首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Fucoxanthin is a carotenoid that exerts multiple beneficial effects on human health. However, reports comparing microalgae culture conditions and their effect on growth and fucoxanthin production are still limited. Isochrysis galbana and Phaeodactylum tricornutum cultures in different light (62.0, 25.9, 13.5, or 9.1 μmol photons m-2 s-1), mixing conditions (1 vvm aeration or 130 rpm agitation), and media compositions (F/2 and Conway medium) were studied for comparison of cellular growth and fucoxanthin production on F/2 medium. I. galbana showed a better adaptation to tested culture conditions in comparison with P. tricornutum, reaching 2.15?×?107?±?4.07?×?106 cells mL-1 and a specific growth rate (μ) of 1.12?±?0.05 day-1 under aerated conditions and 62.0 μmol photons m-2 s-1 light intensity. Fucoxanthin concentration was about 25 % higher in P. tricornutum cultures under 13.5 μmol photons m-2 s-1 light intensity and aerated conditions, but the highest fucoxanthin total production was higher in I. galbana, where 3.32 mg can be obtained from 1 L batch cultures at the 16th day under these conditions. Moreover, higher cell densities (~32.41 %), fucoxanthin concentration (~42.46 %), and total production (~50.68 %) were observed in I. galbana cultures grown in Conway medium, if compared with cultures grown in F/2 medium. The results show that the best growth conditions did not result in the best fucoxanthin production for either microalgae, implying that there is not a direct relationship between cellular growth and fucoxanthin production. Moreover, the results suggest that I. galbana cultures on Conway medium are strong candidates for fucoxanthin production, where 1.2 to 15 times higher fucoxanthin concentration are observed in comparison to macroalgal sources.  相似文献   

2.
The filamentous Cyanobacterium Arthrospira is commercially produced and is a functional, high-value, health food. We identified 5 low temperature and low light intensity tolerant strains of Arthrospira sp. (GMPA1, GMPA7, GMPB1, GMPC1, and GMPC3) using ethyl methanesulfonate mutagenesis and low temperature screening. The 5 Arthrospira strains grew rapidly below 14?°C, 43.75 μmol photons m?2 s?1 and performed breed conservation at 2.5?°C, 8.75 μmol photons m?2 s?1. We used morphological identification and molecular genetic analysis to identify GMPA1, GMPA7, GMPB1 and GMPC1 as Arthrospira platensis, while GMPC3 was identified as Arthrospira maxima. Growth at different culture temperatures was determined at regular intervals using dry biomass. At 16?°C and 43.75 μmol photons m?2 s?1, the maximum dry biomass production and the mean dry biomass productivity of GMPA1, GMPB1, and GMPC1 were 2057?±?80 mg l?1, 68.7?±?2.5 mg l?1 day?1, 1839?±?44 mg l?1, 60.6?±?1.8 mg l?1 day?1, and 2113?±?64 mg l?1, 77.7?±?2.5 mg l?1 day?1 respectively. GMPB1 was chosen for additional low temperature tolerance studies and growth temperature preference. In winter, GMPB1 grew well at mean temperatures <10?°C, achieving 3258 mg dry biomass from a starting 68 mg. In summer, GMPB1 grew rapidly at mean temperatures more than 28?°C, achieving 1140 mg l?1 dry biomass from a starting 240 mg. Phytonutrient analysis of GMPB1 showed high levels of C-phycocyanin and carotenoids. Arthrospira metabolism relates to terpenoids, and the methyl-d-erythritol 4-phosphate pathway is the only terpenoid biosynthetic pathway in Cyanobacteria. The 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) gene from GMPB1 was cloned and phylogenetic analysis showed that GMPB1 is closest to the Cyanobacterium Oscillatoria nigro-viridis PCC711. Low temperature tolerant Arthrospira strains could broaden the areas suitable for cultivation, extend the seasonal cultivation time, and lower production costs.  相似文献   

3.

