首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Despite its well-described role in female affiliation, the influence of oxytocin on male pairbonding is largely unknown. However, recent human studies indicate that this nonapeptide has a potent influence on male behaviors commonly associated with monogamy. Here we investigated the distribution of oxytocin receptors (OTR) throughout the forebrain of the socially monogamous male prairie vole (Microtus ochrogaster). Because males vary in both sexual and spatial fidelity, we explored the extent to which OTR predicted monogamous or non-monogamous patterns of space use, mating success and sexual fidelity in free-living males. We found that monogamous males expressed higher OTR density in the nucleus accumbens than non-monogamous males, a result that mirrors species differences in voles with different mating systems. OTR density in the posterior portion of the insula predicted mating success. Finally, OTR in the hippocampus and septohippocampal nucleus, which are nuclei associated with spatial memory, predicted patterns of space use and reproductive success within mating tactics. Our data highlight the importance of oxytocin receptor in neural structures associated with pairbonding and socio-spatial memory in male mating tactics. The role of memory in mating systems is often neglected, despite the fact that mating tactics impose an inherently spatial challenge for animals. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating pairbonding and mating tactics is crucial to fully appreciate the suite of factors driving mating systems. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

2.
Understanding the neurobiological substrates regulating normal social behaviours may provide valuable insights in human behaviour, including developmental disorders such as autism that are characterized by pervasive deficits in social behaviour. Here, we review the literature which suggests that the neuropeptides oxytocin and vasopressin play critical roles in modulating social behaviours, with a focus on their role in the regulation of social bonding in monogamous rodents. Oxytocin and vasopressin contribute to a wide variety of social behaviours, including social recognition, communication, parental care, territorial aggression and social bonding. The effects of these two neuropeptides are species-specific and depend on species-specific receptor distributions in the brain. Comparative studies in voles with divergent social structures have revealed some of the neural and genetic mechanisms of social-bonding behaviour. Prairie voles are socially monogamous; males and females form long-term pair bonds, establish a nest site and rear their offspring together. In contrast, montane and meadow voles do not form a bond with a mate and only the females take part in rearing the young. Species differences in the density of receptors for oxytocin and vasopressin in ventral forebrain reward circuitry differentially reinforce social-bonding behaviour in the two species. High levels of oxytocin receptor (OTR) in the nucleus accumbens and high levels of vasopressin 1a receptor (V1aR) in the ventral pallidum contribute to monogamous social structure in the prairie vole. While little is known about the genetic factors contributing to species-differences in OTR distribution, the species-specific distribution pattern of the V1aR is determined in part by a species-specific repetitive element, or 'microsatellite', in the 5' regulatory region of the gene encoding V1aR (avpr1a). This microsatellite is highly expanded in the prairie vole (as well as the monogamous pine vole) compared to a very short version in the promiscuous montane and meadow voles. These species differences in microsatellite sequence are sufficient to change gene expression in cell culture. Within the prairie vole species, intraspecific variation in the microsatellite also modulates gene expression in vitro as well as receptor distribution patterns in vivo and influences the probability of social approach and bonding behaviour. Similar genetic variation in the human AVPR1A may contribute to variations in human social behaviour, including extremes outside the normal range of behaviour and those found in autism spectrum disorders. In sum, comparative studies in pair-bonding rodents have revealed neural and genetic mechanisms contributing to social-bonding behaviour. These studies have generated testable hypotheses regarding the motivational systems and underlying molecular neurobiology involved in social engagement and social bond formation that may have important implications for the core social deficits characterizing autism spectrum disorders.  相似文献   

3.

Background

Sex differences in spatial memory function have been reported with mixed results in the literature, with some studies showing male advantages and others showing no differences. When considering estrus cycle in females, results are mixed at to whether high or low circulating estradiol results in an advantage in spatial navigation tasks. Research involving humans and rodents has demonstrated males preferentially employ Euclidean strategies and utilize geometric cues in order to spatially navigate, whereas females employ landmark strategies and cues in order to spatially navigate.

