首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate whether the mechanical properties of the Achilles tendon were correlated to muscle strength in the triceps surae in humans. Twenty-four men and twelve women exerted maximal voluntary isometric plantar flexion (MVIP) torque. The elongation (DeltaX) and strain of the Achilles tendon (epsilon), the proximal part of which is the composite of the gastrocnemius tendon and the soleus aponeurosis, at MVIP were determined from the displacement of the distal myotendinous junction of the medial gastrocnemius using ultrasonography. The Achilles tendon force at MVIP (F) was calculated from the MVIP torque and the Achilles tendon moment arm. There were no significant differences in either the F-DeltaX or F-epsilon relationships between men and women. DeltaX and epsilon were 9.8 +/- 2.6 mm and 5.3 +/- 1.6%, respectively, and were positively correlated to F (r = 0.39, P < 0.05; r = 0.39, P < 0.05), which meant that subjects with greater muscle strength could store more elastic energy in the tendon. The regression y-intercepts for the F-DeltaX (P < 0.01) and F-epsilon (P < 0.05) relationship were significantly positive. These results might indicate that the Achilles tendon was stiffer in subjects with greater muscle strength, which may play a role in reducing the probability of tendon strain injuries. It was suggested that the Achilles tendon of subjects with greater muscle strength did not impair the potential for storing elastic energy in tendons and may be able to deliver the greater force supplied from a stronger muscle more efficiently. Furthermore, the difference in the Achilles tendon mechanical properties between men and women seemed to be correlated to the difference in muscle strength rather than gender.  相似文献   

2.
The present study aimed to re-examine the influence of the isometric plantarflexors contraction on the Achilles tendon moment arm (ATMA) and the factors influencing the ATMA in three-dimensions. A series of coronal magnetic resonance images of the right ankle were recorded at foot positions of 10° of dorsiflexion, neutral position, and 10° of plantarflexion for the rest condition and the plantarflexors contraction condition at 30% maximal voluntary effort. The shortest distance between the talocrural joint axis and the line of action of the Achilles tendon force projected to the orthogonal plane of the talocrural joint axis was determined as the ATMA. The ATMA determined in the contraction condition was significantly greater by 8 mm than that determined in the rest condition. The talocrural joint axis was displaced anteriorly by 3 mm and distally by 2 mm due to the muscle contraction. As the same time, the line of action of the Achilles tendon force was displaced posteriorly by 5 mm and medially by 2 mm. These linear displacements of the talocrural joint axis and the line of action of the Achilles tendon force accounted for the difference in the ATMAs between the two conditions by 35.9 and 62.4%, respectively. These angular displacements accounted for the total of 0.4% increase in the ATMA. These results confirm the previous findings reported in two-dimensional studies and found that the linear displacement of the line of action of the Achilles tendon force is the primary source of the contraction-induced increase in the ATMA.  相似文献   

3.
Tendon stiffness is calculated by dividing changes in tendon force by tendon elongation. For this purpose, participants are commonly asked to perform a maximal muscle contraction (“active” method). Alternatively tendon elongation can be achieved by means of a passive joint rotation (“passive” method). The purpose of this study was to compare Achilles tendon stiffness obtained from both methods across different tendon strain rates. Twenty adults performed a series of ramped maximum isometric plantarflexions of different durations. Passive ankle rotations of different angular velocities were also performed. Achilles tendon stiffness was obtained from a combination of motion analysis, isokinetic dynamometry and ultrasonography and compared across methods at three strain rates. At all strain rates, tendon stiffness obtained from the active method was 6% greater compared to the passive method. In spite of this systematic bias, there was good agreement between the methods. Intraclass correlation coefficients were greater than 0.98, and more than 95% of data points fell into the 95% confidence intervals. This agreement will be acceptable in many research contexts. We also found a linear increase in tendon stiffness with increasing strain rate, which must be taken into consideration when interpreting or reporting tendon stiffness.  相似文献   

