首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Age‐stage, two‐sex life tables of the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), reared on cucumber (Cucumis sativus L.), sponge gourd (Luffa cylindrica Roem) and a carrot medium (mashed Daucus carota L. mixed with sucrose and yeast hydrolysate) were constructed under laboratory conditions at 25 ± 1°C, 65%± 0.5% relative humidity, and a photoperiod 12 : 12 h (L : D). The intrinsic rates of increase of B. cucurbitae were 0.144 6, 0.141 2 and 0.068 8 days on cucumber, sponge gourd, and carrot medium, respectively. The highest net reproduction rate was 172 offspring per fly reared on sponge gourd. The mean generation times of B. cucurbitae ranged from 34 days reared on cucumber to 56 days reared on carrot medium. The life history raw data was analyzed using the traditional female age‐specific life table and compared to results obtained using the age‐stage, two‐sex life table. When the age‐specific female life table is applied to an age‐stage‐structured two‐sex population, survival and fecundity curves will be improperly manipulated due to an inability to include variation in preadult development time. We discussed different interpretations of the relationship between the net reproductive rate and the intrinsic rate of increase to clarify possible misunderstanding in the literature.  相似文献   

2.
【背景】瓜实蝇是一种重要的世界性检疫害虫,广泛分布在我国的热带、亚热带地区。在室内和田间测定了液体植物保护膜对瓜实蝇的控制效能,并初步探索了该保护膜的作用方式,以期为瓜实蝇的绿色防控提供一定的技术支撑。【方法】测定了应用保护膜后瓜实蝇的产卵、存活以及对苦瓜的为害率。【结果】保护膜显著影响了瓜实蝇产卵、存活以及选择性。随着保护膜浓度的升高,瓜实蝇的存活率和在供试苦瓜段上的产卵量逐渐下降,但300和400倍保护膜之间的差异不显著。当浓度达到400倍时产卵量最低,为0.33粒,死亡率最高,约为50%;室内研究发现保护膜可持续影响瓜实蝇产卵5 d;此外,通过将保护膜应用在损伤的苦瓜上,发现保护膜并没有抑制瓜实蝇产卵。在田间,研究发现苦瓜的果长影响了保护膜的应用效能,2种果长的苦瓜应用保护膜后12~14 cm苦瓜的被害率显著低于6~8 cm苦瓜的被害率。【结论与意义】400倍的植物液体保护膜是防治瓜实蝇的最佳浓度,应用时间建议每4 d一次。保护膜最合适的应用时期为果长发育至12~14 cm时,即生长后期。施用保护膜时一定均匀,且在寄主果实受到损伤时不宜喷施保护膜。  相似文献   

3.
In Pakistan and all over the world, the Peach Fruit Fly (PFF), Bactrocera zonata (Saunders.) and the Melon Fruit Fly (MFF), Bactrocera cucurbitae (Coquillett.) are considered severe and polyphagous insect pests for various fruits and vegetables. The current study was conducted to check the Laboratory preference and performance of B. cucurbitae and B. zonata on selected Fruits Citrus (Citrus sinensis), Apple (Malus domestica), Banana (Musa acuminate), and vegetable, Sponge gourd (luffa aegyptiaca), Bitter gourd (Momordica charantia) Pumpkin (Cucurbita moschata) under laboratory conditions. The study showed that Sponge Gourd was the preferable host with the mean pupae resurgence of (242.33), followed by Bitter Gourd (78.333) among selected vegetables. At the same time, among fruits, a banana was the preferable host with mean pupae resurgence (204.33), followed by orange (158.33). The pumpkin and apple was the least preferable host for both B. cucurbitae and B. zonata, with mean pupae resurgence (35.667) and (79.000), respectively. Furthermore, the study showed that Banana was the preferable host for B. Zonata among intact and infested fruits, whereas B. cucurbitaee showed the most preference to Bitter gourd among intact and infested vegetables showing significantly different results among intact and infested fruits and vegetables. Maximum number of eggs, pupa, female flies, male flies, adult emergence from pupa (flies) and period of pupa of B. zonata and B. cucurbitae on banana and bitter gourd. While, other fruits and vegetables showed the minimum number of eggs, pupa, female flies, male flies, adult emergence from pupa (flies) and period of the pupa. The current study concluded there is a need to evaluate other host plants against these fruit fly species for effective control.  相似文献   