Methodology/Principal Findings

This study used the water-based snowcone maze in order to assess male and female preference for landmark or geometric cues, with specific emphasis placed on the effects of estrus cycle phase for female rat. Performance and preference for the geometric cue was examined in relation to total hippocampal and hippocampal subregions (CA1&2, CA3 and dentate gyrus) volumes and entorhinal cortex thickness in order to determine the relation between strategy and spatial performance and brain area size. The study revealed that males outperformed females overall during training trials, relied on the geometric cue when the platform was moved and showed significant correlations between entorhinal cortex thickness and spatial memory performance. No gross differences in behavioural performance was observed within females when accounting for cyclicity, and only total hippocampal volume was correlated with performance during the learning trials.

Conclusions/Significance

This study demonstrates the sex-specific use of cues and brain areas in a spatial learning task.  相似文献   

4.
Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network.  相似文献   

5.
Social interest reflects the motivation to approach a conspecific for the assessment of social cues and is measured in rats by the amount of time spent investigating conspecifics. Virgin female rats show lower social interest towards unfamiliar juvenile conspecifics than virgin male rats. We hypothesized that the neuropeptide oxytocin (OT) may modulate sex differences in social interest because of the involvement of OT in pro-social behaviors. We determined whether there are sex differences in OT system parameters in the brain and whether these parameters would correlate with social interest. We also determined whether estrus phase or maternal experience would alter low social interest and whether this would correlate with changes in OT system parameters. Our results show that regardless of estrus phase, females have significantly lower OT receptor (OTR) binding densities than males in the majority of forebrain regions analyzed, including the nucleus accumbens, caudate putamen, lateral septum, bed nucleus of the stria terminalis, medial amygdala, and ventromedial hypothalamus. Interestingly, male social interest correlated positively with OTR binding densities in the medial amygdala, while female social interest correlated negatively with OTR binding densities in the central amygdala. Proestrus/estrus females showed similar social interest to non-estrus females despite increased OTR binding densities in several forebrain areas. Maternal experience had no immediate or long-lasting effects on social interest or OT brain parameters except for higher OTR binding in the medial amygdala in primiparous females. Together, these findings demonstrate that there are robust sex differences in OTR binding densities in multiple forebrain regions of rats and that OTR binding densities correlate with social interest in brain region- and sex-specific ways.  相似文献   

6.
Social behavior is regulated by conserved neural networks across vertebrates. Variation in the organization of neuropeptide systems across these networks is thought to contribute to individual and species diversity in network function during social contexts. For example, oxytocin (OT) is an ancient neuropeptide that binds to OT receptors (OTRs) in the brain and modulates social and reproductive behavior across vertebrate species, including humans. Central OTRs exhibit extraordinarily diverse expression patterns that are associated with individual and species differences in social behavior. In voles, OTR density in the nucleus accumbens (NAc)—a region important for social and reward learning—is associated with individual and species variation in social attachment behavior. Here we test whether OTRs in the NAc modulate a social salience network (SSN)—a network of interconnected brain nuclei thought to encode valence and incentive salience of sociosensory cues—during a social context in the socially monogamous male prairie vole. Using a selective OTR antagonist, we test whether activation of OTRs in the NAc during sociosexual interaction and mating modulates expression of the immediate early gene product Fos across nuclei of the SSN. We show that blockade of endogenous OTR signaling in the NAc during sociosexual interaction and mating does not strongly modulate levels of Fos expression in individual nodes of the network, but strongly modulates patterns of correlated Fos expression between the NAc and other SSN nuclei.  相似文献   

