首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fifteen different gibberellins (GA's) were tested for their ability to induce elongation growth under short day conditions in seedlings of Salix pentandra L. GA's were applied either to the apex or they were injected into a mature leaf. GA3 was highly active and also GA4+7 and GA4 showed high activity. GA1, GA2, GA5, GA9, GA13, GA20, GA36 and GA47 showed moderate activity. GA16, GA17, GA27 and GA41 exhibited low or no activity in doses up to 10 μg per plant. In general, a better growth response was obtained with an application to the apex than with an injection into the leaf.  相似文献   

2.
Plants of Poa pratensis cv. Holt initiate inflorescence primordia when exposed to short days (SD) and low temperature, but require a secondary induction by at least 4 long days (LD) for further inflorescence development and stem elongation. Single or double applications of 10 µg per plant of gibberellins A1, A3, A5 and 16,17‐dihydro A5 (DHGA5) induced inflorescence development in a high proportion of plants in SD, but only if the plants were detillered to a single stem. Exposure to 2 LD cycles did not cause heading and flowering alone but enhanced the effect of exogenous gibberellins (GAs), bringing flowering to 100%. GA5 and DHGA5 were less effective than GA1 and GA3 in SD, especially with double applications, but were more effective than GA1 and GA3 when given together with 2 LD. The GAs had differential effects on vegetative growth and flowering, GA5 and DHGA5 causing much less leaf and stem growth than the other two GAs. Marginal induction, whether by LD or GA application, resulted in a high proportion of spikelets with viviparous proliferation. Thus, whereas GAs are inhibitory to the primary induction by SD, they can replace secondary induction by LD when vegetative growth is limited.  相似文献   

3.
Evidence was obtained by gas chromatography-mass spectrometry and gas chromatography-selected ion monitoring for the presence of gibberellin A20), GA1, GA29, GA8 and 2-epiGA29 in vegetative shoots of tall sweet pea, Lathyrus odoratus L. Both tall (genotype L –) and dwarf (genotype II ) sweet peas elongated markedly in response to exogenous GA1 attaining similar internode lengths at the highest dose levels. Likewise internode length in both genotypes was reduced by application of the GA biosynthesis inhibitor, PP333. The ratio of leaflet length to width was reduced by application of PP333 to tall plants and this effect was reversed by GA1. When applied to plants previously treated with PP333, GA20 promoted internode elongation of L – plants as effectively as GA1, but GA29 was not as effective as GA1 when applied to II plants. In contrast, GA20 and GA1 were equally effective when applied to the semidwarf lb mutant but GA-treated lblb plants did not attain the same internode length as comparable GA-treated Lb – plants. The difference in stature between the tall and dwarf types persisted in dark-grown plants. It is concluded that GA1 may be important for internode elongation and leaf growth in sweet pea. Mutant l may influence GA1 synthesis by reducing 3β-hydroxylation of GA20 whereas mutant lb appears to affect GA sensitivity.  相似文献   

4.
Effects of gibberellins A1, A4/7, A9, A19 and A20 and growth retardants were studied on shoot elongation in seedlings of Salix pentandra L. The growth-retarding effects of CCC and ancymidol were antagonized by all the gibberellins tested. The novel plant growth regulator prohexadione (free acid of BX-112), which is suggested to block 3β-hydroxylation of gibberellins, effectively prevented shoot elongation in seedlings grown under long photoperiod. Initiation of new leaves was only slightly reduced. GA1, but not GA19 and GA20, was active in overcoming the inhibition of stem elongation of seedlings, treated with prohexadione, GA19, GA20 and GA1 are native in S. pentandra , and the results are compatible with the hypothesis that GA1 is active per se in shoot elongation, and that the effect of GA19 and GA20 is dependent on their conversion to GA1.
A mixture of GA4 and GA7 was as active as GA1 in promoting shoot elongation in seedlings treated with prohexadione, while GA9 showed slight activity only when applied at high doses.  相似文献   

