首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Most of the mRNA sequence coding for the alpha A2 chain of the ocular lens protein alpha-crystallin from rat, has been determined by sequencing cloned DNA copies of this mRNA. The 892-base pair cDNA sequence encompasses all but 52 N-terminal amino acids of the alpha A2 chain. It lacks the sequence characteristic for the 22 extra amino acids inserted in the alpha A2 -like chain, named alpha AIns. A stretch of 583 nuceotides, representing more than 50% of the entire mRNA sequence, is located 3' wards of the alpha A2 coding sequence. It contains the characteristic AAUAAA signal involved in poly(A) -addition and represents an unexpectedly long non-coding region. Examination of the total cytoplasmic poly(A) RNA of rat lens by filter-hybridization and subsequent translation of the electrophoretically separated mRNA fractions shows that the alpha A2 chain is encoded by mRNA species which are distinct from the alpha AIns encoding mRNA. No evidence is obtained for an extensive size heterogeneity in the 3' untranslated regions of these two different rat lens mRNAs.  相似文献   

2.
The fructose-1,6-bisphosphate aldolase gene of Drosophila melanogaster contains three divergent copies of an evolutionarily conserved 3' exon. Two mRNAs encoding aldolase contain three exons and differ only in the poly(A) site. The first exon is small and noncoding. The second encodes the first 332 amino acids, which form the catalytic domain, and is homologous to exons 2 through 8 of vertebrates. The third exon encodes the last 29 amino acids, thought to control substrate specificity, and is homologous to vertebrate exon 9. A third mRNA substitutes a different 3' exon (4a) for exon 3 and encodes a protein very similar to aldolase. A fourth mRNA begins at a different promoter and shares the second exon with the aldolase messages. However, two exons, 3a and 4a, together substitute for exon 3. Like exon 4a, exon 3a is homologous to terminal aldolase exons. The exon 3a-4a junction is such that exon 4a would be translated in a frame different from that which would produce a protein with similarity to aldolase. The putative proteins encoded by the third and fourth mRNAs are likely to be aldolases with altered substrate specificities, illustrating alternate use of duplicated and diverged exons as an evolutionary mechanism for adaptation of enzymatic activities.  相似文献   

3.
Concerted and divergent evolution within the rat gamma-crystallin gene family   总被引:11,自引:0,他引:11  
The nucleotide sequences of six rat gamma-crystallin genes have been determined. All genes have the same mosaic structure: the first exons contain a relatively short (25 to 44 base-pair) 5' non-coding region and the first nine base-pairs of the coding sequence, the second exons encode protein motifs I and II, while protein motifs III and IV are encoded by the third exons. The third exons also contain a 60 to 67-base-pair long 3' non-coding region. In the gamma 1-2 gene, the splice acceptor site of the third exon has been shifted three base-pairs upstream. Hence, the protein product of this gene is one amino acid residue longer. The first introns, though varying in length from 85 to 100 base-pairs, are conserved in sequence. The second introns vary considerably in length (0.9 X 10(3) to 1.9 X 10(3) base-pairs) and sequence. The second exons of the genes show concerted evolution and have undergone multiple gene conversions. In contrast, the third exons show divergent evolution. From the sequences of the third exons, an evolutionary tree of the gene family was constructed. This tree suggests that three of the present genes derive directly from the genes that originated from a tandem duplication of a two-gene cluster. Two duplications of the last gene of the four-gene cluster then yielded the other three genes. Region a' of the third exon, encoding protein motif III, is variable, while the region encoding protein motif IV (b') is constant. We postulate that this variability in region a' is due to a period of radiation after each gene duplication. A comparison of the rat sequences with those of orthologous sequences from other species shows that the variation in region a' is now preserved. Hence, it might specify the specific functional property of each gamma-crystallin protein within the lens.  相似文献   

