations of PC3 human prostate cancer cells was explored by using fura-2 as a Ca2+ indicator. Clomiphene at concentrations between 10-50 μM increased [Ca2+]i in a concentration-dependent manner. The [Ca2+]i signal was biphasic with an initial rise and a slow decay. Ca2+ removal inhibited the Ca2+ signal by 41%. Adding 3 mM Ca2+ increased [Ca2+]i in cells pretreated with clomiphene in Ca2+-free medium, confirming that clomiphene induced Ca2+ entry. In Ca2+-free medium, pretreatment with 50 μM brefeldin A (to permeabilize the Golgi complex), 1 μM thapsigargin (to inhibit the endoplasmic reticulum Ca2+ pump), and 2 μM carbonylcyanide m-chlorophenylhydrazone (to uncouple mitochondria) inhibited 25% of 50 μM clomiphene-induced store Ca2+ release. Conversely, pretreatment with 50 μM clomiphene in Ca2+-free medium abolished the [Ca2+]i increase induced by brefeldin A, thapsigargin or carbonylcyanide m-chlorophenylhydrazone. The 50 μM clomiphene-induced Ca2+release was unaltered by inhibiting phospholipase C with 2 μM 1-(6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Trypan blue exclusion assay suggested that incubation with clomiphene (50 μM) for 2-15 min induced time-dependent decrease in cell viability by 10-50%. Collectively, the results suggest that clomiphene induced [Ca2+]i increases in PC3 cells by releasing store Ca2+ from multiple stores in an phospholipase C-independent manner, and by activating Ca2+ influx; and clomiphene was of mild cytotoxicity.  相似文献   

8.
Glucose-induced insuline release, glucose-induced rises in intracellular free Ca2+ concentration ([Ca2+]i), and voltage-dependent Ca2+ channel activity were assessed in monolayer cultures of β-vells 3–5 day-old rats. The glucose-stimulated insulin secretory responses and [Ca2+]i rises were like those in adult rat β-cells rather than fetal rat β-cells. Voltage-dependent Ca2+ channel antagonists decreased glucose-induced insulin secretion, aborted the [Ca2+]2 rise and, like deprivation of extracellular Ca2+, prevented the glucose-induced rise in [Ca2+]i when added before the glucose challenge. The presence of nifedipine-sensitive, voltage-dependent Ca2+ channels was demonstrated directly by measuring Ca2+ currents using the whole-cell configuration of the patch-clamp technique and indirectly by measuring [Ca2+]1 after membrane depolarization by 45 mMm K+ or 200 μM tolbutamide. Thus, in cultured β-cells of 3–5 day-old rats the coupling of glucose stimulation to Ca2+ influx is essentially mature, in contrast to what has been reported for fetal or very early neonatal cells.  相似文献   

9.
W K Pollock  S O Sage  T J Rink 《FEBS letters》1987,210(2):132-136
We investigated the restoration of [Ca2+]i in fura-2-loaded human platelets following discharge of internal Ca2+ stores in the absence of external Ca2+. After stimulation by thrombin [Ca2+]i returned from a peak level of 0.6 μM to resting levels within 4 min. When ionomycin discharged the internal stores the recovery was slower with [Ca2+]i still elevated at around 0.5 μM after 5 min. Thrombin added shortly after ionomycin could accelerate the recovery of [Ca2+]i and restore resting levels within 5 min, an effect that was mimicked by phorbol-12-myristate-13-acetate (PMA). Since the continued presence of ionomycin precluded reuptake into the internal stores we conclude that thrombin and PMA stimulate Ca2+ efflux, perhaps via protein kinase C actions on a plasma membrane Ca2+ pump.  相似文献   