5.
6.
Relationships between relative growth rate (RGR), endogenous gibberellin (GA) concentration and the response to application of gibberellic acid (GA3) were studied for two inbred lines of Plantago major L., which differed in RGR. A4, the fast-growing inbred line, had a higher free GA concentration than the slow-growing W9, as analyzed by enzyme immunoassay. GA3 application increased total plant weight and RGR3 particularly for the slow-growing line. Chlorophyll a content and photosynthetic activity per unit leaf area were decreased, while transpiration rate was unaffected by GA3 application. The increase in RGR by GA3 application was associated with an increased leaf weight ratio; specific leaf area and percentage of dry matter in the leaves were only temporarily affected. Root respiration rate per unit dry weight was unaffected.
The correlation between low RGR, low GA concentration and high responsiveness to applied GA3 supports the contention that gibberellins are involved in the regulation of RGR. However, the transient influence of GA3 application on some growth components suggests the involvement of other regulatory factors in addition to GA.  相似文献   

7.
When Phalaenopsis amabilis is grown under high temperature (30/25°C, day/night), flowering is blocked, and this can be reversed by gibberellin A3 (GA3) treatment. Associated with GA3 treatment under high temperature are increases in sucrose, glucose and fructose as compared with warm-treated plants. Spraying with sucrose solution alone caused leaf epinasty in plants grown under high temperature. Epinasty was released by about 9 days of GA3 treatment. In GA3-treated plants under high temperatures, sucrose application to the source leaves led to an increase in sugar content in both leaves and inflorescence. In contrast, although in warm-treated plants sucrose application to the source leaves increased sugar content in the leaves, it did not increase sucrose content in the inflorescence. These results corroborate our hypothesis that in Phalaenopsis GA3 stimulates sink activity in the apical meristem and promotes the translocation of sucrose from source leaves to the apex of the inflorescence, where it accumulates. GA3 treatment led to an increase in sucrose synthase activity and had no effect on invertase activity.  相似文献   

8.
Gibberellins and photoperiodic control of shoot elongation in Salix   总被引:1,自引:0,他引:1  
Effects of exogenous gibberellins GA53, GA44, GA19, GA20 and GA1 on photoperiodically controlled shoot elongation in seedlings of Salix pentandra L. were studied. Gibberellins GA20 and GA1 induced shoot elongation under short days (SD) and could substitute for a transfer to long day (LD), while gibberellins A53, A44 and A19 were inactive. In seedlings exposed to a prolonged SD-treatment (30 days) there was a significant positive interaction between a transfer to LD and a treatment with GA20 and GA1 on shoot elongation. In addition, GA19 enhanced the growth promotive effect of LD in these seedlings. The results are compatible with the suggestion that conversion of GA19 to GA20 is blocked under SD. This effect is supposed to be an early process leading to the cessation of shoot elongation under SD. Responsiveness of the seedlings to LD and to a GA-treatment gradually decreased with an increasing length of exposure to SD.  相似文献   

9.
Short photoperiod induces growth cessation in seedlings of Norway spruce ( Picea abies (L.] Karst.). Application of different gibberellins (GAS) to seedlings growing under a short photoperiod show that GA9 and GA20 can not induce growth. In contrast application of GA, and GA4 induced shoot elongation. The results indicate that 3β-hydroxylation of GA9 to GA4 and of GA20 to GA1 is under photoperiodic control. To confirm that conclusion, both qualitative and quantitative analyses of endogenous GAs were performed. GA1, GA3, GA4, GA7, GA9, GA12, GA15, GA15, GA20, GA29, GA34 and GA51 were identified by combined gas chromatography-mass spectrometry in shoots of Norway spruce seedlings. The effect of photoperiod on GA levels was determined by using deuterated and 14C-labelled GAs as intermal standards. In short days, the amounts of GA9, GA4 and GA1 are less than in plants grown in continuous light. There is no significant difference in the amounts of GA3, GA12, and GA20 between the different photoperiods. The lack of accumulation of GA9 and GA20 under short days is discussed.  相似文献   