4.
Fruit flies usually harbor diverse communities of bacteria in their digestive systems,which are known to play a significant role in their fitness.However,little information is available on Zeugodacus tau,a polyphagous pest worldwide.This study reports the first extensive analysis of bacterial communities in different life stages and their effect on the development and reproduction of laboratory-reared Z tan.Cultured bacteria were identified using the conventional method and all bacteria were identified by highthroughput technologies(16S ribosomal RNA gene sequencing of V3-V4 region).A total of six bacterial phyla were identified in larvae,pupae,and male and female adult flies,which were distributed into 14 classes,32 orders,58 families and 96 genera.Proteobacteria was the most represented phylum in all the stages except larvae.Enterobacter,Klebsiella,Providencia,and Pseudomonas were identified by conventional and next-generation sequencing analysis in both male and female adult flies,and Enterobacter was found to be the main genus.After being fed with antibiotics from the first instar larvae,bacterial diversity changed markedly in the adult stage.Untreated flies laid eggs and needed 20 days before oviposition while the treated flies showed ovary development inhibited and were not able to lay eggs,probably due to the alteration of the microbiota.These findings provide the cornerstone for unexplored research on bacterial function in Z tau,which will help to develop an environmentally friendly management technique for this kind of harmful insect.  相似文献   

5.
In a series of studies conducted in Hawaii under seminatural conditions, we quantified the response of sexually mature, host‐seeking female melon flies, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), to different types of visual and chemical host‐associated stimuli with the main aim of developing a monitoring device for females. Experiments were conducted using Tangletrap‐coated fruit mimics of either spherical (8 cm diameter) or cylindrical (4.3 cm diameter; 15 cm length) shapes coated with different artificial color pigments both at the ground level and at the tree‐canopy level so as to take into account the foraging behavior of adult melon flies. Females were particularly attracted to objects of spherical shape colored either yellow, white, or orange; these three pigments offered the highest reflectance values. Cucumber (Cucumis sativus L.) (Cucurbitaceae) odor was more attractive to females than odors of three other cultivated host fruit [zucchini, Cucurbita pepo L. var. medullosa Alef. (Cucurbitaceae); papaya, Carica papaya L. (Caricaceae); or tomato Solanum lycopersicum L. (Solanaceae)] or of ivy gourd [Coccinia grandis (L.) Voigt (Cucurbitaceae)], one of the major wild hosts of melon fly in Hawaii. A combination of both visual and olfactory stimuli was needed to elicit high levels of response compared to each stimulus offered alone. We discuss our results in relation to the potential implementation of improved female monitoring and/or attract‐and‐kill strategies for melon flies in Hawaii.  相似文献   

6.
In studies conducted in Hawaii under both greenhouse and field conditions, we evaluated the propensity of melon fly females, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), to alight on either fruit mimics (agar spheres) or host fruit that were or were not occupied by conspecific resident females. We also examined the extent to which occurrence of local enhancement of alighting found in B. cucurbitae females was affected by a variety of factors such as the presence or the absence of host fruit odor (zucchini or ivy gourd), the number of conspecifics present on a host, the degree of isolation of assayed females from other females prior to testing, and the kinds of stimuli (acoustical, visual, olfactory) emanating from conspecifics present on a host mimic. In addition, we asked whether local enhancement might be operative in the food-foraging behavior of melon flies. We found that in a variety of situations, melon fly females alighted in significantly greater numbers at resources (food, fruit mimics, or host fruit) occupied by conspecific females than at unoccupied resources. Such positive influence of resident conspecific females was more pronounced in greenhouse cage assays when one or two rather than four residents were present on a host mimic (but was more pronounced when four rather than one or two residents were present on a host fruit in a field test), and was more evident when test females were grouped with conspecific females than when test females were isolated from conspecific females for 5 days before testing. Rather than acoustical or olfactory stimuli associated with resident conspecific females, the mere physical presence (visual stimulus) of a motionless dead resident melon fly female provided sufficient stimulation for test females to alight in significantly greater numbers at resources occupied by conspecific females than at unoccupied resources. We consider our findings as good evidence of local enhancement in the melon fly and discuss our results in relation to monitoring tactics for adult melon flies.  相似文献   