4.
5.
6.
7.
8.
9.
Structure and sequence of the human homeobox gene HOX7.   总被引:13,自引:0,他引:13  
A cosmid containing the human sequence HOX7, homologous to the murine Hox-7 gene, was isolated from a genomic library, and the positions of the coding sequences were determined by hybridization. DNA sequence analysis demonstrated two exons that code for a homeodomain-containing protein of 297 amino acids. The open reading frame is interrupted by a single intron of approximately 1.6 kb, the splice donor and acceptor sites of which conform to known consensus sequences. The human HOX7 coding sequence has a very high degree of identity with the murine Hox-7 cDNA. Within the homeobox, the two sequences share 94% identity at the DNA level, all substitutions being silent. This high level of sequence similarity is not confined to the homeodomain; overall the human and murine HOX7 gene products show 80% identity at the amino acid level. Both the 5' and 3' untranslated regions also show significant similarity to the murine gene, with 79 and 70% sequence identity, respectively. The sequence upstream of the coding sequence of exon 1 contains a GC-rich putative promoter region. There is no TATA box, but a CCAAT and numerous GC boxes are present. The region encompassing the promoter region, exon 1, and the 5' region of exon 2 have a higher than expected frequency of CpG dinucleotides; numerous sites for rare-cutter restriction enzymes are present, a characteristic of HTF islands.  相似文献   

10.
11.
The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM mRNA and nonmuscle TM-1 mRNA via alternative RNA splicing. This gene contains eleven exons: exons 1-5, 8, and 9 are common to both mRNAs; exons 6 and 11 are used in fibroblasts as well as in smooth muscle, whereas exons 7 and 10 are used in skeletal muscle. Previously we demonstrated that utilization of the 3' splice site of exon 7 is blocked in nonmuscle cells. In this study, we use both in vitro and in vivo methods to investigate the regulation of the 5' splice site of exon 7 in nonmuscle cells. The 5' splice site of exon 7 is used efficiently in the absence of flanking sequences, but its utilization is suppressed almost completely when the upstream exon 6 and intron 6 are present. The suppression of the 5' splice site of exon 7 does not result from the sequences at the 3' end of intron 6 that block the use of the 3' splice site of exon 7. However, mutating two conserved nucleotides GU at the 5' splice site of exon 6 results in the efficient use of the 5' splice site of exon 7. In addition, a mutation that changes the 5' splice site of exon 7 to the consensus U1 snRNA binding site strongly stimulates the splicing of exon 7 to the downstream common exon 8. Collectively, these studies demonstrate that 5' splice site competition is responsible, in part, for the suppression of exon 7 usage in nonmuscle cells.  相似文献   

12.
RGSZ1 and Ret RGS, members of the regulator of G-protein signaling (RGS) family, are GTPase-activating proteins (GAPs) with high selectivity for G alpha(z). We show here that RGSZ1 and Ret RGSZ1 are products of two of several splice variants of one gene, RGS20. RGS20 spans approximately 107 kb and contains at least seven exons. Five exons account for RGSZ1, including a single exon distinct to RGSZ1 that encodes a newly identified amino-terminal region. The previously described open reading frame (ORF) and 3' untranslated region are encoded by four downstream exons that also encode about half of Ret RGS. The 5' end of the RGSZ1 ORF contains several in-frame ATG codons (3-5 depending on the species), and multiple translational start sites may help explain the molecular weight heterogeneity of purified bovine brain RGSZ. Ret RGS replaces the 24 N-terminal amino acid residues of RGSZ1 with a large, N-terminal region that initially distinguished the bovine Ret RGS from human and mouse RGSZ1. This N-terminal domain is encoded by two distinct 5' exons that are variably combined with the four downstream exons shared with RGSZ1 to produce at least six mRNAs. They encode proteins with N termini that vary in size, hydrophobicity, and the presence of a cysteine string. At least two mRNAs that include the exon that encodes the N-terminal region unique to RGSZ1 were found in brain and a few other tissues, but not retina. RGS20 thus can account for multiple G(z)-selective GAPs in different tissues.  相似文献   