Objectives

N-Acetyl-d-neuraminic acid (Neu5Ac) is often synthesized from exogenous N-acetylglucosamine (GlcNAc) and excess pyruvate. We have previously constructed a recombinant Escherichia coli strain for Neu5Ac production using GlcNAc and intracellular phosphoenolpyruvate (PEP) as substrates (Zhu et al. Biotechnol Lett 38:1–9, 2016).

Results

PEP synthesis-related genes, pck and ppsA, were overexpressed within different modes to construct PEP-supply modules, and their effects on Neu5Ac production were investigated. All the PEP-supply modules enhanced Neu5Ac production. For the best module, pCDF-pck-ppsA increased Neu5Ac production to 8.6 ± 0.15 g l?1, compared with 3.6 ± 0.15 g l?1 of the original strain. Neu5Ac production was further increased to 15 ± 0.33 g l?1 in a 1 l fermenter.

Conclusions

The PEP-supply module can improve the intracellular PEP supply and enhance Neu5Ac production, which benefited industrial Neu5Ac production.
  相似文献   

4.
Oils, carbohydrates, and fats generated by microalgae are being refined in an effort to produce biofuels. The research presented here examines two marine microalgae, Nannochloropsis salina (green alga) and Phaeodactylum tricornutum (diatom), when grown with 0 (no addition), 0.5, 1.0, 2.0, and 5.0 g L?1 NaHCO3 added to an f/2 medium during the growth phase (GP) and a nutrient induced (nitrate limitation) lipid formation phase (LP). We hypothesize that the addition of NaHCO3 is a sustainable and practical strategy to increase cellular density and concentrations of lipids in microalgae as well as the rate of lipid accumulation. In N. salina, final cell densities were significantly (p?<?0.05) higher in the NaHCO3-treated cells than the control while in P. tricornutum the cell densities were higher with >[NaHCO3] during the GP. During the LP, cell densities were generally higher in the NaHCO3-treated cells compared with controls. F V/F M (efficiency of photosystem II) patterns paralleled those for cell density with generally higher values with higher concentrations of NaHCO3 and significantly different values between controls and 5.0 g L?1 NaHCO3 at the end of the GP (p?<?0.05). F V/F M was variable between treatments in P. tricornutum (0.3–0.65) but less so in N. salina for (0.5–0.7) regardless of [NaHCO3]. The lipid index (measured with Nile red), used as a proxy for triacylglycerides (TAGs), was 10.2?±?6.5 and 4.4?±?2.9 (fluorescence units/OD cells ×1000) for N. salina and P. tricornutum, respectively, at the end of the GP. At the end of the LP, the lipid index was eight and four times higher than during the GP in the corresponding 5.0 g L?1 NaHCO3 treatments, revealing that N. salina was accumulating more lipid than P. tricornutum. Dry weights essentially doubled during LP compared with GP for N. salina; this was not the case for P. tricornutum. In general, the percentage of ash in dry weights was significantly higher in the LP relative to the corresponding GP treatments for P. tricornutum; this was not the case for N. salina. During the LP, there was also less soluble protein in N. salina compared to GP; differences were not significant in cells growing with 2.0 or 5.0 g L?1 NaHCO3. In P. tricornutum, faster growing cells had more soluble protein during the GP and LP; differences between treatments were significant. P. tricornutum generally accumulated significantly more crude protein than N. salina at higher [NaHCO3]; there was three times more crude protein in the highest NaHCO3 (5.0 g L?1) treatment compared with the controls. C:N ratios (mol:mol) were similar across treatments during GP: 7.03?±?0.12 and 10.16?±?0.41 for N. salina and P. tricornutum, respectively. Further, C:N ratios increased with increasing [NaHCO3] during LP. Species-specific fatty acid methyl ester (FAMEs) profiles were observed. While C16:0 was lower in P. tricornutum compared to N. salina, the diatom produced more C16:1 and C14 but not C18:3. Monounsaturated fatty acids (MUFA) significantly increased in N. salina in the LP compared to GP and in response to increasing [NaHCO3] (t tests; p?<?0.05). Saturated fatty acids (SFA) responded similarly but to a lesser degree. There were more polyunsaturated fatty acids (PUFA) in N. salina than MUFAs or SFAs. In P. tricornutum, there were generally more SFAs, MUFAs and PUFAs in P. tricornutum during LP than GP in the corresponding NaHCO3 treatments. These findings reveal the importance of considering NaHCO3 as a supplemental carbon source in the culturing marine phytoplankton in large-scale production for biofuels.  相似文献   