7.
Paternal care is necessary for the healthy development of social behavior in monogamous rodents and social recognition underpins social behavior in these animals. The effects of paternal care on the development of social recognition and underlying neuroendocrine mechanisms, especially the involvement of oxytocin and estrogen pathways, remain poorly understood. We investigated the effects of paternal deprivation (PD: father was removed from neonatal pups and mother alone raised the offspring) on social recognition in mandarin voles (Microtus mandarinus), a socially monogamous rodent. Paternal deprivation was found to inhibit the development of social recognition in female and male offspring according to a habituation–dishabituation paradigm. Paternal deprivation resulted in increased inactivity and reduced investigation during new encounters with other animals. Paternal deprivation reduced oxytocin receptor (OTR) and estrogen receptor α (ERα) mRNA expression in the medial amygdala and nucleus accumbens. Paternal deprivation reduced serum oxytocin (OT) concentration in females, but had no effect on males. Our results provide substantial evidence that paternal deprivation inhibits the development of social recognition in female and male mandarin voles and alters social behavior later in life. This is possibly the result of altered expression of central OTR and ERα and serum OT levels caused by paternal deprivation.  相似文献   

8.
Male rodents behave differently toward pups because of different sexual and/or paternal experiences; however, the mechanisms underlying these responses are not well understood. Using socially monogamous mandarin voles (Microtus mandarinus) we investigated the behavioral responses of males with different reproductive experiences (virgin males, paired males and new fathers) to new born pups. Central levels of neuropeptide oxytocin (OT), tyrosine hydroxylase (TH), as well as oxytocin receptor (OTR), dopamine 1-type receptor (D1R) and dopamine 2-type receptor (D2R) mRNA expression in the nucleus accumbens and medial amygdala were also measured in these males. Our data showed that new fathers exhibited more approaching behavior and contained more OT-immunoreactive and TH-immunoreactive neurons. In addition to increased OTR mRNA expression in the nucleus accumbens and medial amygdala, new fathers had higher D1R and D2R mRNA expression in the nucleus accumbens, and less D1R and D2R mRNA expression in the medial amygdala than paired males. These results demonstrate that males with different reproductive experiences display different behavioral responses to pups and that these differences are associated with altered OT and dopamine, and their receptors in specific brain regions.  相似文献   

9.
The goal of our study was to explore the effect of social isolation stress of varying durations on the plasma oxytocin (OT), messenger ribonucleic acid (mRNA) for oxytocin receptor (OTR), plasma arginine vasopressin (AVP) and mRNA for V1a receptor of AVP (V1aR) expression in the hypothalamus and heart of socially monogamous female and male prairie voles (Microtus ochrogaster). Continuous isolation for 4 weeks (chronic isolation) increased plasma OT level in females, but not in males. One hour of isolation every day for 4 weeks (repeated isolation) was followed by a significant increase in plasma AVP level. Chronic isolation, but not repeated isolation, significantly decreased OTR mRNA in the hypothalamus and heart in both sexes. Chronic isolation significantly decreased cardiac V1aR mRNA, but no effect on hypothalamic V1aR mRNA expression. We did not find a gender difference within repeated social isolation groups. The results of the present study reveal that although chronic social isolation can down-regulate gene expression for the OTR in both sexes, the release of the OT peptide was increased after chronic isolation only in females, possibly somewhat protecting females from the negative consequences of isolation. In both sexes repeated, but not chronic, isolation increased plasma AVP, which could be permissive for mobilization and thus adaptive in response to a repeated stressor. The differential effects of isolation on OT and AVP systems may help in understanding mechanisms through social interactions can be protective against emotional and cardiovascular disorders.  相似文献   

10.
Social environments experienced at different developmental stages profoundly shape adult behavioural and neural phenotypes, and may have important interactive effects. We asked if social experience before and after weaning influenced adult social cognition in male prairie voles. Animals were raised either with or without fathers and then either housed singly or in sibling pairs. Males that were socially deprived before (fatherless) and after (singly housed) weaning did not demonstrate social recognition or dissociate spatial from social information. We also examined oxytocin and vasopressin receptors (OTR and V1aR) in areas of the forebrain associated with social behaviour and memory. Pre- and post-wean experience differentially altered receptor expression in several structures. Of note, OTR in the lateral septum—an area in which oxytocin inhibits social recognition—was greatest in animals that did not clearly demonstrate social recognition. The combination of absentee fathers on V1aR in the retrosplenial cortex and single housing on OTR in the septohippocampal nucleus produced a unique phenotype previously found to be associated with poor reproductive success in nature. We demonstrate that interactive effects of early life experiences throughout development have tremendous influence over brain–behaviour phenotype and can buffer potentially negative outcomes due to social deprivation.  相似文献   