13.
The chicken beta-tropomyosin gene contains an internal pair of mutually exclusive exons (6A and 6B) that are selected in a tissue-specific manner. Exon 6A is incorporated in fibroblasts and smooth muscle cells, whereas exon 6B is skeletal muscle specific. In this study we show that two different regions in the intron between the two mutually exclusive exons are important for this specific selection in nonmuscle cells. Sequences in the 3' end of the intron have a negative effect in the recognition of the 3' splice site, while sequences in the 5' end of the intron have a positive effect in the recognition of the 5' splice site. First, sequences in exon 6B as well as in the intron upstream of exon 6B are both able to inhibit splicing when placed in a heterologous gene. The sequences in the polypyrimidine stretch region contribute to splicing inhibition of exons 5 or 6A to 6B through a mechanism independent of their implication in the previously described secondary structure around exon 6B. Second, we have identified a sequence of 30 nucleotides in the intron just downstream of exon 6A that is essential for the recognition of the 5' splice site of exon 6A. This is so even after introduction of a consensus sequence into the 5' splice site of this exon. Deletion of this sequence blocks splicing of exon 6A to 6B after formation of the presplicing complex. Taken together, these results suggest that both the mutually exclusive behavior and the choice between exons 6A and 6B of the chicken beta-tropomyosin gene are trans regulated.  相似文献   

14.
Two overlapping c-ets-1 cDNA clones were isolated which contained the alpha and beta genomic sequences homologous to the 5' end of v-ets not detected in the previously described c-ets RNA species or proteins. Nucleotide sequencing demonstrated that these cDNAs corresponded to the splicing of alpha and beta to a common set of 3' exons (a through F) already found in the p54c-ets-1 mRNA. They contained an open reading frame of 1,455 nucleotides which could encode a polypeptide of 485 amino acids with a predicted molecular mass of 53 kilodaltons. However, when expressed in COS-1 cells, the cDNAs directed the synthesis of a protein with an apparent molecular mass in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 68 kilodaltons, p68c-ets-1, comigrating with a protein expressed at low levels in normal chicken spleen cells. These two proteins were shown to be identical by partial digestion with protease V8. Northern (RNA) blot hybridization analysis with the p68c-ets-1 -specific sequence and RNase protection experiments showed that the corresponding mRNA was expressed in normal chicken spleen and not in normal chicken thymus or in various T lymphoid cell lines. Thus, two closely related proteins, having distinct amino-terminal parts, are generated within the same locus by alternative addition of different 5' exons, alpha and beta or I54, respectively, onto a common set of 3' exons (a to F). Finally, we demonstrate that an aberrant splicing event between a cryptic splice donor site in c-myb exon E6 and the normal splice acceptor site of c-ets-1 exon alpha involved in the genesis of the E26 myb-ets sequence.  相似文献   

15.
lambda 5 is an immunoglobulin lambda light chain-related gene which is selectively transcribed in murine pre-B lymphocytes to yield a 1.2 kb poly(A)+ mRNA. Comparison of the nucleotide sequence of a 1 kb cDNA clone with the sequence of a genomic clone isolated from 70Z/3 murine pre-B lymphoma cells shows lambda 5 is composed of three exons spanning a 3.75 kb DNA segment. Conserved splice signal sequences at all exon/intron boundaries and the presence of a long open reading frame indicate that a functional mRNA molecule can be made. Exon I contains a cap-site and a potential ATG start codon as well as sequences encoding a signal peptide. This gene could encode a lambda 5 protein of 209 amino acids which has, however, not yet been identified. The 3' portion of exon II and all of exon III shows strong sequence homologies to J lambda L and C lambda L exons. Homology to the lambda L chain genes is lost in the 5' portion of exon II and throughout exon I. In exon I short homologies to leader sequences and to VH framework 1 sequences are seen.  相似文献   

16.
From a genomic library of Xenopus laevis, two genes coding for different preprocaeruleins have been isolated and sequenced. These correspond to the type I and type III precursors analyzed previously at the cDNA level [Richter, K., Egger, R. and Kreil, G. (1986) J. Biol. Chem. 261, 3676-3680]. The type III gene comprises eight exons; the type I apparently contains eight exons as well, of which six have been sequenced. The genetic information for the dekapeptide caerulein is present on small exons of 45 base pairs. The two genes are highly homologous in their 5'-flanking region, the exon/intron boundaries, and long stretches of intron sequences. A possible scheme for the evolution of this small family of genes through exon and gene duplications is presented. In the type I gene, in place of one of the caerulein exons, a potential exon with conserved splice sites was discovered. If expressed in some frog cells, this exon would code for a new peptide 60% homologous to caerulein.  相似文献   

