首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Glutamine, the preferred precursor for neurotransmitter glutamate and GABA, is likely to be the principal substrate for the neuronal System A transporter SNAT1 in vivo. We explored the functional properties of SNAT1 (the product of the rat Slc38a1 gene) by measuring radiotracer uptake and currents associated with SNAT1 expression in Xenopus oocytes and determined the neuronal-phenotypic and cellular distribution of SNAT1 by confocal laser-scanning microscopy alongside other markers. We found that SNAT1 mediates transport of small, neutral, aliphatic amino acids including glutamine (K0.5 approximately 0.3 mm), alanine, and the System A-specific analogue 2-(methylamino)isobutyrate. Amino acid transport is driven by the Na+ electrochemical gradient. The voltage-dependent binding of Na+ precedes that of the amino acid in a simultaneous transport mechanism. Li+ (but not H+) can substitute for Na+ but results in reduced Vmax. In the absence of amino acid, SNAT1 mediates Na+-dependent presteady-state currents (Qmax approximately 9 nC) and a nonsaturable cation leak with selectivity Na+, Li+ > H+, K+. Simultaneous flux and current measurements indicate coupling stoichiometry of 1 Na+ per 1 amino acid. SNAT1 protein was detected in somata and proximal dendrites but not nerve terminals of glutamatergic and GABAergic neurons throughout the adult CNS. We did not detect SNAT1 expression in astrocytes but detected its expression on the luminal membranes of the ependyma. The functional properties and cellular distribution of SNAT1 support a primary role for SNAT1 in glutamine transport serving the glutamate/GABA-glutamine cycle in central neurons. Localization of SNAT1 to certain dopaminergic neurons of the substantia nigra and cholinergic motoneurons suggests that SNAT1 may play additional specialized roles, providing metabolic fuel (via alpha-ketoglutarate) or precursors (cysteine, glycine) for glutathione synthesis.  相似文献   

2.
Na+ dependent [3H]glutamine uptake was found in liposomes reconstituted with solubilized rat kidney brush border in the presence of intraliposomal K+. The reconstituted system was optimised with respect to the critical parameters of the cyclic detergent removal procedure, i.e., the detergent used for the solubilization, the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. Time dependent [3H]glutamine accumulation in proteoliposomes occurred only in the presence of external Na+ and internal K+. The transporter showed low if there is any tolerance towards the substitution of Na+ or K+ for other cations. Valinomycin strongly stimulated the transport indicating that it is electrogenic. Intraliposomal glutamine had no effect. From the dependence of the transport rate on the Na+ concentration cooperativity index close to 1 was derived, indicating that 1 Na+ should be involved in the cotransport with glutamine. The electrogenicity of the transport originated from the Na+ transport. Optimal rate of 0.1 mM [3H]glutamine uptake was found in the presence of 50 mM intraliposomal K-gluconate. At higher K-gluconate concentrations the transport rate decreased. The activity of the reconstituted transporter was pH dependent with optimal function in the range pH 6.5-7.0. [3H]glutamine (and [3H]leucine) uptake was inhibited by all the neutral but not by the positively or negatively charged amino acids. The sulfhydryl reagents HgCl2, mersalyl, p-hydroxymercuribenzoate and the substrate analogue 2-aminobicyclo[2,2,1]heptane-2-carboxylate strongly inhibited the transporter, whereas the amino acid analogue alpha-(methylamino)isobutyrate had no effect. The inhibition by mersalyl was protected by the presence of the substrate. On the basis of the Na+ dependence, the electrogenic transport mode and the specificity towards the amino acids, the reconstituted transporter was classified as B degrees-like.  相似文献   