4.
The purpose of this study was to choose between two popular models of skeletal muscle: one with the parallel elastic component in parallel with both the contractile element and the series elastic component (model A), and the other in which it is in parallel with only the contractile element (model B). Passive and total forces were obtained at a variety of muscle lengths for the medial gastrocnemius muscle in anesthetized rats. Passive force was measured before the contraction (passive A) or was estimated for the fascicle length at which peak total force occurred (passive B). Fascicle length was measured with sonomicrometry. Active force was calculated by subtracting passive (A or B) force from peak total force at each fascicle or muscle length. Optimal length, that fascicle length at which active force is maximized, was 13.1 +/- 1.2 mm when passive A was subtracted and 14.0 +/- 1.1 mm with passive B (P < 0.01). Furthermore, the relationship between double-pulse contraction force and length was broader when calculated with passive B than with passive A. When the muscle was held at a long length, passive force decreased due to stress relaxation. This was accompanied by no change in fascicle length at the peak of the contraction and only a small corresponding decrease in peak total force. There is no explanation for the apparent increase in active force that would be obtained when subtracting passive A from the peak total force. Therefore, to calculate active force, it is appropriate to subtract passive force measured at the fascicle length corresponding to the length at which peak total force occurs, rather than passive force measured at the length at which the contraction begins.  相似文献   

5.
Length-force characteristics of aponeurosis of rat gastrocnemius medialis muscle and achilles tendon were studied for passive and active muscle. Active muscle performed isometric as well as slow concentric and eccentric contractions at low velocity. For isometric conditions, different aponeurosis and tendon length-force characteristics were found between passive and active muscle: At comparable low levels of force longer aponeuroses were encountered in passive than in active muscle. Similar results were found for achilles tendon, but the magnitude of the length change involved was smaller than for aponeurosis. For active muscle, no differences of aponeurosis length- force characteristics could be distinguished between the isometric contractions and a slow concentric contraction. Indications that such differences of aponeurosis length-force characteristics may exist between slow concentric and eccentric contractions were found. It is concluded that, for gastrocnemius medialis muscle, aponeurosis and tendon length - force characteristics may be quite variable depending on recent history of muscle length and activity.  相似文献   

6.
In the present experiment we obtained the tensile properties of the human gastrocnemius tendon, a high-stressed tendon suitable for spring-like action during locomotion. Measurements were taken in vivo in six men. The gastrocnemius tendon elongation during tendon loading−unloading induced by muscle contraction−relaxation was measured using real-time ultrasonography. Tendon forces were calculated from the moment generated during isometric plantarflexion contraction, using tendon moment arm length data obtained in vivo with the tendon travel method. Tendon stiffness data were calculated from the slope of the tendon force−elongation curve, and were then normalized to the tendon's original dimensions, obtained from morphometric analysis of sonographs, to estimate the tendon Young's modulus. Mechanical hysteresis values were obtained from area calculations by numerical integration. The elongation of the tendon increased curvilinearly with the force acting upon it, from 1.7±1 mm (0.8±0.3% strain) at 87.5±8.5 N to 11.1±3.1 mm (4.9±1% strain) at 875±85 N. The tendon Young's modulus and mechanical hysteresis were 1.16±0.15 GPa and 18±3%, respectively. These values fall within the range of values obtained from in vitro experiments and are very similar to the respective values recently obtained from in vivo measurements in the less highly stressed human tibialis anterior tendon (1.2 GPa and 19%), thus indicating that the material properties of tendon are independent of physiological loading and function. Combining the present tendon force−elongation data with previously reported Achilles tendon force data recorded during walking indicates that the gastrocnemius tendon would provide 6% of the total external work produced by the locomotor system. This estimate illustrates the contribution of passive elastic mechanisms on the economy and efficiency of walking. The contributions would be greater in more active exercise such as running.  相似文献   

7.
The purpose of this study was to investigate Achilles tendon (AT) length changes during a series of tasks that involved combinations of higher/lower force, and larger/smaller length changes of the medial gastrocnemius muscle-tendon unit (MTU). We sought to determine if common ultrasound-based estimates of AT length change were consistent with expectations for a passive elastic tendon acting in series with a muscle. We tested 8 healthy individuals during restricted joint calf contractions (high force, low displacement), ankle dorsi-/plantar-flexion (DF/PF) with the foot in the air (low force, high displacement), and heel raises (high force, high displacement). We experimentally estimated AT length change using two ultrasound methods, one based on muscle-tendon junction (MTJ) tracking and one based on muscle fascicle (MF) tracking. Estimates of AT length change were consistent with model expectations during restricted calf contractions, when the MTU underwent minimal length change. However, estimates of AT length changes were inconsistent with model expectations during the ankle DF/PF and heel raise tasks. Specifically, the AT was estimated to shorten substantially, often 10–20 mm, when the ankle plantarflexed beyond neutral position, despite loading conditions in which a passive, stiff spring would be expected to either lengthen (under increasing force) or maintain its length (under low force). These unexpected findings suggest the need for improvements in how we conceptually model and/or experimentally estimate MTU dynamics in vivo during motion analysis studies, particularly when the ankle plantarflexes beyond neutral.  相似文献   