10.
Antheridia were induced by exogenously applied GA3 at concentrations between 10−6 and 3 × 10−4 M in very young filamentous protonemata of Lygodium japonicum grown in darkness; the longer the dark preculture of protonemata, the lower was the sensitivity of the protonemata to GA3. Antheridial initials were discernible after 36 hr of GA3 treatment in the most sensitive protonemata, and the timing of antheridial initiation was delayed with increasing protonemal age.
This quantitative response of the protonemata provided the basis for a new method of assaying gibberellins in terms of the degree of antheridial formation. According to this method, all the gibberellins tested and one of their precursors were active in inducing antheridia in the protonemata, and the activity spectrum of the gibberellins was as follows: GA7>GA4>GA9>GA3>GA5>GA1>GA8.
The amounts of antheridiogen contained in conditioned media were measured by the present bioassay. A semi-logarithmic relation was shown between the percentage of antheridial formation and the concentration of conditioned medium within a certain dilution range. The amounts of antheridiogen secreted by the prothallia were quantitatively compared by transferring samples onto fresh media for a short period of time.  相似文献   

11.
Endogenous gibberellins (GAs) were extracted and purified from apical buds of Eucalyptus nitens (Deane and Maid.) Maid. and the cambial region of E. globulus (Labill.). then analysed by capillary gas chromatography-mass spectrometry. GA1 GA19 GA20 and GA29 were identified by full scan mass spectra. Kovats retention indices and high resolution selected ion monitoring. Using deuterated internal standards. GA1. GA19. GA20 and putative GA29 and GA53 were quantified in the apical buds, while GA4. GA8. GA9 and GA44 were shown to be either absent or present at very low levels. From the cambial region. GA1 and GA20 were quantified at levels of 0.30 ng (g fresh weight)-1 and 8.8 ng (g fresh weight)-1 respectively. These data suggest that the early 13-hydroxylation pathway is the dominant pathway for GA biosynthesis in Eucalyptus .  相似文献   

12.
The role of gibberellin (GA) in leaf elongation has long been known, however, its involvement in whole shoot growth and biomass allocation is much less clear. We studied the effects of exogenously supplied GA3 and paclobutrazol, an inhibitor of GA biosynthesis, on these processes in Aegilops caudata and Aegilops tauschii , species with contrasting leaf growth characteristics. In both species, addition of GA3 increased leaf elongation rate (LER) through its promoting effect on both cell size and cell number, while paclobutrazol decreased it. Similarly, GA3 increased biomass allocation to the leaves, mainly leaf sheaths, at the cost of allocation to the roots, whereas paclobutrazol had the opposite effect in both species. Despite the increase in LER and biomass allocation to the shoot upon GA3 application, the relative growth rate (RGR) remained constant. Specific leaf area (SLA) was only temporarily affected by GA3 addition. Our results show that the inherent differences in LER and biomass allocation between the slow-elongating A. caudata and the fast-elongating A. tauschii are considerably reduced by the exogenous supply of GA3 to the slow-elongating species, or paclobutrazol to the fast-elongating one. This suggests a role for gibberellins in explaining inherent differences in leaf area expansion and biomass allocation between the two species in this study.  相似文献   