10.
Chao YY  Jan CR  Ko YC  Chen JJ  Jiann BP  Lu YC  Chen WC  Su W  Chen IS 《Life sciences》2002,70(26):4367-3121
The effect of five lignans isolated from Hernandia nymphaeifolia on estrogenic compounds (17β-estradiol, tamoxifen and clomiphene)-induced Ca2+ mobilization in human neutrophils was investigated. The five lignans were epi-yangambin, epi-magnolin, epi-aschantin, deoxypodophyllotoxin and yatein. In Ca2+–containing medium, the lignans (50–100 μM) inhibited 10 μM 17β-estradiol- and 5 μM tamoxifen-induced increases in intracellular free Ca2+ levels ([Ca2+]i) without changing 25 μM clomiphene-induced [Ca2+]i increase. 17β-estradiol and tamoxifen increased [Ca2+]i by causing Ca2+ influx and Ca2+ release because their responses were partly reduced by removing extracellular Ca2+. In contrast, clomiphene solely induced Ca2+ release. The effect of the lignans on these two Ca2+ movement pathways underlying 17β-estradiol- and tamoxifen-induced [Ca2+]i increases was explored. All the lignans (50–100 μM) inhibited 10 μM 17β-estradiol-and 5 μM tamoxifen-induced Ca2+ release, and 17β-estradiol-induced Ca2+ influx. However, only 100 μM epi-aschantin was able to reduce tamoxifen-induced Ca2+ influx while the other lignans had no effect. Collectively, this study shows that the lignans altered estrogenic compounds-induced Ca2+ signaling in human neutrophils in a multiple manner.  相似文献   

11.
In cultured pituatary gonadotrophs, gonadotropin-releasing hormone (GnRH) caused dose-dependent and biphasic increases in cytoplasmic calcium concentration ([Ca2+]i) and LH release. Both extra- and intracellular calcium pools participate in GnRH-induced elevation of [Ca2+]i and LH secretion. The spike phase of the [Ca2+]i response represents the primary signal derived predominantly from the rapid mobilization of intracellular Ca2+. In contrast, the prolonged phase of the Ca2+ signal depends exclusively on Ca2+ entry from the extracellular pool. The influx of Ca2+ occurs partially through dihydropyridine-sensitive calcium channels. Both [Ca2+]i and LH responses to increasing concentrations of GnRH occur over very similar time scales, suggesting that increasing degrees of receptor occupancy are transduced into amplitude-modulated Ca2+ responses, which in turn activate exocytosis in a linear manner. However, several lines of evidence indicated the complexity over the relationship between Ca2+ signaling and LH exocytosis. In contrast to [Ca2+]i measurements in cell suspension, single cell Ca2+ measurements revealed the existence of a more complicated pattern of Ca2+ response to GnRH, with a biphasic response to high agonist doses and prominent oscillatory responses to lower GnRH concentrations, with a log-linear correlation between GnRH dose and the frequency of Ca2+ spiking. In addition, analysis of the magnitudes of the magnitudes of the [Ca2+]i and LH responses of gonadotrophs to a wide range of GnRH concentrations in the presence and absence of extracellular Ca2+, and to K+ and phorbol ester stimulation, showed non-linearity between these parameters with amplification of [Ca2+]i-mediated exocytosis. Studies on cell depleted of protein kinase C under conditions that did not change the LH pool suggested the participation of protein kinase C in this amplication, especially during the plateau phase of the secretory response to GnRH.  相似文献   

12.
Measurements of Ca2+ influx and [Ca2+]i changes in Fura-2/AM-loaded prothoracic glands (PGs) of the silkworm, Bombyx mori, were used to identify Ca2+ as the actual second messenger of the prothoracicotropic hormone (PTTH) of this insect. Dose-dependent increases of [Ca2+]i in PG cells were recorded in the presence of recombinant PTTH (rPTTH) within 5 minutes. The rPTTH-mediated increases of [Ca2+]i levels were dependent on extracellular Ca2+. They were not blocked by the dihydropyridine derivative, nitrendipine, an antagonist of high-voltage-activated (HVA) Ca2+ channels, and by bepridil, an antagonist of low-voltage-activated (LVA) Ca2+ channels. The trivalent cation La3+, a non-specific blocker of plasma membrane Ca2+ channels, eliminated the rPTTH-stimulated increase of [Ca2+]i levels in PG cells and so did amiloride, an inhibitor of T-type Ca2+ channels. Incubation of PG cells with thapsigargin resulted in an increase of [Ca2+]i levels, which was also dependent on extracellular Ca2+ and was quenched by amiloride, suggesting the existence of store-operated plasma membrane Ca2+ channels, which can also be inhibited by amiloride. Thapsigargin and rPTTH did not operate independently in stimulating increases of [Ca2+]i levels and one agent’s mediated increase of [Ca2+]i was eliminated in the presence of the other. TMB-8, an inhibitor of intracellular Ca2+ release from inositol 1,4,5 trisphosphate (IP3)-sensitive Ca2+ stores, blocked the rPTTH-stimulated increases of [Ca2+]i levels, suggesting an involvement of IP3 in the initiation of the rPTTH signaling cascade, whereas ryanodine did not influence the rPTTH-stimulated increases of [Ca2+]i levels. The combined results indicate the presence of a cross-talk mechanism between the [Ca2+]i levels, filling state of IP3-sensitive intracellular Ca2+ stores and the PTTH-receptor’s-mediated Ca2+ influx.  相似文献   