11.
Estrogens significantly impact spatial memory function in mammalian species. Songbirds express the estrogen synthetic enzyme aromatase at relatively high levels in the hippocampus and there is evidence from zebra finches that estrogens facilitate performance on spatial learning and/or memory tasks. It is unknown, however, whether estrogens influence hippocampal function in songbirds that naturally exhibit memory-intensive behaviors, such as cache recovery observed in many corvid species. To address this question, we examined the impact of estradiol on spatial memory in non-breeding Western scrub-jays, a species that routinely participates in food caching and retrieval in nature and in captivity. We also asked if there were sex differences in performance or responses to estradiol. Utilizing a combination of an aromatase inhibitor, fadrozole, with estradiol implants, we found that while overall cache recovery rates were unaffected by estradiol, several other indices of spatial memory, including searching efficiency and efficiency to retrieve the first item, were impaired in the presence of estradiol. In addition, males and females differed in some performance measures, although these differences appeared to be a consequence of the nature of the task as neither sex consistently out-performed the other. Overall, our data suggest that a sustained estradiol elevation in a food-caching bird impairs some, but not all, aspects of spatial memory on an innate behavioral task, at times in a sex-specific manner.  相似文献   

12.
Increasing evidence suggests that the time course of advantageous versus deleterious effects of stress on physiologic function is also apparent in some brain functions, including learning and memory. This article reviews the effects of chronic stress on behavioral performance and, more importantly, shows that sex of the subject, as well as duration and intensity of stress, is an important determinant of the functional/behavioral, neurochemical, and anatomical consequences of the stress. Following chronic stress (7-28 days of restraint, 6 h/day), male and female rats were tested on a visual memory task (object recognition) and two spatial memory tasks (object placement and radial arm maze). At 21 days, stress impaired males on all tasks while females were either enhanced (spatial memory tasks) or not impaired (nonspatial memory tasks). Additionally, the influence of the hypothalamic-pituitary-adrenocortical axis in mediating the sex-specific responses to stress is considered. Behavioral and neurochemical assessments following chronic stress in ovariectomized females, with and without estradiol, suggest that estrogen exerts both organizational and activational influences on the observed sex differences in response to stress. Furthermore, stress differentially affected central transmitter levels in the frontal cortex, hippocampus, and amygdala depending on sex. The possible role of these sex-specific changes in neurotransmitter levels in mediating behavioral differences in response to stress is discussed. While these results are thus far limited to a few studies and require both further investigation and verification, chronic stress appears to be associated with distinct, sex-differentiated behavioral/cognitive and neurochemical responses. We conclude that sex differences must be taken into account when investigating or describing stress and associated sequalae.  相似文献   

13.
14.
Previous studies have revealed that the neuropeptide hormone oxytocin (OT) has developmental effects on subsequent social behavior and on mechanisms underlying social behavior such as OT neurons and estrogen receptor alpha. This suggests that OT might also have developmental effects on neural responses to social stimuli. This was tested in socially monogamous prairie voles (Microtus ochrogaster) by manipulating OT on the first day of life and then assessing the response to a heterosexual pairing in adulthood. The response to cohabitation was assessed by quantifying neural activation in regions of the brain associated with sociosexual behavior and anxiety using c-Fos immunoreactivity. Additionally, immunocytochemistry was used to label OT and vasopressin neurons and plasma was assayed for both neuropeptides. Treatment effects were evident in females, but not in males. Blockade of OT receptors with an OT antagonist on the first day of life resulted in neural activation of the central amygdala in response to a pairing with a novel male in adulthood. The central amygdala does not normally express c-Fos after a heterosexual pairing in reproductively na?ve prairie voles. Treatment effects also were observed in vasopressin immunoreactivity in the SON with OT-treated females showing a decrease.  相似文献   