3.
Zhang Z  Grewer C 《Biophysical journal》2007,92(7):2621-2632
The sodium-coupled neutral amino acid transporter SNAT2 mediates cellular uptake of glutamine and other small, neutral amino acids. Here, we report the existence of a leak anion pathway associated with SNAT2. The leak anion conductance was increased by, but did not require the presence of, extracellular sodium. The transported substrates L-alanine, L-glutamine, and alpha-(methylamino)isobutyrate inhibited the anion leak conductance, each with different potency. A transporter with the mutation H-304A did not catalyze alanine transport but still catalyzed anion leak current, demonstrating that substrate transport is not required for anion current inhibition. Both the substrate and Na+ were able to bind to the SNAT2H-304A transporter normally. The selectivity sequence of the SNAT2H-304A anion conductance was SCN->NO3->I->Br->Cl->Mes-. Anion flux mediated by the more hydrophobic anion SCN- was not saturable, whereas nitrate flux demonstrated saturation kinetics with an apparent Km of 29 mM. SNAT2, which belongs to the SLC38 family of transporters, has to be added to the growing number of secondary, Na+-coupled transporters catalyzing substrate-gated or leak anion conductances. Therefore, we can speculate that such anion-conducting pathways are general features of Na+-transporting systems.  相似文献   

4.
System A and N amino acid transporters are key effectors of movement of amino acids across the plasma membrane of mammalian cells. These Na+-dependent transporters of the SLC38 gene family are highly sensitive to changes in pH within the physiological range, with transport markedly depressed at pH 7.0. We have investigated the possible role of histidine residues in the transporter proteins in determining this pH-sensitivity. The histidine-modifying agent DEPC (diethyl pyrocarbonate) markedly reduces the pH-sensitivity of SNAT2 and SNAT5 transporters (representative isoforms of System A and N respectively, overexpressed in Xenopus oocytes) in a concentration-dependent manner but does not completely inactivate transport activity. These effects of DEPC were reversed by hydroxylamine and partially blocked in the presence of excess amino acid substrate. DEPC treatment also blocked a reduction in apparent affinity for Na+ (K0.5Na+) of the SNAT2 transporter at low external pH. Mutation of the highly conserved C-terminal histidine residue to alanine in either SNAT2 (H504A) or SNAT5 (H471A) produced a transport phenotype exhibiting reduced, DEPC-resistant pH-sensitivity with no change in K0.5Na+ at low external pH. We suggest that the pH-sensitivity of these structurally related transporters results at least partly from a common allosteric mechanism influencing Na+ binding, which involves an H+-modifier site associated with C-terminal histidine residues.  相似文献   

5.
The Na+ and K+ permeability properties of rat brain mitochondria were determined to explain the influences of these cations upon respiration. A new procedure for isolating exceptionally intact mitochondria with minimal contamination by synaptosomes was developed for this purpose. Respiration was uncoupled by Na+ and less so by K+. Uncoupling was maximal in the presence of EDTA plus Pi and was decreased by Mg2+. Maximal uncoupler-stimulated respiration rates were inhibited by Na+ but largely unaffected by K+. The inhibition by Na+ was relatively insensitive to Mg2+. Membrane Na+ and K+ conductances as well as neutral exchanges (Na+/H+ and K+/H+ antiport activities) were determined by swelling measurements and correlated with metabolic effects of the cations. Cation conductance, i.e. electrophoretic Na+ or K+ permeation, was increased by EDTA (Na+ greater than K+) and decreased by Mg2+. Magnesium preferentially suppressed Na+ conductance so as to reverse the cation selectivity (K+ greater than Na+). Neutral cation/H+ exchange rates (Na+ greater than K+) were not influenced by chelator or Mg2+. The extent of cation-dependent uncoupling of respiration correlated best with the inner membrane conductance of the ion according to an empirical relationship derived with the model K+ conductor valinomycin. The metabolic influences of Na+ and K+ can be explained in terms of coupled flow of these ions with protons and their effect upon the H+ electrochemical gradient although alternative possibilities are discussed. These in vitro studies are compared to previous observations in situ to assess their physiological significance.  相似文献   

6.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min-1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min-1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min-1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 microM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3-. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