13.
We have used a continuous spectrofluorimetric method to analyse the role of cytosolic free Ca2+ ([Ca2+]i) in the lysosomal enzyme release from the azurophilic granules in human neutrophils stimulated with f-Met-Leu-Phe (fMLP) in the presence of cytochalasin B. Measurements were performed with the β-glucuronidase substrate 4-methylumbelliferyl-β- -glucuronide. We found that the transient rise in [Ca2+]i induced by fMLP is a necessary signal to obtain to obtain maximal degranulation. When this Ca2+ transient is prevented by the Ca2+ chelator BAPTA, degranulation can still be induced by a stimulated Ca2+ influx, albeit to a lower extent. We also studied the degranulation process in the neutrophils of a patient with a generalized chemotactic defect. Release of β-glucuronidase from the patient's neutrophils could not be induced despite the occurrence of a normal Ca2+ response and normal degranulation of specific granules. We conclude that, besides an increase in [Ca2+]i], an additional signal is required for the fusion of azurophilic granules with the plasma membrane in human neutrophils.  相似文献   

14.
Stretch of the myocardium influences the shape and amplitude of the intracellular Ca2+([Ca2+]i) transient. Under isometric conditions stretch immediately increases myofilament Ca2+ sensitivity, increasing force production and abbreviating the time course of the [Ca2+]i transient (the rapid response). Conversely, muscle shortening can prolong the Ca2+ transient by decreasing myofilament Ca2+ sensitivity. During the cardiac cycle, increased ventricular dilation may increase myofilament Ca2+ sensitivity during diastolic filling and the isovolumic phase of systole, but enhance the decrease in myofilament Ca2+ sensitivity during the systolic shortening of the ejection phase. If stretch is maintained there is a gradual increase in the amplitude of the Ca2+ transient and force production, which takes several minutes to develop fully (the slow response). The rapid and slow responses have been reported in whole hearts and single myocytes. Here we review stretch-induced changes in [Ca2+]i and the underlying mechanisms.

Myocardial stretch also modifies electrical activity and the opening of stretch-activated channels (SACs) is often used to explain this effect. However, the myocardium has many ionic currents that are regulated by [Ca2+]i and in this review we discuss how stretch-induced changes in [Ca2+]i can influence electrical activity via the modulation of these Ca2+-dependent currents. Our recent work in single ventricular myocytes has shown that axial stretch prolongs the action potential. This effect is sensitive to either SAC blockade by streptomycin or the buffering of [Ca2+]i with BAPTA, suggesting that both SACs and [Ca2+]i are important for the full effects of axial stretch on electrical activity to develop.  相似文献   