5.
The plasticity response of Quercus variabilis and Quercus mongolica seedlings to combined nitrogen (N) deposition and drought stress was evaluated, and their performance in natural niche overlaps was predicted. Seedlings in a greenhouse were exposed to four N deposition levels (0, 4, 8, and 20 g N m?2 year?1) and two water levels (80 and 50 % field-water capacity). Plant traits associated with growth, biomass production, leaf physiology, and morphology were determined. Results showed that drought stress inhibited seedling performance, altered leaf morphology, and decreased fluorescence parameters in both species. By contrast increased N supply had beneficial effects on the nutritional status and activity of the PSII complex. The two species showed similar responses to drought stress. Contrary to the effects in Q. mongolica, N deposition promoted leaf N concentration, PSII activity, leaf chlorophyll contents, and final growth of Q. variabilis under well-watered conditions. Thus, Q. variabilis was more sensitive to N deposition than Q. mongolica. However, excessive N supply (20 g N m?2 year?1) did not exert any positive effects on the two species. Among the observed plasticity of the plant traits, plant growth was the most plastic, and leaf morphology was the least plastic. Therefore, drought stress played a primary role at the whole-plant level, but N supply significantly alleviated the adverse effects of drought stress on plant physiology. A critical N deposition load around 20 g N m?2 year?1 may exist for oak seedlings, which may more adversely affect Q. variabilis than Q. mongolica.  相似文献   

6.
Tequila vinasses (TVs) generated during Tequila production are brown liquid residues rich in nutrients. The nutrient content of agro-industrial effluents represents an excellent resource to support low-cost biomass production of microalgae; nonetheless, it is crucial to select the suitable microalgal strain to attain the highest biomass production in each residue used. In this study, biomass production, CO2 fixation from biogas, and cell compound accumulation by Chlorella vulgaris U162, Chlorella sp., Scenedesmus obliquus U169, and Scenedesmus sp. using biodigested and filtered TVs as culture medium were evaluated and compared with the conventional microalgal culture media, C30, BG-11, Bold 3N, and Bristol. The four microalgae evaluated attained the highest biomass production and CO2 fixation rate cultured in both residues, accumulating mainly carbohydrates and proteins although the most appropriate microalga to be cultured in TVs was Chlorella sp., recording 2.30 g L?1. Moreover, the nutrient ratio of filtered TVs was ideal to support biomass production while biodigested TVs need to be supplemented with nitrogen. Overall, these results demonstrated that tequila vinasses are an excellent resource to support high and quick biomass production of microalgae, which can be used to obtain biofuels as ethanol, biogas, and supplement food depicting an extra benefit during the appropriate disposal of this residue.  相似文献   

7.
This study aimed to culture the green alga Acutodesmus obliquus utilizing the gaseous emissions containing a high concentration of CO2 (99.13 %) from a methanol plant and study the tolerance of microalgae. The effect of CO2 concentration, aeration rate, inoculum concentration, intermittent sparging, and nitrogen sources on the growth of A. obliquus was examined. Acutodesmus obliquus also was cultivated in a 500-L pilot outdoor tubular photobioreactor (OTP) to advance the laboratory scale system to outdoor scale-up applications. The results showed that A. obliquus could tolerate high CO2 concentrations of 50 %, and a maximum biomass of 0.935 g L?1 (dry weight) was achieved at 20 % CO2. An aeration rate of 500 mL min?1, inoculum concentration (optical density at 680 nm [OD680]?=?0.3), and intermittent sparging of 10 min per 2 h enhanced growth to the optimum and influenced culture pH and photosynthesis. Urea as a nitrogen source was shown to be more beneficial to cell growth. A urea concentration of 0.3 g L?1 and an N/P ratio of 15 led to maximum biomass accumulation thus enhancing the gaseous emission utilization efficiency. In conclusion, this work demonstrated that gaseous emissions containing high concentration of CO2 from a methanol plant could be directly introduced into A. obliquus cultures and that A. obliquus was suitable well for large-scale outdoor cultivation in a tubular photobiorecator.  相似文献   