7.
Glutamate transport by the excitatory amino acid transporters (EAATs) is coupled to the co-transport of 3 Na(+), 1 H(+), and the counter-transport of 1 K(+) ion. In addition to coupled ion fluxes, glutamate and Na(+) binding to the transporter activates a thermodynamically uncoupled anion conductance through the transporter. In this study, we have distinguished between these two conductance states of the EAAT-1 transporter using a [2-(trimethylammonium)ethyl]methanethiosulfonate-modified V452C mutant transporter. Glutamate binds to the modified mutant transporter and activates the uncoupled anion conductance but is not transported. The selective alteration of the transport function without altering the anion channel function of the V452C mutant transporter suggests that the two functions are generated by distinct conformational states of the transporter.  相似文献   

8.
The effects of intracellular signals (pHi, Na+i, Ca2+i, and the electrical membrane potential), on Na+ transport mediated by the Na+/K+ pump were investigated in the isolated Rana esculenta frog skin. In particular we focussed on pHi sensitivity since protons act as an intrinsic regulator of transepithelial Na+ transport (JNa) by a simultaneous control of the apical membrane Na+ conductance (gNa) and the basolateral membrane K+ conductance (gK). pHi changes which modify JNa, gNa and gK, do not affect the Na+ transport mediated by the pump as shown by kinetic and electrophysiological studies. In addition, no changes were observed in the number of 3H-ouabain binding sites in acid-loaded epithelia. Our attempts to modify cellular Ca2+ (by using Ca(2+)-free/EGTA Ringer solution or A23187 addition) also failed to produce any significant effects in the Na+ pump turnover rate or the number of 3H-ouabain binding sites. The Na+ pump current was found to be sensitive to the basolateral membrane potential, saturating for very positive (cell) potentials and a reversal potential of -160 mV was calculated from I-V relationships of the pump. Changes in Na+i considerably affected the Na+ pump rate. A saturating relationship was found between pump rate and Nai+ with maximal activation at Nai+ greater than 40 mmol/l; a high dependence of the pump rate and of the number of 3H-ouabain binding sites was observed in the physiological range of Nai+. We conclude that protons (in the physiological pH range) which act directly and simultaneously on the passive transport pathways (gNa and gK), have no direct effect on the Na+/K+ pump rate. After an acid load, the inhibition of JNa is primarily due to the reduction of gNa. This results in a reduction of Nai and the pump turnover rate then becomes dependent on other pathways of Na+ entry such as the basolateral membrane Na+/H+ exchanger.  相似文献   

9.
H Murer  U Hopfer    R Kinne 《The Biochemical journal》1976,154(3):597-604
Studies on proton and Na+ transport by isolated intestinal and renal brush-border-membrane vesicles were carried out to test for the presence of an Na+/H+-exchange system. Proton transport was evaluated as proton transfer from the intravesicular space to the incubation medium by monitoring pH changes in the membrane suspension induced by sudden addition of cations. Na+ transport was determined as Na+ uptake into the vesicles by filtration technique. A sudden addition of sodium salts (but not choline) to the membrane suspension provokes an acidification of the incubation medium which is abolished by the addition of 0.5% Triton X-100. Pretreatment of the membranes with Triton X-100 prevents the acidification. The acidification is also not observed if the [K+] and proton conductance of the membranes have been increased by the simultaneous addition of valinomycin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone to the K+-rich incubation medium. Either valinomycin or carbonyl cyanide p-trifluoromethoxyphenylhydrazone when added alone do not alter the response of the membranes to the addition of Na+. Na+ uptake by brush-border microvilli is enhanced in the presence of a proton gradient directed from the intravesicular space to the incubation medium. Under these conditions a transient accumulation of Na+ inside the vesicles is observed. It is concluded that intestinal and renal brush-border membranes contain a NA+/H+ antiport system which catalyses an electroneutral exchange of Na+ against protons and consequently can produce a proton gradient in the presence of a concentration difference for Na+. This system might be involved in the active proton secretion of the small intestine and the proximal tubule of the kidney.  相似文献   