7.
Melon fly is a serious pest of cucurbits all over the world causing huge losses to yield. However, the only exception is the chayote fruit (Sechium edule) that shows resistance to melon fly infestation. Studies on culture of melon fly indicated the absence of plant traits resisting oviposition on chayote fruit. However, the melon fly was unable to complete its life cycle successfully on chayote showing that factors inhibiting larval development in melon fly could be attributed to biochemical constituents. Studies were, therefore, carried out to compare the biochemical responses of chayote, a melon fly resistant species and bitter gourd, a susceptible species to melon fly infestation with regard to the levels of phenolic acids and activities of the enzymes of phenylpropanoid pathway (PPP) leading to synthesis of lignin. The resistant chayote exhibited significantly higher accumulation of lignin associated with higher activities of phenylalanine ammonia‐lyase (PAL), tyrosine ammonia‐lyase (TAL), cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POD). On the contrary, the susceptible bitter gourd recorded lower activities of PAL, CAD and POD and a decreasing trend of TAL during infestation associated with a lower lignin content. The monomer composition of lignin in the resistant chayote showed twofold higher level of guaiacyl (G) and syringyl (S) units compared to susceptible bitter gourd and the G/S ratio during infestation increased in chayote while decreasing in bitter gourd. The levels of PPP intermediates, p‐coumaric acid was higher in chayote while p‐hydroxy benzoic acid, a chemo‐attractant, was higher in bitter gourd. Incorporation of p‐coumaric acid in the larval diet strongly inhibited larval growth even as p‐hydroxy benzoic acid promoted growth confirming the direct role of p‐coumaric acid in conferring resistance to chayote. The level of salicylic acid, a signal molecule involved in induction of defence response, was higher in chayote compared to bitter gourd. Chayote also exhibited higher level of activity of POD in the phloem exudates compared to bitter gourd. The higher concentration of sugars in exudates of chayote might act like signalling molecules causing activation of plant genes, especially of the phenylpropanoid biosynthesis pathway and possibly produce an osmotic effect inducing resistance against the melon fly. Thus, the study revealed that the resistance in chayote to melon fly infestation is a complex, multi‐layered process in which the activities of PPP enzymes generating phenolic intermediates leading to lignin biosynthesis and the composition of exudates appear to play significant roles. Besides, the study also indicated that different forms of lignin might play a role in the resistance of chayote against melon fly infestation.  相似文献   

8.
Field experiments and surveys were conducted to evaluate the efficacy of releasing Fopius arisanus (Sonan) and Psyttalia fletcheri (Silvestri) parasitoids for suppression of Bactrocera cucurbitae (Coquillett) infesting wild Coccinia grandis L. In 2003 and 2004, P. fletcheri releases combined with natural emergence from wild fly populations resulted in better fly suppression, compared to the control site. While P. fletcheri developed freely on melon fly, F. arisanus was less successful at producing its own progeny, yet causing mortality and a twofold decrease in pupae recovered from ivy gourds. Concurrent releases of both parasitoids exerted a compounded suppressive effect on the melon fly population 2–3 times higher than during the pre-release phase. A similar, less obvious, pattern occurred in 2004, due to reduction of the ivy gourd fruit canopy. In 2005, only P. fletcheri was released, with greatly reduced impact, due to ivy gourd destruction and by growers leaving crop culls in fields, producing large numbers of melon flies unaffected by parasitoid releases.  相似文献   