8.
Semi-continuous algal cultivation was completed in outdoor flat-panel photobioreactors (panels) and open raceway ponds (raceways) from February 17 to May 7, 2015 for side-by-side comparison of areal productivities at the Arizona Center for Algae Technology and Innovation in Mesa, AZ, USA. Experiments used two strains of Scenedesmus acutus (strains LB 0414 and LB 0424) to assess productivity, areal density, nutrient removal, and harvest volume across cultivation systems and algal strains. Panels showed an average biomass productivity of 19.0?±?0.6 g m?2 day?1 compared to 6.62?±?2.3 g m?2 day?1 for raceways. Photosynthetic efficiency ranged between 1.32 and 2.24 % for panels and between 0.30 and 0.68 % for raceways. Panels showed an average nitrogen consumption rate of 38.4?±?8.6 mg N L?1 day?1. Cultivation in raceways showed a consumption rate of 3.8?±?2.5 and 7.1?±?4.2 mg N L?1 day?1 for February/March and April/May, respectively, due to increase in biomass productivity. Excess nutrients were required to prevent a decrease in productivity. Daily biomass harvest volumes between 18 and 36 % from panels did not affect culture productivity, but density decreased with increased harvest volume. High cultivation temperatures above 30 °C caused strain LB 0414 to lyse and crash. Strain LB 0424 did not show any difference in biomass productivity when peak temperatures reached 34, 38, or 42 °C, but showed decreased productivity when the peak temperature during cultivation was 30 °C. Using algal strains with different temperature tolerances can generate increased annual biomass productivity.  相似文献   

9.
The seaweed genus Gracilaria is a potential candidate for the production of bioethanol due to its high carbohydrate content. Gracilaria is abundant throughout the world and can be found in both wild and cultivated forms. Differences in the ecological factors such as temperature, salinity, and light intensity affecting wild and cultivated specimens may influence the biochemical content of seaweeds, including the carbohydrate content. This study aimed to investigate the proximate composition and potential bioethanol production of wild and cultivated G. gigas and G. verrucosa. Bioethanol was produced using separate hydrolysis fermentation (SHF), employing a combination of enzymatic and acid hydrolysis, followed by fermentation with Saccharomyces cerevisiae ATCC 200062. The highest carbohydrate content was found in wild G. gigas. The highest galactose and glucose contents (20.21 ± 0.32 and 9.70 ± 0.49 g L?1, respectively), as well as the highest production of bioethanol (3.56 ± 0.02 g L?1), were also found in wild G. gigas. Thus, we conclude that wild G. gigas is the most promising candidate for bioethanol production. Further research is needed to optimize bioethanol production from wild G. gigas. Domestication of wild G. gigas is a promising challenge for aquaculture to avoid overexploitation of this wild seaweed resource.  相似文献   

10.
This study examined the co-immobilization of the cyanobacterium Synechococcus elongatus with the plant growth-promoting bacterium Azospirillum brasilense in alginate beads and its potential application for the removal of phosphorus from aquaculture wastewater. Co-immobilization of both microorganisms significantly increased the cell density of S. elongatus (2852.5?×?104 cells mL?1) compared with that of immobilization of cyanobacteria alone (1325.2?×?104 cells mL?1). Chlorophyll a content was similar in co-immobilized (11.1?±?3.5 pg cell?1) and immobilized S. elongatus (14.5?±?4.9 pg cell?1). Azospirillum brasilense showed continuous growth until day 2, after which its cell concentration declined until the end of the assay. Co-immobilized S. elongatus removed more phosphorus (44.8 %) than immobilized cyanobacteria cells alone (32.0 %). In conclusion, phosphate removal was greater with free cells of S. elongatus but overlapped with the values that were obtained with the treatment of co-immobilization of cells. Our results demonstrate that A. brasilense enhances the growth of S. elongatus and improves its removal of phosphorus when they are co-immobilized in alginate beads compared with only immobilization of cyanobacteria cells alone.  相似文献   