10.
The freshwater cyanobacterium Synechococcus PCC 6311 is able to adapt to grow after sudden exposure to salt (NaCl) stress. We have investigated the mechanism of Na+ transport in these cells during adaptation to high salinity. Na+ influx under dark aerobic conditions occurred independently of delta pH or delta psi across the cytoplasmic membrane, ATPase activity, and respiratory electron transport. These findings are consistent with the existence of Na+/monovalent anion cotransport or simultaneous Na+/H+ +anion/OH- exchange. Na+ influx was dependent on Cl-, Br-, NO3-, or NO2-. No Na+ uptake occurred after addition of NaI, NaHCO3, or Na2SO4. Na+ extrusion was absolutely dependent on delta pH and on an ATPase activity and/or on respiratory electron transport. This indicates that Na+ extrusion via Na+/H+ exchange is driven by primary H+ pumps in the cytoplasmic membrane. Cells grown for 4 days in 0.5 m NaCl medium, "salt-grown cells," differ from control cells by a lower maximum velocity of Na+ influx and by lower steady-state ratios of [Na+]in/[Na+]out. These results indicate that cells grown in high-salt medium increase their capacity to extrude Na+. During salt adaptation Na+ extrusion driven by respiratory electron transport increased from about 15 to 50%.  相似文献   

11.
Uptake of D-alanine against a concentration gradient has been shown to occur with isolated luminal-membrane vesicles from pars convoluta or pars recta of rabbit proximal tubule. Renal D-alanine transport systems, displaying the following characteristics, were shown: (1) In vesicles from pars convoluta, the uptake of D-alanine was mediated by both Na+-dependent and Na+-independent transport processes. It was found that an inwardly directed H+-gradient could drive the transport of D-alanine into the vesicles both in the presence and absence of Na+. Thus, in addition to Na+, the transport of D-alanine is influenced by the H+-gradient. (2) In vesicles from pars recta, the transient accumulation of D-alanine was strictly dependent on Na+, since no 'overshoot' was ever observed in the absence of Na+. Although the Na+-dependent uptake of D-alanine was stimulated at acid pH, H+ did not substitute for Na+, as it apparently does in pars convoluta, but instead potentiated the Na+ effect. (3) Addition of L-alanine to vesicle preparations, both from pars convoluta and from pars recta, specifically inhibited renal uptake of D-alanine. A comparison between the transport characteristics of D- and L-alanine indicated that these two isomers of alanine probably share common transport systems located along the proximal tubule of rabbit kidney.  相似文献   

12.
The system N transporter SN1 has been proposed to mediate the efflux of glutamine from cells required to sustain the urea cycle and the glutamine-glutamate cycle that regenerates glutamate and gamma-aminobutyric acid (GABA) for synaptic release. We now show that SN1 also mediates an ionic conductance activated by glutamine, and this conductance is selective for H(+). Although SN1 couples amino acid uptake to H(+) exchange, the glutamine-gated H(+) conductance is not stoichiometrically coupled to transport. Protons thus permeate SN1 both coupled to and uncoupled from amino acid flux, providing novel mechanisms to regulate the transfer of glutamine between cells.  相似文献   

13.
The Na+ transport pathways of normal rat thymocytes were investigated. Na+ conductance was found to be lower than K+ conductance, which is consistent with reported values of membrane potential. In contrast, the isotopically measured Na+ permeability was greater than 10-fold higher than that of K+, which indicates that most of the flux is electroneutral. Cotransport with Cl- (or K+ and Cl-) and countertransport with Ca2+ were ruled out by ion substitution experiments and use of inhibitors. Countertransport for Na+ or H+ through the amiloride-sensitive antiport accounts for only 15-20% of the resting influx. In the presence of amiloride, 22Na+ uptake was increased in Na+-loaded cells, which suggests the existence of Na+/Na+ countertransport. Cytoplasmic pH determinations using fluorescent probes indicated that under certain conditions this amiloride-resistant system will also exchange Na+ for H+, as evidenced by an internal Na+- dependent acidification is proportional to internal [Na+] but inversely related to extracellular [Na+]. Moreover, 22Na+ uptake is inhibited by increasing external [H+]. The results support the existence of a substantial amiloride-insensitive, electroneutral cation exchange system capable of transporting Na+ and H+.  相似文献   