8.
It is well known that during maximal plantar flexion contractions the ankle joint rotation overestimates the actual elongation of the tendon and aponeurosis. The aim of this study was to examine the influence of the curve length changes of the Achilles tendon on the joint rotation corrected elongation and strain of the gastrocnemius medialis (GM) tendon and aponeurosis. Nine subjects (age: 29.4 ± 5.7 years, body mass: 78.8 ± 6.8 kg, body height: 178 ± 4 cm) participated in the study. The subjects performed maximal voluntary isometric plantarflexion contractions in the prone position on a Biodex-dynamometer. Ultrasonography (Aloka SSD 4000) was used to visualize the muscle belly of the GM muscle-tendon unit. To calculate the curve length changes of the Achilles tendon its surface contour was reconstructed using a series of small reflective skin markers having a diameter of 2.5 mm. The elongation of the GM tendon and aponeurosis was calculated (a) as the difference of the measured and the passive (due to joint rotation) displacement of the tendon and aponeurosis and (b) as the difference of the measured displacement and the length changes of the reconstructed Achilles tendon surface contour. The absolute difference between the elongation obtained by both methods were 1.2 ± 0.4 mm. These differences were due to the higher changes in length obtained by the reconstruction of the tendon curved surface contour as compared to the changes observed in the passive displacement of the digitised point at the aponeurosis. Without correcting for angle joint rotation, the measured elongation clearly overestimates the actual elongation of the GM tendon and aponeurosis. After the passive displacement correction the calculated elongation still overestimates the actual elongation of the GM tendon and aponeurosis. However, this overestimation has a negligible effect on the examined in vivo strain (0.3%) of the tendon and aponeurosis.  相似文献   

9.
The purpose of this study was to quantify strain and elongation of the long head of the biceps femoris (BFlh) and the semitendinosus (ST) tendon/aponeurosis. Forty participants performed passive knee extension trials from 90° of knee flexion to full extension (0°) followed by ramp isometric contractions of the knee flexors at 0°, 45° and 90° of knee flexion. Two ultrasound probes were used to visualize the displacement of BFlh and ST tendon/aponeurosis. Three-way analysis of variance designs indicated that: (a) Tendon/aponeurosis (passive) elongation and strain were higher for the BFlh than the ST as the knee was passively extended (p < 0.05), (b) contraction at each angular position was accompanied by a smaller BFlh tendon/aponeurosis (active) strain and elongation than the ST at higher levels of effort (p < 0.05) and (c) combined (passive and active) strain was significantly higher for the BFlh than ST during ramp contraction at 0° but the opposite was observed for the 45° and 90° flexion angle tests (p < 0.05). Passive elongation of tendon/aponeurosis has an important effect on the tendon/aponeurosis behavior of the hamstrings and may contribute to a different loading of muscle fibers and tendinous tissue between BFlh and ST.  相似文献   

10.
The metabolic activity of tendinous tissues has traditionally been considered to be of limited magnitude. However, recent studies have suggested that glucose uptake increases in the force-transmitting tissues as a response to contractile loading, which in turn indicates an elevated tissue metabolism. The purpose of the present study was to investigate whether such a mechanism could be observed for the human Achilles tendon following tensile loading. Six subjects participated in the study. Unilateral Achilles tendon loading was applied by 25-min intermittent voluntary plantar flexor contractions. A radioactive tracer ([18F]-2-fluoro-2-deoxy-D-glucose) was administered during muscle action, and glucose uptake was measured by use of PET. Regions of interest were defined on the PET images corresponding to the cross section of Achilles tendon at two longitudinally separated sites (insertion and free tendon). Glucose uptake index was determined within respective regions of interest for the active and resting leg. Tendon force during voluntary contractions was approximately 13% of maximal voluntary contraction force. Tendon loading induced an elevated glucose uptake index compared with that of the contralateral resting tendon in the region of tendon insertion (0.13 +/- 0.05 vs. 0.09 +/- 0.02; P < 0.05) and at the free tendon (0.12 +/- 0.01 vs. 0.08 +/- 0.02; P < 0.05). The present data suggest that tissue metabolism is elevated in the human Achilles tendon in response to low-intensity loading.  相似文献   