11.
In this study, hypersaline media were used for ocean cultivation of the marine microalga Tetraselmis sp. KCTC12432BP for enhanced biomass and fatty acid (FA) productivity. Hypersaline media (55, 80, and 105 PSU) were prepared without sterilization by addition of NaCl to seawater obtained from Incheon, Korea. The highest biomass productivity was obtained at 55 PSU (0.16 g L?1 day?1) followed by 80 PSU (0.15 g L?1 day?1). Although the specific growth rate of Tetraselmis decreased at salinities higher than 55 PSU, prevention of contamination led to higher biomass productivity at 80 PSU than at 30 PSU (0.03 g L?1 day?1). FA content of algal biomass increased as salinity increased to 80 PSU, above which it declined, and FA productivity was highest at 80 PSU. Ocean cultivation of Tetraselmis was performed using 50-L tubular module photobioreactors and 2.5-kL square basic ponds, closed- and open-type ocean culture systems, respectively. Culturing microalgae in hypersaline medium (80 PSU) improved biomass productivities by 89 and 152% in closed and open cultures, respectively, compared with cultures with regular salinity. FA productivity was greatly improved by 369% in the closed cultures. The efficacy of salinity shift and N-deficiency to enhance FA productivity was also investigated. Lowering salinity to 30 PSU with N-starvation following cultivation at 80 PSU improved FA productivity by 19% in comparison with single-stage culture without N-deficiency at 30 PSU. The results show that salinity manipulation could be an effective strategy to improve biomass and FA productivity in ocean cultivation of Tetraselmis sp.  相似文献   

12.
In this study, a novel engineering Escherichia coli strain (CBMG111) with the expression of mgtCB gene was constructed for the enhanced fermentative production of succinic acid by utilizing the synergetic effect of mgtC gene to improve the growth of strains at the environment of low Mg2+ concentration and mgtB to enhance the transport of Mg2+ into cells. After the effect of the expression of the individual genes (mgtA, mgtB, mgtC) on the growth of E. coli was clarified, the fermentative production of succinic acid by CBMG111 was studied with the low-price mixture of Mg(OH)2 and NH3·H2O as the alkaline neutralizer and the biomass hydrolysates as the carbon sources, which demonstrated that the expression of mgtCB gene can significantly increase the productivity of succinic acid (2.97 g L?1 h?1) compared with that by using the engineering strain with the overexpression of mgtA gene.  相似文献   

13.
A new anti-Prelog short-chain dehydrogenase/reductase (SDR) encoding gene lcsdr was cloned from Lactobacillus composti DSM 18527, and heterologously expressed in Escherichia coli. LcSDR is nicotinamide adenine dinucleotide phosphate (NADPH)-dependent and has a molecular weight of approximately 30 kDa. The optimal pH and temperature were 6.5 and 30?°C, respectively. The maximal reaction rate Vmax was 133.9 U mg?1; the Michaelis–Menten constant K m of LcSDR were 0.345 mM for acetophenone (1a), and 0.085 mM for NADPH. Through introducing an EsGDH-catalyzed NADPH regeneration system, a biocatalytic process for (R)-1-phenylethanol ((R)-1b) was developed with outstanding time–space yield. Under the optimized conditions, 50 g l?1 1a was converted to (R)-1b in 2 h with a yield of 93.8%, enantiomeric excess of product (e.e.p) above 99% and space–time yield of 562.8 g l?1 d?1.  相似文献   

14.
In this study, an alga-based simultaneous process of treating swine wastewater (SWW) and producing biodiesel was explored. Chlorella vulgaris (UTEX-265) was employed as a model species, and a SWW-based medium was prepared by dilution with tap water. Chlorella vulgaris grew well in the SWW-based medium, and at optimum dilution ratios, it exceeded the conventional culture medium in terms of biomass concentration and productivity. In eightfold diluted SWW, which supported the maximum growth, biomass productivity was 0.247 g L?1 day?1, while the productivity was merely 0.165 g L?1 day?1 in standard tris-acetate-phosphorous (TAP) algal medium. In addition, fatty acid methyl ester (FAME) productivity was greater in the SWW-based medium (0.067 versus 0.058 g L?1 day?1). This enhanced productivity resulted in more than 95 % removal of both nitrogen and phosphorous. All these show that C. vulgaris cultivation is indeed possible in a nutrient-rich wastewater with appropriate dilution, and in so doing, the wastewater can effectively be treated.  相似文献   

15.