14.
Glutamate transport by the excitatory amino acid transporters (EAATs) is coupled to the co-transport of 3 Na(+) ions and 1 H(+) and the counter-transport of 1 K(+) ion, which ensures that extracellular glutamate concentrations are maintained in the submicromolar range. In addition to the coupled ion fluxes, glutamate transport activates an uncoupled anion conductance that does not influence the rate or direction of transport but may have the capacity to influence the excitability of the cell. Free Zn(2+) ions are often co-localized with glutamate in the central nervous system and have the capacity to modulate the dynamics of excitatory neurotransmission. In this study we demonstrate that Zn(2+) ions inhibit the uncoupled anion conductance and also reduce the affinity of L-aspartate for EAAT4. The molecular basis for this effect was investigated using site-directed mutagenesis. Two histidine residues in the extracellular loop between transmembrane domains three and four of EAAT4 appear to confer Zn(2+) inhibition of the anion conductance.  相似文献   

15.
The glutamine transporter SLC38A3 (SNAT3) plays an important role in the release of glutamine from brain astrocytes and the uptake of glutamine into hepatocytes. It is related to the vesicular GABA (γ-aminobutyric acid) transporter and the SLC36 family of proton-amino acid cotransporters. The transporter carries out electroneutral Na+-glutamine cotransport-H+ antiport. In addition, substrate-induced uncoupled cation currents are observed. Mutation of asparagine 76 to glutamine or histidine in predicted transmembrane helix 1 abolished all substrate-induced currents. Mutation of asparagine 76 to aspartate rendered the transporter Na+-independent and resulted in a gain of a large substrate-induced chloride conductance in the absence of Na+. Thus, a single residue is critical for coupled and uncoupled ion flows in the glutamine transporter SNAT3. Homology modeling of SNAT3 along the structure of the related benzyl-hydantoin permease from Microbacterium liquefaciens reveals that Asn-76 is likely to be located in the center of the membrane close to the translocation pore and forms part of the predicted Na+ -binding site.The amino acid and auxin permease superfamily comprises a wide variety of transport proteins. In mammals, three distinct solute carrier families (SLC) belong to this superfamily, namely SLC32, SLC36, and SLC38 (1). Despite belonging to the same superfamily, the three solute carrier families have different transport mechanisms. The SLC32 family has only one member, the vesicular inhibitory amino acid transporter, which supposedly carries out a H+-GABA (γ-aminobutyric acid) antiport (2). The SLC36 family comprises four members, two of which have been characterized in more detail. These are the proton amino acid cotransporters 1 and 2 (PAT1 and 2) that carry out glycine and proline uptake in kidney and intestine and are mutated in iminoglycinuria (3, 4). The SLC38 family is comprised of 11 members, 5 of which have been characterized in more detail (5). Two different transport mechanisms are found within this family, namely the Na+-amino acid cotransporters SNAT1, SNAT2, and SNAT4 and the Na+-amino acid cotransporters-H+-antiporters SNAT3 and SNAT5. Transporters of the superfamily play a key role in inhibitory and excitatory neurotransmission, metabolite absorption, and liver metabolism. Despite their important roles in mammalian physiology, relatively little is known about the structure and function of these transporters.The activity of ion-coupled membrane transporters is frequently associated with currents which de- or hyperpolarize the cell membrane. These currents may be due to electrogenic transport stoichiometry and/or to a non-stoichiometric ion conductance (6). Transport-associated ion conductances have been identified in a number of transporters but have been particularly well studied in several Na+-coupled neurotransmitter transporters (711). Transport-associated conductances have also been observed in electroneutral transporters that do not carry out net charge movement (8, 1215). The glutamine transporter SNAT3, for instance, has a transport mechanism in which glutamine uptake is coupled to the cotransport of 1Na+ and the antiport of 1H+ and, hence, is unaffected by changes of the membrane potential (13, 16). Despite the electroneutral transport mechanism, substrate uptake is accompanied by inward currents, which are carried by cations below pH 7 and by protons at alkaline pH. In addition, a substrate-independent cation conductance and a Na+/H+ exchange activity has been observed (17). Non-stoichiometric currents can be mediated by the same ions that are involved in the coupled transport process, such as in the case of SNAT3, but may also be carried by different ions. Stoichiometric glutamate transport, for instance, involves Na+, H+, and K+ ions, whereas the glutamate transport-associated conductance is carried by chloride (18).A crucial question concerning transporter-associated ion conductances is whether the conducting pore coincides with the translocation pathway of the substrate and whether both use the same critical residues. In the case of the glutamate transporters, evidence has been presented suggesting that different residues are critical for the anion conductance than for substrate transport (19, 20) but that they all line the same pathway (21). Here we show that asparagine 76 of SNAT3 is critical for substrate-induced ion conductance and affects binding of the cosubstrate Na+. In addition we show that this residue is likely to be localized in the translocation pore in the center of the membrane.  相似文献   

