首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
It is possible to distribute the 17 autosomic fragile sites presently known in three categories according to their sensitivity: BrdU-sensitive sites (10q25, 16q22, 17p12), distamycin A-sensitive sites (16q22, 17p12) and folate- and thymidilate-sensitive sites (2q11-q14, 3p14, 6p23, 7p11, 8q22, 9p21, 9q32, 10q23, 11q13, 11q23, 12q13, 16p12, 16q23, 17p12, 20p11). Four fundamental problems are discussed, first the relation between the presence of a fragile site and the phenotype, secondly the incidence of autosomic sites, third the origin of fragility (particularity of DNA structure, defect of the DNA/proteins binding and abnormal arrangement of chromatin, abnormality of the metaphasic scaffold) and fourth the localization of fragile sites.  相似文献   

2.
The expression of heritable fragile sites on human chromosomes has been shown to be dependent upon composition of the tissue medium for sites at 2q11, 10q23, 11q13, 16p124, 20p11 and Xq27 or 28 but not for the site at 16q22. Expression of the fragile sites is inhibited by folic acid, thymidine, folinic acid, and probably bromodeoxyuridine, and induced by methrotrexate. In addition, there is a correlation between frequency of expression of the sites and pH of the culture medium for the sites on 2q, 10q and Xq. Possible reasons for these findings are discussed, and a definition and classification of fragile sites is proposed.  相似文献   

3.
Patients with lymphomas were shown to have authentically a higher frequency of fragile sites, both spontaneous and induced by aphidikoline expression, in comparison with the control group. Differential sensitivity of chromosomes caused by the action of aphidikolin was revealed. The fragility of chromosomes 9 and 11 in patients with lymphomas on sites 9q31-32 and 11p13-14 was authentically higher (alpha = 0.05) than that in healthy individuals. Site 9q31-32 appeared to be strictly specific for lymphoma disease.  相似文献   

4.
Summary Chromosome fragile sites are inducible by aphidicolin in cultured human lymphocytes. To assess the frequency and distribution of these common fragile sites in the general population, a cytogenetic survey was performed on 126 subjects, 59 males and 67 females, whose age ranged from 1 day to 72 years. Common fragile sites, induced by aphidicolin, were widespread and showed a remarkably different sensitivity among individuals; age influenced the overall frequency of fragile sites. Moreover, both age and sex seemed to modulate the expression of specific fragile sites. In our population, the most common fragile sites were: 3p14, 16q23, Xp22, 6q26, 1p31, 4q31, 1p22, 7q22, 2q33, 3q27, 2q31, 7q32, 14q24, 10q22, 5q31, 2q37, 6p21.  相似文献   

5.
Summary Peripheral lymphocytes from 16 healthy adults, 9 pregnant women, and 3 fragile X syndrome patients were cultured in Eagle's minimum essential medium without folic acid (MEM-FA). The addition of 2mM, 4mM, or 8mM uridine 24h or 72h prior to harvest resulted in increases of chromosome gaps or breaks, especially at hot points 3p14, 16q23-24, and at fragile site Xq27. Pregnant women showed higher frequencies of 3p14 breaks and total chromosome breaks than men and non-pregnant women. The other chromosome regions, such as 6q26, 7q23, 7q35, 6p25, Xp22, 14q23 and 11p13, also frequently showed gaps or breaks. The results indicated that the unbalance of nucleotide pools was one of the causes of chromosome breakages. The higher frequencies of chromosome gaps and breaks under the condition of thymidylate stress may be due to the misincorporation of uracil instead of thymine into DNA.  相似文献   

6.
Four new folate-sensitive fragile sites are documented at 6p23, 9p21, 9q32, and 11q23. These have all been shown to be heritable except for the one at 9p21, which has been seen only in a single individual. As with the other autosomal fragile sites, these appear to be innocuous in heterozygotes.  相似文献   

7.
Segregation analysis of rare autosomal fragile sites   总被引:2,自引:0,他引:2  
Summary Segregation analyses were performed on pedigrees with rare autosomal fragile sites. The results of the analysis of pedigrees with folate sensitive fragile sites, including 2q1, 6p23, 7p11, 8q22, 9q32, 10q23, 11q13, 11q23, 12q13, 16p12, and 20p11, suggested that expression of the gene depended on the carrier parent: it was only 50% penetrant when transmitted by a carrier father, but fully penetrant when transmitted by a carrier mother. Pedigrees with the bromodeoxyuridine (BrdU) fragile site, fra(10)(q25), showed the same trend but the results were not statistically significant. In addition, 38 of the 44 probands with folate sensitive or BrdU-sensitive fragile sites received the gene from their carrier mother and only six received it from their father. In contrast, the analysis of pedigrees with the distamycin A-inducible site, fra(16)(q22), gave the results expected for a simple codominant trait with complete penetrance. Probands with this fragile site received the gene equally from mothers or fathers. The genetic implications of these results are discussed.  相似文献   