Background

Starch is one of the most abundant organic polysaccharides available for the production of bio-ethanol as an alternative transport fuel. Cost-effective utilisation of starch requires consolidated bioprocessing (CBP) where a single microorganism can produce the enzymes required for hydrolysis of starch, and also convert the glucose monomers to ethanol.

Results

The Aspergillus tubingensis T8.4 α-amylase (amyA) and glucoamylase (glaA) genes were cloned and expressed in the laboratory strain Saccharomyces cerevisiae Y294 and the semi-industrial strain, S. cerevisiae Mnuα1. The recombinant AmyA and GlaA displayed protein sizes of 110–150 kDa and 90 kDa, respectively, suggesting significant glycosylation in S. cerevisiae. The Mnuα1[AmyA-GlaA] and Y294[AmyA-GlaA] strains were able to utilise 20 g l-1 raw corn starch as sole carbohydrate source, with ethanol titers of 9.03 and 6.67 g l-1 (0.038 and 0.028 g l-1 h-1), respectively, after 10 days. With a substrate load of 200 g l-1 raw corn starch, Mnuα1[AmyA-GlaA] yielded 70.07 g l-1 ethanol (0.58 g l-1 h-1) after 120 h of fermentation, whereas Y294[AmyA-GlaA] was less efficient at 43.33 g l-1 ethanol (0.36 g l-1 h-1).

Conclusions

In a semi-industrial amylolytic S. cerevisiae strain expressing the A. tubingensis α-amylase and glucoamylase genes, 200 g l-1 raw starch was completely hydrolysed (saccharified) in 120 hours with 74% converted to released sugars plus fermentation products and the remainder presumably to biomass. The single-step conversion of raw starch represents significant progress towards the realisation of CBP without the need for any heat pretreatment. Furthermore, the amylases were produced and secreted by the host strain, thus circumventing the need for exogenous amylases.
  相似文献   

16.
In this paper we study the outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors (3.0 m3). Experiments were performed modifying the dilution rate and evaluating biomass productivity and quality, in addition to the overall performance of the system. Results confirm that T. lutea can be produced outdoors on a commercial scale in continuous mode, obtaining productivities of up to 20 g m?2 day?1 of biomass, which are rich in proteins (45 % d.wt.) and lipids (25 % d.wt.). The utilization of this type of photobioreactor allows one to control the levels of contamination and pH within the cultures, but daily variations in solar radiation impose elevated dissolved oxygen concentrations and insufficient temperature conditions on the cells inside the reactor. Excessive dissolved oxygen reduces biomass productivity to 68 % of that which is maximal, whereas inadequate temperature reduces it to 63 % of maximum. Thus, by optimally controlling these parameters, biomass productivity can be almost doubled. These results confirm the potential for producing this valuable strain on a commercial scale in optimally designed/operated tubular photobioreactors as a viable biotechnological industry.  相似文献   

17.

Objective

To improve the production of trans-10,cis-12-conjugated linoleic acid (t10,c12-CLA) from linoleic acid in recombinant Yarrowia lipolytica.

Results

Cells of the yeast were permeabilized by freeze/thawing. The optimal conditions for t10,c12-CLA production by the permeabilized cells were at 28 °C, pH 7, 200 rpm with 1.5 g sodium acetate l?1, 100 g wet cells l?1, and 25 g LA l?1. Under these conditions, the permeabilized cells produced 15.6 g t10,c12-CLA l?1 after 40 h, with a conversion yield of 62 %. The permeabilized cells could be used repeatedly for three cycles, with the t10,c12-CLA extracellular production remaining above 10 g l?1.