16.
The excitatory amino acid transporter EAAC1 is an electrogenic Na+ - and K+ -gradient-driven transporter. In addition, the transporter mediates in the presence of Na+ and glutamate an anion conductance uncoupled from the transport of the glutamate. The first two N-terminal domains, important for forming the conductance mode, are extracellularly bordered by positively charged arginine residues, R39 and R61, being completely conserved throughout the transporter family. Also the conserved tyrosine residue Y98 could be important for Cl- conductance. We have investigated, by measurements of glutamate uptake and glutamate-induced currents, the effects of mutation of the arginines and the tyrosine to alanine. The mutation R39A hardly affects transport and channel mode. The mutation R61A, on the other hand, reduces the activity of transport but stimulates the channel conductance. In addition, the apparent Km values for glutamate uptake and for the glutamate-activated current are reduced. Glutamate stimulation of current seems to be associated with a voltage-dependent step, and the apparent valence of charge moved during binding is reduced in the R61A mutant. The mutation Y98A leads to reduced function with reduced apparent Km value for glutamate, and with strong reduction of the selectivity ration between NO3- and Cl- of the conductance mode.  相似文献   

17.
The transport activity of the glutamine/neutral amino acid transporter SNAT3 (former SN1, SLC38A3), expressed in oocytes of the frog Xenopus laevis is associated with a non-stoichiometrical membrane conductance selective for Na+ and/or H+ (Schneider, H.P., S. Bröer, A. Bröer, and J.W. Deitmer. 2007. J. Biol. Chem. 282:3788–3798). When we expressed SNAT3 in frog oocytes, the glutamine-induced membrane conductance was suppressed, when carbonic anhydrase isoform II (CAII) had been injected into the oocytes. Transport of substrate, however, was not affected by CAII. The reduction of the membrane conductance by CAII was dependent on the presence of CO2/HCO3 , and could be reversed by blocking the catalytic activity of CAII by ethoxyzolamide (10 μM). Coexpression of wild-type CAII or a N-terminal CAII mutant with SNAT3 also reduced the SNAT3- associated membrane conductance. The catalytically inactive CAII mutant V143Y coexpressed in oocytes did not affect SNAT3-associated membrane conductance. Our results reveal a new type of interaction between CAII and a transporter-associated cation conductance, and support the hypothesis that the transport of substrate and the non-stoichiometrical ion conductance are independent of each other. This study also emphasizes the importance of carbonic anhydrase activity and the presence of CO2-bicarbonate buffers for membrane transport processes.  相似文献   