15.
Although many species form socially monogamous pair bonds, relevant neural mechanisms have been described for only a single species, the prairie vole (Microtus ochrogaster). In this species, pair bonding is strongly dependent upon the nonapeptides oxytocin (OT) and vasopressin, in females and males, respectively. Because monogamy has evolved many times in multiple lineages, data from additional species are required to determine whether similar peptide mechanisms modulate bonding when monogamy evolves independently. Here we test the hypothesis that OT-like receptor activation is required for pair bond formation in the socially monogamous zebra finch (Taeniopygia guttata). Males and females were administered chronic intracerebroventricular infusions of saline or an OT receptor antagonist and were observed twice daily for 3 days in a colony environment. A variety of affiliative, aggressive and other behaviours were quantified. The antagonist produced significant and selective effects on pair bonding (latency to pair; number of sessions paired; stable pairing) and the associated behaviour of allopreening. Importantly, findings for males follow the trends of females; this yields main effects of treatment in two-way ANOVAs, although within-sex analyses are significant only for females. These data provide evidence for both convergent evolution and species diversity in the neuroendocrine mechanisms of pair bonding.  相似文献   

16.
Brain plasticity and adult neurogenesis may play a role in many ecologically important processes including mate recognition, song learning and production, and spatial memory processing. In a number of species, both physical and social environments appear to influence attributes (e.g., volume, neuron number, and neurogenesis) of particular brain regions. The hippocampus in particular is well known to be especially sensitive to such changes. Although social grouping in many taxa includes the formation of male and female pairs, most studies of the relationship between social environment and the hippocampus have typically considered only solitary animals and those living in same‐sex groups. Thus, the aim of this study was to compare the volume of the hippocampal formation, the total number of hippocampal neurons, and the number of immature neurons in the hippocampus (as determined by doublecortin expression) in mountain chickadees (Poecile gambeli) housed in groups of males and females, male–female pairs, same sex pairs of either males or females, and as solitary individuals. The different groups were visually and physically, but not acoustically, isolated from each other. We found no significant differences between any of our groups in hippocampal volume, the total number of hippocampal neurons, or the number of immature neurons. Our results thus provided no support to the hypothesis that social group composition and/or size have an effect on hippocampal morphology and neurogenesis. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70:538–547, 2010  相似文献   

17.
Unsaturated fatty acids (UFAs), including omega-3, omega-6 polyunsaturated and omega-9 monounsaturated fatty acids, are essential components and modulators of neuromembranes and may affect various aspects of physiology and cognition. UFAs are suggested to positively affect spatial learning and memory and also to diminish the negative consequences of physiological stress on cognitive abilities. Due to pronounced sex differences in neurophysiological functions, we hypothesize that these UFA-related effects might differ between male and female individuals. We therefore determined the effects of dietary UFAs on cognitive performances in a radial-Y-maze in male and female guinea pigs in relation to saliva cortisol concentrations, a marker for physiological stress. Animals were assigned to four treatment groups and maintained on diets enriched in either chia seeds (omega-3), walnuts (omega-6), or peanuts (omega-9), or a control diet. Female learning abilities throughout a three-day learning phase were positively affected by omega-3 and omega-9, as determined by a decreasing latency to pass the test and the number of conducted errors, while males generally showed distinct learning abilities, irrespective of the diet. A sex difference in learning performances was found in the control group, with males outperforming females, which was not detected in the UFA-supplemented groups. This was paralleled by significantly increased saliva cortisol concentrations in males throughout the cognition test compared to females. Three days after this learning phase, UFA-supplemented males and all females showed unchanged performances, while control males showed an increased latency and therefore an impaired performance. These results were corroborated by pronounced differences in the plasma UFA-status, corresponding to the different dietary treatments. Our findings indicate sex-specific effects of dietary UFAs, apparently enhancing spatial learning abilities only in females and protecting males from long-term memory impairment, while male learning abilities seem to be more strongly affected by an acute physiological stress response to the maze task.  相似文献   