8.
The expression of common fragile sites (c‐fra) and frequency of chromosomal aberrations were studied in peripheral lymphocytes of 50 healthy Turkish individuals (26 males and 24 females from 1 to 87 years of age) after induction with aphidicolin (APC), 5′‐fluorodeoxyuridine (FUdR), and caffeine. A correlation was seen between age and the frequency of chromosomal aberrations in APC and caffeine treated cultures, but there were no significant differences in the frequencies of chromosomal aberrations between males and females in any of the treatments. The mean frequency of aberrations induced by FUdR was significantly higher than that induced by APC and caffeine. A chromosome aberration is defined as a fragile site when present in 1% of the cells analyzed from each culture and in at least 50% of the individuals studied. Using these criteria, 12 c‐fra were observed in the three treatments: 1p21, 1q21, 2p11‐q11, 3p14, 4q31, 6q26, 7q22, 7q32, 8q24, 11q23, 16q23, and Xp22. Sites 3p14, 16q23, and Xp22 were the most frequently observed c‐fra, with only the frequency of Xp22 being significantly increased in females in APC treated cultures. The results of these studies are important as a base against which the effects of other clastogenic and environmental agents, as well as genetic background, can be compared. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Summary A genomic probe homologous to 5.4 kb of the c-ets-1 gene was hybridized in situ to chromosomes expressing fra(11)(q23). This probe hybridized distal to the fragile site, which is just distal to the midpoint of band 11q23.3. This result localizes ETS1 from the FRA11B locus to 11q24. The result also distinguishes the FRA11B locus from the site of translocation at 11q23-q24 in the Ewing sarcoma- and peripheral neuroepithelioma-specific t(11;22), indicating that the chromosomes of a previously reported patient heterozygous for fra(11)(q23) did not rearrange at this fragile site to give rise to Ewing sarcoma. This adds to the mounting evidence against individuals with fragile sites being predisposed to developing cancer.  相似文献   

10.
Summary The distribution and frequency of aphidicolin-induced common fragile sites were studied in chromosomes of cultured skin fibroblasts and PHA-stimulated lymphocytes from five normal individuals; 0.2 M aphidicolin was added for the last 26 h of culture. Skin fibroblasts from five fra(X)-positive patients were also studied in the same manner. Fragile sites most frequently found in fibroblasts from normal individuals were 3q26.2, 7q11.23, 16q23, 1p31, 10q11.2, 12q23 and 7q31, whereas those in lymphocytes from the same individuals were 3p14, 16q23, Xp22, 7q32 and 14q24. The distribution of fragile sites in fibroblasts from fra(X)-positive patients was essentially identical with that in normal individuals. The average number of gaps and breaks in 100 metaphases was 36.8 in fibroblasts from normal individuals, 113.8 in those from fra(X)-positive patients, and 279 in lymphocytes from normal individuals. Their rates of chromosome-type breaks and gaps were 7.9%, 29.7% and 54.5%, respectively. Thus, the distribution and frequency of aphidicolin-induced fragile sites were different between skin fibroblasts and lymphocytes, possibly reflecting differences in their DNA replication sequence or gene activity.  相似文献   

11.
Chromosomal translocations and deletions are among the major events that initiate neoplasia. For lymphoid chromosomal translocations, misrecognition by the RAG (recombination activating gene) complex of V(D)J recombination is one contributing factor that has long been proposed. The chromosomal translocations involving LMO2 (t(11;14)(p13;q11)), Ttg-1 (t(11;14)(p15;q11)), and Hox11 (t(10;14)(q24;q11)) are among the clearest examples in which it appears that a D or J segment has synapsed with an adventitious heptamer/nonamer at a gene outside of one of the antigen receptor loci. The interstitial deletion at 1p32 involving SIL (SCL-interrupting locus)/SCL (stem cell leukemia) is a case involving two non-V(D)J sites that have been suggested to be V(D)J recombination mistakes. Here we have used our human extrachromosomal substrate assay to formally test the hypothesis that these regions are V(D)J recombination misrecognition sites and, more importantly, to quantify their efficiency as V(D)J recombination targets within the cell. We find that the LMO2 fragile site functions as a 12-signal at an efficiency that is only 27-fold lower than that of a consensus 12-signal. The Ttg-1 site functions as a 23-signal at an efficiency 530-fold lower than that of a consensus 23-signal. Hox11 failed to undergo recombination as a 12- or 23-signal and was at least 20,000-fold less efficient than consensus signals. SIL has been predicted to function as a 12-signal and SCL as a 23-signal. However, we find that SIL actually functions as a 23-signal. These results provide a formal demonstration that certain chromosomal fragile sites can serve as RAG complex targets, and they determine whether these sites function as 12- versus 23-signals. These results quantify one of the three major factors that determine the frequency of these translocations in T-cell acute lymphocytic leukemia.  相似文献   