11.
Characteristics of the entire series elastic component and of tendinous structures separately (tendon and aponeurosis) were compared for rat EDL muscle-tendon complex during isometric contractions, to study the contribution of tendinous structures to series elastic component characteristics. Compliance of series elastic component was measured using quick length decreases during the force plateau of isometric contractions. Lengths of tendinous structures were measured using macro-photographs during passive and active muscle conditions. Length data obtained from aponeurosis showed inconsistency with respect to elastic behaviour in two ways: the difference of aponeurosis length in active muscle at short length and at optimum length exceeded the extension of series elastic component for the same force range. Furthermore, aponeurosis in passive muscle at optimum length was considerably longer than in active muscle at short length, despite the fact that muscle force in the former condition is smaller than in the latter. It is concluded that aponeurosis length does not depend exclusively on force but is also muscle length-dependent. This muscle length dependence was not found for tendon of EDL. Additional experiments showed that series elastic component compliance does not depend on muscle length. It is concluded that muscle length-dependent changes of aponeurosis length-force characteristics involve shifts of its force length curve to other aponeurosis lengths.  相似文献   

12.
It is unclear if skeletal muscles act mechanically as independent actuators. The purpose of the present study was to investigate force transmission from soleus (SO) muscle for physiological lengths as well as relative positions in the intact cat hindlimb. We hypothesized that force transmission from SO fibers will be affected by length changes of its two-joint synergists. Ankle plantar flexor moment on excitation of the SO was measured for various knee angles (70-140 degrees ). This involved substantial length changes of gastrocnemius and plantaris muscles. Ankle angle was kept constant (80 degrees -90 degrees ). However, SO ankle moment was not significantly affected by changes in knee angle; neither were half-relaxation time and the maximal rate of relaxation (P > 0.05). Following tenotomy, SO ankle moment decreased substantially (55 +/- 16%) but did not reach zero, indicating force transmission via connective tissues to the Achilles tendon (i.e., epimuscular myofascial force transmission). During contraction SO muscle shortened to a much greater extent than in the intact case (16.0 +/- 0.6 vs. 1.0 +/- 0.1 mm), which resulted in a major position shift relative to its synergists. If the SO was moved back to its position corresponding to the intact condition, SO ankle moment approached zero, and most muscle force was exerted at the distal SO tendon. Our results also suggested that in vivo the lumped intact tissues linking SO to its synergists are slack or are operating on the toe region of the stress-strain curve. Thus, within the experimental conditions of the present study, the intact cat soleus muscle appears to act mechanically as an independent actuator.  相似文献   

13.
During locomotion, major muscle groups are often activated cyclically. This alternate stretch-shorten pattern of activity could enable muscle to function as a spring, storing and recovering elastic recoil potential energy. Because the ability to store and recover elastic recoil energy could profoundly affect the energetics of locomotion, one might expect this to be an adaptable feature of skeletal muscle. This study tests the hypothesis that chronic eccentric (Ecc) training results in a change in the spring properties of skeletal muscle. Nine female Sprague-Dawley rats underwent chronic Ecc training for 8 wk on a motorized treadmill. The spring properties of muscle were characterized by both active and passive lengthening force productions. A single "spring constant (Deltaforce/Deltalength) from the passive length-tension curves was calculated for each muscle. Results from measurements on long heads of triceps brachii muscle indicate that the trained group produced significantly more passive lengthening force (P = 0.0001) as well as more active lengthening force (P = 0.0001) at all lengths of muscle stretch. In addition, the spring constants were significantly different between the Ecc (1.71 N/mm) and the control (1.31 N/mm) groups. A stiffer spring is capable of storing more energy per unit length stretched, which is of functional importance during locomotion.  相似文献   

14.
The aim of the present study was to investigate the behavior of human muscle fascicles during dynamic contractions. Eight subjects performed maximal isometric dorsiflexion contractions at six ankle joint angles and maximal isokinetic concentric and eccentric contractions at five angular velocities. Tibialis anterior muscle architecture was measured in vivo by use of B-mode ultrasonography. During maximal isometric contraction, fascicle length was shorter and pennation angle larger compared with values at rest (P < 0.01). During isokinetic concentric contractions from 0 to 4.36 rad/s, fascicle length measured at a constant ankle joint angle increased curvilinearly from 49.5 to 69.7 mm (41%; P < 0.01), whereas pennation angle decreased curvilinearly from 14.8 to 9.8 degrees (34%; P < 0.01). During eccentric muscle actions, fascicles contracted quasi-isometrically, independent of angular velocity. The behavior of muscle fascicles during shortening contractions was believed to reflect the degree of stretch applied to the series elastic component, which decreases with increasing contraction velocity. The quasi-isometric behavior of fascicles during eccentric muscle actions suggests that the series elastic component acts as a mechanical buffer during active lengthening.  相似文献   