13.
It has been shown previously that gibberellins (GAs) mediate the phytochrome (Phy) control of cowpea ( Vigna sinensis L.) epicotyl elongation induced by end-of-day (EOD)-far-red light (FR). In the present work, the EOD-FR effect on GA metabolism and GA levels in cowpea has been investigated. GA1, GA8, GA19 and GA20 were identified in epicotyls, and GA1, GA19, GA20 and GA29-catabolite in leaves of 6-day-old cowpea seedlings. The content of GA1 in the epicotyl paralleled the decrease of its growth rate, supporting the hypothesis that this is the GA bioactive in controlling cowpea epicotyl elongation. FR enhanced both the amount of [3H]GA1 in the epicotyl produced from applied [3H]GA20, and that of applied [3H]GA1 that remained unmetabolized in epicotyl explants, suggesting that Phy may regulate the inactivation of GA1. In agreement with this effect of light on GA1 metabolism, the contents of GA1 in the epicotyl remained higher in FR-treated than in R-treated explants. Moreover, in intact seedlings EOD-FR treatment increased both epicotyl elongation and GA1 content in the responsive epicotyl, whereas it was not altered in the leaves. These results show, for the first time, that photostable Phys modulate the stem elongation in light-grown plants by locally controlling the GA1 levels through regulation of its inactivation.  相似文献   

14.
Chlorophyll loss in the leaves of cut flowering branches of Alstroemeria pelegrina L. cv. Stajello, placed in water in darkness at 20°, was inhibited by irradiation with red light and by the inclusion of gibberellic acid (GA3) in the water. The effects of red light were abolished when it was followed by far-red light. Effects of GA3 and red light were additive over a range of GA3 concentrations (0. 01–1 μ M ). Chlorophyll breakdown was increased by the inclusion of AMO-1618, ancymidol, or tetcyclasis in the water. The effect of these inhibitors of gibberellin synthesis was fully reversed by GA3. The inhibition of chlorophyll breakdown by red light was absent when AMO-1618, ancymidol or tetcyclasis were included in the water. The results indicate that leaf yellowing is controlled by endogenous gibberellins and that the effect of phytochrome is mediated by gibberellin synthesis.  相似文献   

15.
Gibberellin levels and cold-induced floral stalk elongation in tulip   总被引:2,自引:0,他引:2  
To investigate the role of gibberellins (GAs) in the cold requirement of tulip ( Tulipa gesneriana L. cv. Apeldoorn), bulbs were dry-stored at 5°C or at 17°C for 12 weeks prior to planting at 20°C. Only precooled bulbs showed rapid sprout growth and developed a full-grown flower. Endogenous GA levels were measured in sprouts and basal plates at the time of planting and in the second week after planting, by combined gas chromatography-mass spectrometry using deuterated internal standards. GA4 was the major gibberellin. while GA1, GA9 and GA34 were present in lower amounts. At the time of planting, sprouts from non-cooled bulbs contained significantly more GA4 and GA1, per sprout than those from precooled bulbs. Hence, there is no direct correlation between rapid sprout growth after planting and high GA levels at planting. In the second week after planting, floral stalks of precooled bulbs contained 2 to 3 times more GA4 and its metabolite GA34 per floral stalk and per g fresh weight than those of non-cooled bulbs. The results are discussed with regard to the role of gibberellins in the cold-induced floral stalk elongation of tulip.  相似文献   

16.
Endogenous gibberellins (GAs) in corms of Polianthes tuberosa L. (cv. Double) were isolated and identified by high performance liquid chromatography, bioassay and combined capillary gas chromatography-mass spectrometry (GC-MS). Gibberellins A1, A19, A20 and A53 were quantified at the vegetative, early floral initiation and flower development stages. The identification of 13-hydroxylated GAs indicates the presence of the early 13-hydroxylation pathway in P. tuberosa corms. An increase in GA1 and GA20, and a decrease in GA19 levels, coincided with the transition from the vegetative phase to the stages of early floral initiation and flower development. GA53 stayed at constant levels at the 3 different growth stages. The absence of GA1 in vegetative corms and its presence in corms at early floral initiation and flower development stages suggest that GA1 is a causal factor in inducing floral initiation in P. tuberosa . When GA1, GA3, GA4, GA20 and GA32 were applied to corms at the vegetative stage (plants about 5 cm in height), floral initiation was promoted by all of the GAs used, GA32 being the most active. In contrast with the other GAs, GA32 had no effect on stem elongation. Therefore, it is suggested that hydroxylated C-19 GAs play an important role in flower induction in P. tuberosa .  相似文献   