18.
Spatial working memory in rats: no differences between the sexes   总被引:6,自引:0,他引:6  
In a number of mammalian species, males appear to have superior spatial abilities to females. The favoured explanations for this cognitive difference are hormonal, with higher testosterone levels in males than females leading to better spatial performance, and evolutionary, where sexual selection has favoured males with increased spatial abilities for either better navigational skills in hunting or to enable an increased territory size. However, an alternative explanation for this sex difference focuses on the role of varying levels of oestrogen in females in spatial cognition (the 'fertility and parental care' hypothesis). One possibility is that varying oestrogen levels result in variation in spatial learning and memory so that, when tested across the oestrous cycle, females perform as well as males on days of low oestrogen but more poorly on days of high oestrogen. If day in the oestrous cycle is not taken into account then, across an experiment, any sex differences found would always produce male superiority. We used a spatial working memory task in a Morris water maze to test the spatial learning and memory abilities of male and female rats. The rats were tested across a number of consecutive days during which the females went through four oestrous cycles. We found no overall sex differences in latencies to reach a submerged platform in a Morris water maze but, on the day of oestrus (low oestrogen), females took an extra swim to learn the platform's location (a 100% increase over the other days in the cycle). Female swim speed also varied across the oestrous cycle but females were no less active on the day of oestrus. These results oppose the predictions of the fertility and parental care hypothesis.  相似文献   

19.
Monogamous species are usually considered to be less likely to exhibit sex differences in behavior or brain structure. Most previous studies examining sex differences in stress hormone responses have used relatively sexually dimorphic species such as rats. We examined the stress hormone responses of monogamous California mice (Peromyscus californicus) to resident-intruder tests. We also tested males and females under different photoperiods, because photoperiod has been shown to affect both aggression and stress hormone responses. Females, but not males showed a significant increase in corticosterone levels immediately following a resident-intruder test. Males but not females showed elevated corticosterone levels under short days. Females tested in aggression tests also showed a significant increase in plasma oxytocin levels, but only when housed in long days. This was consistent with our observation that females but not males had more oxytocin positive cells in the paraventricular nucleus (PVN) when housed under long days. Our data show that sex differences in glucocorticoid responses identified in other rodents are present in a monogamous species.  相似文献   

20.
It is well established that spatial memory is dependent on the hippocampus in both mammals and birds. As memory capacity can fluctuate on a temporal basis, it is important to understand the mechanisms mediating such changes. It is known that early memory‐dependent experiences in young animals result in hippocampal enlargement and in increased neurogenesis, including cell proliferation and neuron survival. It is less clear, however, whether temporal changes in spatial memory are also associated with changes in hippocampal anatomy and cell proliferation in fully grown and experienced adult animals. In a previous study, we experimentally demonstrated that socially subordinate mountain chickadees (Poecile gambeli) showed inferior spatial memory performance compared to their dominant group mates, in the absence of significant differences in baseline corticosterone levels. Here we investigated whether these differences in memory between dominant and subordinate birds were associated with changes in the hippocampus. Following memory tests, chickadees were injected with 5‐bromo‐2′‐deoxyuridine to label dividing cells and sacrificed 2 days after the injections. We found no significant differences in volume or the total number of neurons in the hippocampal formation between dominant and subordinate chickadees, but subordinate birds had significantly lower cell proliferation rates in the ventricular zone adjacent to both the hippocampus and mesopallium compared to the dominants. Individuals, which performed better on spatial memory tests tended to have higher levels of cell proliferation. These results suggest that social status can affect cell proliferation rates in the ventricular zone and support the hypothesis that neurogenesis might be involved in memory function in adult animals. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号