15.
Sarcopenia and muscle weakness are well-known consequences of aging. The aim of the present study was to ascertain whether a decrease in fascicle force (Ff) could be accounted for entirely by muscle atrophy. In vivo physiological cross-sectional area (PCSA) and specific force (Ff/PCSA) of the lateral head of the gastrocnemius (GL) muscle were assessed in a group of elderly men [EM, aged 73.8 yr (SD 3.5), height 173.4 cm (SD 4.4), weight 78.4 kg (SD 8.3); means (SD)] and for comparison in a group of young men [YM, aged 25.3 yr (SD 4.4), height 176.4 cm (SD 7.7), weight 79.1 kg (SD 11.9)]. GL muscle volume (Vol) and Achilles tendon moment arm length were evaluated using magnetic resonance imaging. Pennation angle and fiber fascicle length (Lf) were measured using B-mode ultrasonography during isometric maximum voluntary contraction of the plantar flexors. PCSA was estimated as Vol/Lf. GL Ff was calculated by dividing Achilles tendon force by the cosine of theta, during the interpolation of a supramaximal doublet, and accounting for antagonist activation level (assessed using EMG), Achilles tendon moment arm length, and the relative PCSA of the GL within the plantar flexor group. Voluntary activation of the plantar flexors was lower in the EM than in the YM (86 vs. 98%, respectively, P < 0.05). Compared with the YM, plantar flexor maximal voluntary contraction torque and Ff of the EM were lower by 47 and 40%, respectively (P < 0.01). Both Vol and PCSA were smaller in the EM by 28% (P < 0.01) and 16% (P < 0.05), respectively. Also, pennation angle was 12% smaller in the EM, whereas there was no significant difference in Lf between the YM and EM. After accounting for differences in agonists and antagonists activation, the Ff/PCSA of the EM was 30% lower than that of the YM (P < 0.01). These findings demonstrate that the loss of muscle strength with aging may be explained not only by a reduction in voluntary drive to the muscle, but mostly by a decrease in intrinsic muscle force. This phenomenon may possibly be due to a reduction in single-fiber specific tension.  相似文献   

16.
Individuals with spastic cerebral palsy (CP) typically experience muscle weakness. The mechanisms responsible for muscle weakness in spastic CP are complex and may be influenced by the intrinsic mechanical properties of the muscle and tendon. The purpose of this study was to investigate the medial gastrocnemius (MG) muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic CP. Nine relatively high functioning young adults with spastic CP (GMFCS I, 17±2 years) and 10 typically developing individuals (18±2 years) participated in the study. Active MG torque-length and Achilles tendon properties were assessed under controlled conditions on a dynamometer. EMG was recorded from leg muscles and ultrasound was used to measure MG fascicle length and Achilles tendon length during maximal isometric contractions at five ankle angles throughout the available range of motion and during passive rotations imposed by the dynamometer. Compared to the typically developing group, the spastic CP group had 33% lower active ankle plantarflexion torque across the available range of ankle joint motion, partially explained by 37% smaller MG muscle and 4% greater antagonistic co-contraction. The Achilles tendon slack length was also 10% longer in the spastic CP group. This study confirms young adults with mild spastic CP have altered muscle–tendon mechanical properties. The adaptation of a longer Achilles tendon may facilitate a greater storage and recovery of elastic energy and partially compensate for decreased force and work production by the small muscles of the triceps surae during activities such as locomotion.  相似文献   