12.
Summary Aphidicolin, a specific inhibitor of DNA polymerase , is known to induce chromosomal aberrations. At concentrations that did not greatly affect mitotic index, aphidicolin induced a striking number of chromosome gaps and breaks distributed in a highly nonrandom manner in cultured human lymphocytes. Specific chromosome bands, especially 2q31, 3p14, 6q26, 7q32, 16q23, and Xp22 were preferentially damaged in lymphocytes from each of 12 subjects studied. Total and site-specific damage was dose dependent and greatly increased when folic acid was removed from the medium. The sites most sensitive to aphidicolin damage include the hot spots seen under conditions of thymidylate stress and in studies of spontaneous chromosomal damage. The fragile X site, which can also be induced by thymidylate stress, was not induced by aphidicolin in lymphocytes, suggesting a separate mechanism for its induction. Aphidicolin represents a novel tool for detection of hot spots on human chromosomes through the mechanism of DNA polymerase inhibition. The hot spots induced by aphidicolin represent a new class of fragile sites which we term common fragile sites.  相似文献   

13.
Schizophrenia is a common and complex mental disorder. Cytogenetic and molecular studies have shown that genetic factors play an important role in the etiology of schizophrenia. As a preliminary step in the search for chromosomal location of a susceptible gene predisposing to schizophrenia, cytogenetic screening patients might be useful. Therefore, this report is aimed at studying the relationship between chromosomal fragile sites (FS: gaps, breaks, triradial figures, and several rearrangements) and the etiology of schizophrenia. Because of this, we were compared the frequencies of folate-sensitive FS from schizophrenic patients and normal individuals in short-term whole blood cultures. The rate of FS expression in the patients was considerably higher than in the controls. We determined 15 common FS (cFS) (1q21, 1q32, 2q21, 2q31, 3p14, 4q31, 5q31, 6q21, 6q26, 7q22, 7q32, 10q22, 13q32, Xp22 and Xq22), 6 rare FS (rFS) (6p21, 8q22, 11q23, 12q24, 16q22, and Xq26) and 2 previously unknown FS (3p25 and 5q22). Among these expressed FS, there was a significantly higher frequency of 12 FS at 2q31, 3p25, 3p14, 5q31, 6q21, 7q22, 7q32, 10q22, 11q23, 12q24, Xq22 and Xq26 in patient group than in controls by chi2 test (P = between 0.0001 to 0.036). Sites 3p14, 5q31 and 7q22 were also the most frequently observed cFS. Males exhibited twice as many FS as females, but no age effects were observed. The potential relationship between increased FS frequency and the occurrence of schizophrenia in these patients is discussed.  相似文献   

14.
When supplied to human leukocytes grown in complete medium (RPMI 1640), DAPI, a nonintercalating compound specific for the AT bases of DNA, induces the appearance of three common fragile sites (CFRA) mapped at 1q42, 2q31, and 7p22. The same treatment with DAPI in a medium deficient in folic acid and thymidine (199 M) considerably increases the expression of these sites and induces the appearance of a further 16 CFRA sites at 1q24, 2p25, 4p16, 4q25, 5p15.3, 6p21.3, 6p25, 6q13, 9p24, 16p13.3, 16q23, 17q21, 18q23, 20q13.1, 21q21, and Xq28. The results point to the existence of a synergism between DAPI and thymidylate-stress culture conditions in inducing site-specific chromosome damage. The results also agree with the hypothesis that DAPI-induced CFRA sites are DNA late-replicating chromosomal areas rich in AT bases.  相似文献   

15.
Family study of common fragile sites   总被引:2,自引:1,他引:1  
Summary The frequency of folate-sensitive common fragile sites (1p31, 1q44, 3p14, 3q26.2, 6q26, 16q23, Xp22.3) was determined in 19 healthy individuals from four families. The individuals consisted of 12 males and 7 females from 1 to 59 years of age. The frequency showed intrafamilial variation, but we were unable to demonstrate that the frequency was inherited in a Mendelian codominant fashion. In eight subjects whose chromosome 3 homologues could be distinguished by Q-band polymorphism, breakages at 3p14 occurred with equal frequencies on the homologues. Our study suggests that common fragile sites are a part of normal chromosome structure, and the frequency of their expression largely depends on environmental factors.  相似文献   