Conclusion

Synthesis of t10,c12-CLA was achieved using a novel method, and the production reported in this work is the highest value reported to date.
  相似文献   

18.
In this study, after the expression of a pyruvate carboxylase gene (PYC) cloned from Meyerozyma guilliermondii in a marine-derived yeast Yarrowia lipolytica SWJ-1b, a transformant PG86 obtained had much higher PYC activity than Y. lipolytica SWJ-1b. At the same time, the PYC gene expression and citric acid (CA) production by the transformant PG86 were also greatly enhanced. When glucose concentration in the medium was 60.0 g L?1, CA concentration formed by the transformant PG86 was 34.02 g L?1, leading to a CA yield of 0.57 g g?1 of glucose. During a 10-L fed-batch fermentation, the final concentration of CA was 101.0 ± 1.3 g L?1, the yield was 0.89 g g?1 of glucose, the productivity was 0.42 g L?1 h?1 and only 5.93 g L?1 reducing sugar was left in the fermented medium within 240 h of the fed-batch fermentation. HPLC analysis showed that most of the fermentation products were CA.  相似文献   

19.
The objective of this study was to evaluate the efficacy of three eco-friendly control agents, either singly or in a pairwise combination, for the control of the tomato leafminer, Tuta absoluta (Meyrick) (Lep: Gelechiidae). They include the naturally derived pesticide spinosad, a commercially available formulation of Bacillus thuringiensis var. Kurstaki (Bt), and a native population of Trichogramma brassicae Bezdenko (Hym: Trichogrammatidae). Tomato plants containing the T. absoluta were treated with one of the seven following treatments in a greenhouse: (1) a single release of T. brassicae against the eggs; (2) two applications of Bt (2 kg ha?1); (3) and (4) one application of spinosad at two rates (60 and 120 g a.i. ha?1); (5) T. brassicae release?+?Bt spray; (6) T. brassicae release?+?spinosad spray; and (7) spinosad spray?+?Bt spray. The highest mortality rate was recorded for the spinosad?+?Bt (88.33?±?1.43%) and T. brassicae?+?spinosad (78.33?±?3.74%) combinations, respectively; while the lowest mortality rate was obtained through the single application of T. brassicae (31.67?±?4.84%). Based on our results, the Bt and spinosad seem to be suitable candidates for combination with other biological and cultural techniques towards an integrated management of the tomato leafminer.  相似文献   

20.
A Gram-stain negative, aerobic, motile by flagella, rod-shaped strain (THG-T16T) was isolated from rhizosphere of Hibiscus syriacus. Growth occurred at 10–40 °C (optimum 28–30 °C), at pH 6.0–8.0 (optimum 7.0) and at 0–1.0% NaCl (optimum 0%). Based on 16S rRNA gene sequence analysis, the near phylogenetic neighbours of strain THG-T16T were identified as Nibribacter koreensis KACC 16450T (98.6%), Rufibacter roseus KCTC 42217T (94.7%), Rufibacter immobilis CCTCC AB 2013351T (94.5%) and Rufibacter tibetensis CCTCC AB 208084T (94.4%). The DNA G+C content of strain THG-T16T was determined to be 46.7 mol%. DNA–DNA hybridization values between strain THG-T16T and N. koreensis KACC 16450T, R. roseus KCTC 42217T, R. immobilis CCTCC AB 2013351T, R.tibetensis CCTCC AB 208084T were 33.5?±?0.5% (31.7?±?0.7% reciprocal analysis), 28.1?±?0.2% (25.2?±?0.2%), 17.1?±?0.9% (10.2?±?0.6%) and 8.1?±?0.3% (5.2?±?0.1%). The polar lipids were identified as phosphatidylethanolamine, two unidentified aminophospholipids, an unidentified aminolipid and three unidentified lipids. The quinone was identified as MK-7 and the polyamine as sym-homospermidine. The major fatty acids were identified as C16:1 ω5c, C17:1 ω6c, iso-C15:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics, and DNA–DNA hybridization data, strain THG-T16T represents a novel species of the genus Nibribacter, for which the name Nibribacter flagellatus sp. nov. is proposed. The type strain is THG-T16T(=?KACC 19188T?=?CCTCC AB 2016246T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号