18.
We examined the effects of external H+ on the kinetics of Na+-H+ exchange in microvillus membrane vesicles isolated from the rabbit renal cortex. The initial rate of Na+ influx into vesicles with internal pH 6.0 was optimal at external pH 8.5 and was progressively inhibited as external pH was reduced to 6.0. A plot of 1/V versus [H+]o was linear and yielded apparent KH = 35 nM (apparent pK 7.5). In vesicles with internal pH 6.0 studied at external pH 7.5 or 6.6, apparent KNa was 13 or 54 mM, Ki for inhibition of Na+ influx by external Li+ was 1.2 or 5.2 mM, Ki for inhibition by external NH4+ was 11 or 50 mM, and Ki for inhibition by external amiloride was 7 or 25 microM, respectively. These findings were consistent with competition between each cation and H+ at a site with apparent pK 7.3-7.5. Lastly, stimulation of 22Na efflux by external Na+ (i.e. Na+-Na+ exchange) was inhibited as external pH was reduced from 7.5 to 6.0, also consistent with competition between external H+ and external Na+. Thus, in contrast with internal H+, which interacts at both transport and activator sites, external H+ interacts with the renal microvillus membrane Na+-H+ exchanger at a single site, namely the external transport site, where H+, Na+, Li+, NH4+, and amiloride all compete for binding.  相似文献   

19.
Modulation of gastric H+,K+-transporting ATPase function by sodium   总被引:3,自引:0,他引:3  
T K Ray  J Nandi 《FEBS letters》1985,185(1):24-28
Gastric H+,K+-ATPase activity is not affected by Na+ at pH 7.0 but is significantly stimulated by Na+ at pH 8.5. For the stimulation at the latter pH, the presence of both Na+ and K+ were essential. Contrary the H+,K+-ATPase, the associated K+-pNPPase was inhibited by Na+ at both pH values. Sodium competes with K+ for the K+-pNPPase reaction. Also, unlike the H+, K+-ATPase activity the ATPase-mediated transport of H+ within the gastric microsomal vesicles was inhibited by Na+. For the latter event only the extravesicular and not the intravesicular Na+ was effective. The data suggest that the K+-pNPPase activity does not represent the phosphatase step of the H+,K+-ATPase reaction. In addition, the observed inhibition of vesicular H+ uptake by Na+ appears to be due to the displacement by Na+ of a cytosolic (extravesicular) H+ site responsible for the vectorial translocation of H+.  相似文献   

20.
The decay of delta pH across vesicular membranes by nigericin-mediated H+ and metal ion (M+) transports has been studied at 25 degrees C after creating delta pH by temperature jump (T-jump). In these experiments K+ or Na+ were chosen as M+ for the compensating flux. Theoretical expressions derived to analyse these data suggest a method for estimating the intrinsic rate constants for the translocation of nig-H (k1) and for the translocation of nig-M (k2) across membrane, from the pH dependence of the delta pH decay. The following could be inferred from the analysis of data. (a) At pH approximately 7.5 and 250 mM ion concentrations, nigericin-mediated H+ and M+ transport rates are lower in a medium of K+ than in a medium of Na+, although ionophore selectivity of nigericin towards K+ is 25-45-times higher than that towards Na+. However, at lower [M+] (approximately 50 mM) the transport rates are higher in a medium of K+ than in a medium of Na+. Such behaviours can be understood with the help of parameters determined in this work. (b) The intrinsic rate constants k1 and k2 associated with the translocations of nig-H and nig-K or nig-Na across membrane are similar in magnitude. (c) At pH approximately 7.5 translocation of nig-H is the dominant rate-limiting step in a medium containing K+. In contrast with this, at this pH, translocation of nig-M is the dominant rate-limiting step when metal ion is Na+. (d)k1 approximately k2 approximately 6.10(3) s-1 could be estimated at 25 degrees C in vesicles prepared from soyabean phospholipid, and lipid mixtures of 80% phosphatidylcholine (PC) + 20% phosphatidylethanolamine and 92% PC + 8% phosphatidic acid. (e) The apparent dissociation constants of nig-M in vesicles were estimated to be approximately 1.5.10(-3) M for K+ and 6.4.10(-2) M for Na+ (at 50 mM ion concentrations) using approximately 10(-8.45) M for the apparent dissociation constant of nig-H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号