17.
Flowering in Poa pratensis L. cv. Holt and Bromus inermis Leyss. cv. Manchar requires exposure to short days (SD) for primary induction to occur, followed by long days (LD) to allow the inflorescence to develop. Weekly sprays with gibberellic acid (GA3) during primary induction inhibited flower initiation in both P. pratensis and B. inermis . With 10−4 M GA3 flowering of P. pratensis was suppressed even after an induction period of 10 weeks. Since both GA3 and non-inductive LD conditions greatly stimulate leaf elongation, the degree of primary induction was closely negatively correlated with plant height (leaf sheath and blade length) at the end of the induction period. GA3 application or the interpolation of LD during SD induction were most inhibitory during the later middle part of the SD period, whereas they were stimulatory near the beginning or immediately before the SD period. We suggest that changes in the portfolio or levels of endogenous gibberellins mediate photoperiodic control of growth and floral initiation in these plants. However, GA3 sprays could not substitute for LD in causing heading and culm elongation in SD induced plants of the two species. The results are discussed in the light of results with other plants with dual floral induction requirements.  相似文献   

18.
Cessation of shoot elongation in seedlings of Salix pentandra L. is induced by short photoperiod. Gibbereliin A9 (GA9) applied either to the apical bud or injected into a mature leaf, induced shoot elongation under a short photoperiod of 12 h, and GA9 could completely substitute for a transfer to a long photoperiod. When [3H]GA9 or [2H2]GA9 was injected into a leaf, no [3H]GA9 was detected in the elongating apex and only traces of [3H]GA9 were found in the shoot above the treated leaf. By the use of gas chromatography-mass spectrometry (GC-MS), [2H2]GA20 was identified as the main metabolite of [2H2]GA9 in both the shoot and the treated leaf. In addition, [2H2]GA1 and [2H2]GA29 were also identified as metabolites of [2H2]GA9. These results are consistent with the hypothesis that exogenous GA, promotes shoot elongation in Salix through its metabolism to GA20 and GA,.  相似文献   

19.
Potassium promotes growth in several plant tissues. Elongation growth of the hypocotyls of Amaranthus caudatus L. ev. Lalsag is mainly controlled by gibberellins, but K+ also promotes growth. In the present study the interaction of K+ with gibberellin (GA3) and chlorocholine chloride (CCC) has been investigated. When K+ was applied externally in the dark, hypocotyl growth was promoted in the seedlings. External application of GA3 did not promote growth in the dark. GA3 was effective in the light and K+ was synergistic with GA3 in promoting elongation. Application of CCC in the dark makes the seedlings sensitive to GA3. The inhibition of growth by CCC was also reversed by K+. The results indicate a possible role of K+ in GA3 induced elongation of hypocotyls.  相似文献   

20.
A mixture of tritiated and deuterated gibberellins (GAs) was injected into elongating shoots of Sitka spruce [ Picea sitchensis (Bong.) Carr.] grafts grown under environmental conditions that were either inductive (heat and drought, HD) or non-inductive (cool and wet, CW) for flowering. The metabolites were purified by high performance liquid chromatography (HPLC), detected by liquid scintillation counting of aliquots of collected fractions and identified by gas chromatography–mass spectrometry (GC-MS). Deuterated GA9 was converted to deuterated GA4, deuterated GA34, and deuterated GA1 in both treatments. Deuterated GA4 was metabolized to deuterated GA34 and deuterated GA1 in the CW material, but only deuterated GA1 was detected in the HD material. The amount of detected metabolites was higher in the HD material, caused by a higher rate of metabolism and/or smaller losses of the metabolites during sample purification. GA1 was converted to a polar unidentified metabolite in both treatments, but to a higher degree in the CW treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号