17.
18.
Intron 2 of the dystrophin gene is unusually large, extending 157 kb on the X-chromosome, and is known to contain one cryptic exon 2a. Here, we report that a single nucleotide change in the middle of this huge intron is a source of two novel extra exons. A novel point mutation changing T to A nucleotide was identified at 5591 bp downstream from the 3' end of exon 2 (T310+5591A) in genomic DNA of an asymptomatic dystrophinopathy case. The mutation identification was initiated by detection of two novel dystrophin mRNAs containing a 132-nucleotide or 46-nucleotide insertion between exons 2 and 3 in lymphocytes but one with a 132-nucleotide insertion in skeletal muscle. It was concluded that T310+5591A created a novel consensus sequence for a splice acceptor site leading to the formation of two novel exon structures by using two cryptic splice donor sites at 132 bp or 46 bp downstream. The former maintained the dystrophin reading frame and was expected to insert 44 amino acids in the N-terminal domain of dystrophin, whereas the latter created a premature stop codon. An immunohistochemical study of the skeletal muscle of the patient disclosed that the N-terminal domain of dystrophin was not stained, but the rod- and C-terminal domains were stained in a patchy and discontinuous manner, indicating that the in-frame mRNA was functional. Creation of a splice acceptor site by a single nucleotide change leading to extra exon structures is a novel molecular mechanism in human disease.  相似文献   

19.
Exon trapping is a method to functionally clone expressed sequences from genomic DNA. We have previously developed the vector system pETV-SD2, which contains only a splice donor site (SD) followed by a LacZ gene, allowing trapping of internal exons of human genes by blue-white selection. We now describe the adaptation of the same system for the efficient trapping of 3'-terminal exons, by using different RT-PCR primers in a 3' RACE reaction. The addition of a T7 promoter to the RT-PCR products derived from pETV-SD2 allows their amplification in an isothermic amplification reaction called NASBA (nucleic acid sequence-based amplification reaction) and results in a strong signal from amplified 3' exons in addition to a great reduction of non-specific background. As a test for the system, 3' exon trapping was performed using a cosmid containing the alpha-globin gene cluster on chromosome 16. The 3'-terminal exons of the human alpha 1-, zeta 2-, and theta-globin genes were trapped, as well as a correctly spliced and polyadenylated sequence in the 3' flanking region of the alpha 1-globin gene. This exon appears to belong to a previously unidentified gene within the alpha-globin gene cluster. This 3' exon trapping strategy should facilitate the cloning of genes from large genomic regions.  相似文献   

20.
We isolated and characterized three spontaneous mutants of Chinese hamster ovary cells that were deficient in dihydrofolate reductase activity. All three mutants contained no detectable enzyme activity and produced dihydrofolate reductase mRNA species that were shorter than those of the wild type by about 120 bases. Six exons are normally represented in this mRNA; exon 5 was missing in all three mutant mRNAs. Nuclease S1 analysis of the three mutants indicated that during the processing of the mutant RNA, exon 4 was spliced to exon 6. The three mutant genes were cloned, and the regions around exons 4 and 5 were sequenced. In one mutant, the GT dinucleotide at the 5' end of intron 5 had changed to CT. In a second mutant, the first base in exon 5 had changed from G to T. In a revertant of this mutant, this base was further mutated to A, a return to a purine. Approximately 25% of the mRNA molecules in the revertant were spliced correctly to produce an enzyme with one presumed amino acid change. In the third mutant, the AG at the 3' end of intron 4 had changed to AA. A mutation that partially reversed the mutant phenotype had changed the dinucleotide at the 5' end of intron 4 from GT to AT. The splicing pattern in this revertant was consistent with the use of cryptic donor and acceptor splice sites close to the original sites to produce an mRNA with three base changes and a protein with two amino acid changes. These mutations argue against a scanning model for the selection of splice site pairs and suggest that only a single splice site need be inactivated to bring about efficient exon skipping (a regulatory mechanism for some genes). The fact that all three mutants analyzed exhibited exon 5 splicing mutations indicates that these splice sites are hot spots for spontaneous mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号