16.
Summary Three fragile sites 2q13, 12q13, and 17p12 were found in one family. In the index case, who was first investigated in 1969 for low birth weight and bilateral inguinal hernia, three tissues were examined, blood, marrow, and skin. Three of the family have been reinvestigated after 17 years. Cultures for sister chromatid exchange (SCE) and the effects of aphidicolin, fluorodeoxyuridine (FUdR), bromodeoxyuridine (BrdU), and methotrexate on the frequency of the fragilities were studied. The mother of the index case who is an obligate carrier for the fragile 2q13 does not express it in folate/thymidine deficient medium. Further studies on her using a lymphoblastoid cell line, showed that there was a reduced level of fragility of 12q13 and 17p12 in B-lymphocytes compared to T-lymphocytes. Excess thymidine and FUdR when added to the lymphoblastoid cell line did not induce the 2q13. These studies also confirm the induction of a range of common fragile sites by treatment with aphidicolin, showing in addition homozygosity for at least 3p14, 6q26, 16q23, and Xp22. There were no detectable increases in the SCE rate between individuals with fragile sites and the five controls tested. There was no history of cancer or phenotypic abnormalities in the family.  相似文献   

17.
Schizophrenia is a common and complex mental disorder. Cytogenetic and molecular studies have shown that genetic factors play an important role in the etiology of schizophrenia. As a preliminary step in the search for chromosomal location of a susceptible gene predisposing to schizophrenia, cytogenetic screening of patients might be useful. Therefore, this report is aimed at studying the relationship between chromosomal fragile sites (FS) (gaps, breaks, triradial figures, and several rearrangements) and the etiology of schizophrenia. Because of this, we compared the frequencies of folate-sensitive FS from schizophrenic patients and normal individuals in short-term whole-blood cultures. The rate of FS expression in the patients was considerably higher than in the controls. We determined 15 common FS (cFS) (1q21, 1q32, 2q21, 2q31, 3p14, 4q31, 5q31, 6q21, 6q26, 7q22, 7q32, 10q22, 13q32, Xp22, and Xq22), six rare FS (rFS) (6p21, 8q22, 11q23, 12q24, 16q22, and Xq26), and two previously unknown FS (3p25 and 5q22). Among these expressed FS, there was a significantly higher frequency of 12 FS at 2q31, 3p25, 3p14, 5q31, 6q21, 7q22, 7q32, 10q22, 11q23, 12q24, Xq22, and Xq26 in patient group than in controls by x 2-test (P between 0.0001 to 0.036). Sites 3p14, 5q31, and 7q22 were also the most frequently observed cFS. Males exhibited twice as many FS as females, but no age effects were observed. The potential relationship between increased FS frequency and the occurrence of schizophrenia in these patients is discussed. The text was submitted by the authors in English.  相似文献   

18.
Expression of folate-sensitive fragile sites in lymphocyte chromosomes   总被引:1,自引:1,他引:0  
Summary The expression of folate-sensitive fragile sites (FS) was analyzed using MTX as a fragility inducer in seven normal subjects [four unrelated persons and three members of one family (father, mother, and son)]; a woman heterozygous for fra Xq27.3 with a 47,XXX karyotype; and her son, affected by the fra-X syndrome. The mean expression of chromosome lesions (CL) other than Xq27.3 was 70.1% (686CL in 978 metaphases), and the coincidence between CL and FS was 68.9%. We propose six new c-fra sites: bands 4q33 and 11q22 because they were found in two members of the same family; band 13q32 because it had a frequency of expression of 3% of metaphases; and bands 3p13, 8q21, and Xq21 because they were observed in four of the nine individuals studied.  相似文献   

19.
Summary A kindred is described in which six members have a fragile site at 12q13. This fragile site was found to be suppressed by folic acid and thymidine in lymphocyte culture. An updated classification of known fragile sites is presented.  相似文献   

20.
Summary Lymphocyte cultures from man, gorilla, and chimpanzee were treated with 5-azacytidine and 5-azadeoxycytidine. These cytidine analogues induce common fragile sites in the chromosome bands 1q42 and 19q13 of man. A rare fragile site is induced by 5-azadeoxycytidine in the band 1q24. The optimum conditions required for inducing these new fragile sites were determined by a series of experiments. The common fragile site in human chromosome 1q42 also exists in the gorilla and chimpanzee in the homologous band 1q32. The fragile site in human chromosome 19q13 was demonstrated in the gorilla in the homologous chromosome band 20q13. These are the first examples found of evolutionary highly conserved fragile sites in homologous chromosome bands in related primate species. The interaction between 5-azacytidine, 5-azadeoxycytidine, and chromosomal DNA; the evolutionary conservation of genes located within or closely adjacent to the fragile sites in the chromosome 1 of Hominoidea; and the phylogenetic origin of the two new common fragile sites are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号