15.
Airway myocytes are the primary effectors of airway reactivity which modulates airway resistance and hence ventilation. Stimulation of airway myocytes results in an increase in the cytosolic Ca2+ concentration ([Ca2+]i) and the subsequent activation of the contractile apparatus. Many contractile agonists, including acetylcholine, induce [Ca2+]i increase via Ca2+ release from the sarcoplasmic reticulum through InsP3 receptors. Several models have been developed to explain the characteristics of InsP3-induced [Ca2+]i responses, in particular Ca2+ oscillations. The article reviews the modelling of the major structures implicated in intracellular Ca2+ handling, i.e., InsP3 receptors, SERCAs, mitochondria and Ca2+-binding cytosolic proteins. We developed theoretical models specifically dedicated to the airway myocyte which include the major mechanisms responsible for intracellular Ca2+ handling identified in these cells. These biocomputations pointed out the importance of the relative proportion of InsP3 receptor isoforms and the respective role of the different mechanisms responsible for cytosolic Ca2+ clearance in the pattern of [Ca2+]i variations. We have developed a theoretical model of membrane conductances that predicts the variations in membrane potential and extracellular Ca2+ influx. Stimulation of this model by simulated increase in [Ca2+]i predicts membrane depolarisation, but not great enough to trigger a significant opening of voltage-dependant Ca2+ channels. This may explain why airway contraction induced by cholinergic stimulation does not greatly depend on extracellular calcium. The development of such models of airway myocytes is important for the understanding of the cellular mechanisms of airway reactivity and their possible modulation by pharmacological agents.  相似文献   

16.
Isolated hepatocytes and the isolated perfused rat liver have been used to study the alterations of cytosolic free Ca2+ concentration ([Ca2+]i) produced by 2,5-di(tert-butyl)-l.4-benzohydroquinone (tBuBHQ), a potent inhibitor of hepatic microsomal Ca2+ sequestration (Moore. G.A., McConkey. D.J., Kass, G.E.N., OBrien, P.J. and Orrenius, S. FEBS Lett.,224, 331-336). (1987). Addition of tBuBHQ to isolated hepatocytes caused a rapid increase in [Ca2+]i which was similar in magnitude to the [Ca2+]i elevation induced by the Ca2+ mobilizing hormone, vasopressin. In contrast with vasopressin which caused a Ca2+ transient, tBuBHQ elevated [Ca2+]i to a new steady state that was maintained for up to 15-20min. When vasopressin was administered during the tBuBHQ-induced period of elevated [Ca2+]i. [Ca2+]i, rapidly returned to basal levels. Similarly, if vasopressin was administered just prior to tBuBHQ, the resultant tBuBHQ-dependent change in [Ca2+]i was transient. and not sustained. The hydroquinone mobilized the same intracellular Ca2+ pool as inositol 1,4,5-trisphosphate. but tBuBHQ did not produce any detectable inositol polyphosphate accumulation. IBuBHQ stimulated glucose release from perifused hepatocytes. mimicking the effect of vasopressin. In the perfused liver, tBuBHQ infusion produced a single, slow and prolonged release of Ca2+ into the perfusate and inhibition of subsequent vasopressin-induced Ca2+ effluxes. Inhibition of the response to vasopressin was reversed over time, and closely correlated with the extent of inhibition of both Ca2+ sequestration and (Ca2+-Mg2+)-ATPase activity in microsomes isolated from the isolated perfused liver. The present results are consistent with tBuBHQ inhibiting ATP-dependent Ca2+ sequestration by a direct effect on the endoplasmic reticular Ca2+ pump, which results in net Ca2+ release and elevation of [Ca2+]i. Furthermore. vasopressin appears to stimulate active removal of increased [Ca2+] from the hepatocyte cytosol by a mechanism which does not depend on reuptake of Ca2+ into the endoplasmic reticulum

2,5-Di(tert-butyl) -l,4-benmhydroquinone. calcium. hepatocytes. perfused liver, endoplasmic reticulum  相似文献   