17.
Tendons transmit forces generated from muscle to bone making joint movements possible. Tendon collagen has a complex supramolecular structure forming many hierarchical levels of association; its main functional unit is the collagen fibril forming fibers and fascicles. Since tendons are enclosed by loose connective sheaths in continuity with muscle sheaths, it is likely that tendon sheaths could play a role in absorbing/transmitting the forces created by muscle contraction. In this study rat Achilles tendons were passively stretched in vivo to be observed at polarized light microscope (PLM), scanning electron microscope (SEM) and transmission electron microscope (TEM). At PLM tendon collagen fibers in relaxed rat Achilles tendons ran straight and parallel, showing a periodic crimp pattern. Similarly tendon sheaths showed apparent crimps. At higher magnification SEM and TEM revealed that in each tendon crimp large and heterogeneous collagen fibrils running straight and parallel suddenly changed their direction undergoing localized and variable modifications. These fibril modifications were named fibrillar crimps. Tendon sheaths displayed small and uniform fibrils running parallel with a wavy course without any ultrastructural aspects of crimp. Since in passively stretched Achilles tendons fibrillar crimps were still observed, it is likely that during the tendon stretching, and presumably during the tendon elongation in muscle contraction, the fibrillar crimp may be the real structural component of the tendon crimp acting as shock absorber. The peritendinous sheath can be stretched as tendon, but is not actively involved in the mechanism of shock absorber as the fibrillar crimp. The different functional behaviour of tendons and sheaths may be due to the different structural and molecular arrangement of their fibrils.  相似文献   

18.
The present study determined in vivo deformation of the entire Achilles tendon in the longitudinal and transverse directions during isometric plantar flexions. Twelve young women and men performed isometric plantar flexions at 0% (rest), 30%, and 60% of the maximal voluntary contraction (MVC) while a series of oblique longitudinal and cross-sectional magnetic resonance (MR) images of the Achilles tendon were taken. At the distal end of the soleus muscle belly, the Achilles tendon was divided into the aponeurotic (ATapo) and the tendinous (ATten) components. The length of each component was measured in the MR images. The widths of the Achilles tendon were determined at 10 regions along ATapo and at four regions along ATten. Longitudinal and transverse strains were calculated as changes in relative length and width compared with those at rest. The ATapo deformed in both longitudinal and transverse directions at 30%MVC and 60%MVC. There was no difference between the strains of the ATapo at 30%MVC and 60%MVC either in the longitudinal (1.1 and 1.6%) or transverse (5.0~11.4 and 5.0~13.9%) direction. The ATten was elongated longitudinally (3.3%) to a greater amount than ATapo, while narrowing transversely in the most distal region (-4.6%). The current results show that the magnitude and the direction of contraction-induced deformation of Achilles tendon are different for the proximal and distal components. This may be related to the different functions of Achilles tendon, i.e., force transmission or elastic energy storage during muscle contractions.  相似文献   

19.
In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types on regulation of these factors in muscle are still unclear, and in tendon the functions of myostatin, IGF-IEa, and MGF in relation to training are unknown. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric, or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve during general anesthesia. mRNA levels for myostatin, IGF-IEa, and MGF in muscle and Achilles' tendon were measured by real-time RT-PCR. Muscle myostatin mRNA decreased in response to all types of training (2- to 8-fold) (P < 0.05), but the effect of eccentric training was greater than concentric and isometric training (P < 0.05). In tendon, myostatin mRNA was detected, but no changes were seen after exercise. IGF-IEa and MGF increased in muscle (up to 15-fold) and tendon (up to 4-fold) in response to training (P < 0.01). In tendon no difference was seen between training types, but in muscle the effect of eccentric training was greater than concentric training for both IGF-IEa and MGF (P < 0.05), and for IGF-IEa isometric training had greater effect than concentric (P < 0.05). The results indicate a possible role for IGF-IEa and MGF in adaptation of tendon to training, and the combined changes in myostatin and IGF-IEa/MGF expression could explain the important effect of eccentric actions for muscle hypertrophy.  相似文献   

20.
Load-strain characteristics of tendinous tissues (Achilles tendon and aponeurosis) were determined in vivo for human medial gastrocnemius (MG) muscle. Seven male subjects exerted isometric plantar flexion torque while the elongation of tendinous tissues of MG was determined from the tendinous movements by using ultrasonography. The maximal strain of the Achilles tendon and aponeurosis, estimated separately from the elongation data, was 5.1 +/- 1.1 and 5.9 +/- 1.6%, respectively. There was no significant difference in strain between the Achilles tendon and aponeurosis. In addition, no significant difference in strain was observed between the proximal and distal regions of the aponeurosis. The results indicate that tendinous tissues of the MG are homogeneously stretched along their lengths by muscle contraction, which has functional implications for the operation of the human MG muscle-tendon unit in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号