17.
The effect of extracellular Na+ ([Na+]e) removal on agonist-induced granule secretion in platelets in relation to [ph]i and [Ca2+]i changes was investigated. Substitution of [Na+]e with choline+ of K+ resulted in a significant enhancement of 5HT secretion induced by thrombin, collagen, U46619 and the protein kinase C activators, PMA and diC8. Increases in [Ca2+]i induced by thrombin and U46619 were slightly inhibited or unaffected in these buffers, but [pH]i increases induced by thrombin, U46619, PMA and diC8 were abolished and a drop in [pH]i (0.05–0.1 units below resting) was observed. Although preincubation with potassium acetate produced a big drop in [pH]i and greatly increased secretion with all the agonists, particularly in the absence of [Na+]e, clear evidence that [pH]i rises due to Na+/H+ exchange are inhibitory to secretion was obtained only with thrombin. Thus, (i) NH4Cl, which restored the increase in [pH]i in the absence of [Na+]e reduced the potentiated secretory response to thrombin, (ii) no increase in thrombin-induced secretion was observed when Na+ was replaced with Li+, which allowed a normal increase in [pH]i and (iii) ethyl isopropyl amiloride (EIPA) abolished the [pH]i rise and potentiated thrombin-induced secretion. With collagen and U46619, the results suggest that removal of [Na+]e per se rather than inhibition of Na+/H+ exchange results in enhanced secretion. It is concluded that [Na+]e per se and [pH]i elevations via Na+/H+ exchange both have important inhibitory roles in the control of platelet granule secretion.  相似文献   

18.
Ca2+ mobilization elicited by simulation with brief pulses of high K + were monitored with confocal laser scanned microscopy in intact, guinea pig cardiac myocytes loaded with the calcium indicator fluo-3. Single wavelength ratioing of fluorescence images obtained after prolonged integration times revealed non-uniformities of intracellular Ca2+ changes across the cell, suggesting the presence of significant spatial Ca2+ gradients. Treatment with 20 μM ryanodine, an inhibitor of Ca2+ release from the SR, and 10 μM verapamil, a calcium channel blocker, reduced by 42% and 76% respectively the changes in [Ca2+]i elicited by membrane depolarization. The overall spatial distribution of [Ca2+]i changes appeared unchanged. Ca2+ transients recorded in the presence of verapamil and ryanodine (about 20% of the size of control responses), diminished in the presence of 50 μM 2-4 Dichlorbenzamil (DCB) or 5 mM nickel, two relatively specific inhibitors of the exchange mechanism. Conversely, when the reversal potential of the exchange was shifted to negative potentials by lowering [Na+]0 or by increasing [Na+]i by treatment with 20 μM monensin, the amplitude of these Ca2+ transients increased. Ca2+ transients elicited by membrane depolarization and largely mediated by reverse operation of Na+-Ca2+ exchange could be recorded in the presence of ryanodine, verapamil and monensin. These findings suggest that in intact guinea pig cardiac cells, Ca2+ influx through the exchange mechanism activated by a membrane depolarization in the physiological range can be sufficient to play a significant role in excitation-contraction coupling.  相似文献   

19.
DMSO differentiated U937 cells responded to 10−6 M LTD4, LTB4 and FMLP with an increase in both InsP formation and [Ca2+]i. FMLP caused a greater rise in InsPs than either LTD4 or LTB4, which were equivalent. LTD4, however, caused a greater increase in [Ca2+]i than LTB4 (4-fold) or FMLP. The FMLP [Ca2+]i and InsP responses were abolished by pertussis toxin (100 ng/ml for 4 h) but were unaffected by PMA (10−7 M for 3 min). In contrast, the LTD4 [Ca2+]i and InsP responses were reduced by only 50% by pertussis toxin, whilst PMA reduced the [Ca2+]i and InsP responses to LTD4 by 75 and 30%, respectively. These results suggest that mechanisms additional to InsP formation exist for mediating LTD4 evoked increases in [Ca2+]i.  相似文献   

20.
A wasp venom, mastoparan, rapidly increased the cytosolic free Ca2+ concentration ([Ca2+]i) and activated phosphorylase in rat hepatocytes in a concentration-dependent manner. Mastoparan could increase [Ca2+]i even in the absence of extracellular Ca2+, but a larger increase was observed in the presence of extracellular Ca2+. Thus, mastoparan mobilized Ca2+ from intracellular and extracellular Ca2+ stores. It also activated inositol triphosphate (IP3) accumulation, but did not stimulate cAMP production. From these results, we conclude that mastoparan activates rat hepatic glycogenolysis mediated by the accumulation of IP3, which causes an increase of [Ca2+]i but not that mediated by cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号