9.
Bactrocera oleae (Rossi) (Diptera: Tephritidae) is the main pest of olive trees (Olea europaea L.), causing major damages in olive crops. Improvement of mass rearing is a prerequisite for the successful development of large-scale sterile insect technique (SIT) applications. This can be achieved through the enrichment of artificial diets with gut bacteria isolates. We assessed the efficiency of three gut bacteria previously isolated from Ceratitis capitata (Wiedemann), and four isolated from B. oleae, as larval diet additives in both live and inactivated/dead forms. Our results showed that dead Enterobacter sp. AA26 increased pupal weight, whereas both live and dead cells increased pupal and adult production and reduced immature developmental time, indicating that its bacterial cells serve as a direct nutrient source. Live Providencia sp. AA31 improved pupal and adult production, enhanced male survival under stress conditions, and delayed immature development. Dead Providencia sp. AA31, however, did not affect production rates, indicating that live bacteria can colonize the insect gut and biosynthesize nutrients essential for larval development. Live and dead Bacillus sp. 139 increased pupal weight, accelerated immature development, and increased adult survival under stress. Moreover, live Bacillus sp. 139 improved adult production, indicating that Bacillus cells are a direct source of nutrients. Dead Serratia sp. 49 increased pupal and adult production and decreased male survival under stress conditions whereas live cells decreased insect production, indicating that the live strain is entomopathogenic, but its dead cells can be utilized as nutrient source. Klebsiella oxytoca, Enterobacter sp. 23, and Providencia sp. 22 decreased pupal and subsequent adult production and were harmful for B. oleae. Our findings indicate that dead Enterobacter sp. AA26 is the most promising bacterial isolate for the improvement of B. oleae mass rearing in support of future SIT or related population suppression programs.  相似文献   

10.
Melon fruit fly, Bactrocera cucurbitae (Coquillett) is an important pest of cucurbits and other vegetable crops. It is not only a serious pest of cucurbit crops but sometimes also attacks non-host plants. In an endeavour to explore secondary metabolites as important and safe means of pest management, we investigated the effects of gallic acid, a phenolic compound, on the growth and development of melon fruit fly, B. cucurbitae. Larval survival and emergence were severely affected by gallic acid treatment. Both decreased in a concentration dependent manner with increase in concentration. Gallic acid-treated larvae took longer duration to pupate and reach the adult stage as compared to control larvae. Inhibitory effects of gallic acid were also observed on larval weight, pupal weight, mean relative growth rate and food assimilated which decreased with treatment. The ability of gallic acid to disrupt the development of B. cucurbitae suggests that the phenolic compound might have caused oxidative stress in the body of the insect.  相似文献   

11.
The sterile insect release method was applied to eradicate the melon fly, Dacus cucurbitae, from the 58.5 km2 island of Kume, in the Okinawa Islands group. Weekly releases of 1 to 1.5 million flies irradiated as pupae with 6–7 kR from a cobalt-60 source did not decrease the wild melon fly population. Releases of 1.5–2 million pupae per week made from September, 1975 to January, 1976 decreased the percent egg-hatch of females caught on Kume Is., but did not decrease the percent infestation significantly. The number of pupae released was increased from February, 1976 to accelerate the eradication process. When the number of pupae released exceeded 3.5 million per week, a rapid increase in the ratio of marked (sterile) to unmarked (wild) flies, a remarkable decrease in percent egg-hatch, and a decrease in percent infestation of fruits were observed. There has been no sign of melon fly infestation in wild cucurbit fruits from October, 1976 to the present time (April, 1977), despite the fact that more than 70,000 fruits were carefully examined. The eradication of the melon fly from Kume Is. was thus achieved by April, 1977, after the release of 264 million sterile fly pupae.  相似文献   

12.
Four wheat germ oil alternatives (corn oil, vegetable oil, canola oil with 10% vitamin E, and canola oil with 20% vitamin E), purchased from a local supermarket in Hawaii, were added to a fruit fly liquid larval diet as a replacement for wheat germ oil in the rearing of fruit fly larvae. The oils were tested on three species of fruit flies in Hawaii, Ceratitis capitata (TSL strain), Bactrocera dorsalis, and Bactrocera cucurbitae. They were evaluated for their efficacy in replacing WGO, based on: pupal recovery (%), larval duration (d), pupal weight (mg), adult emergence (%), adult fliers (%), mating (%), egg production per female per day, egg hatch (%), and peak egging period (d). Diets with WGO and without any oil were used as controls. The objective of the study was to select the most cost effective alternative oils with the best performance to replace the currently used WGO, which is pricey and hard to find. The results showed that there was no significant difference in performance among the tested oils in B. cucurbitae and B. dorsalis as regards the above mentioned parameters. Lower mating rate was observed in B. cucurbitae from those reared in vegetable oil and canola oil (10% vitamin E) diet. Lower egg production and egg hatch were obtained with B. dorsalis whose larvae were reared in vegetable and canola oil (both 10% and 20% vitamin E). Vegetable oil diet seemed to reduce pupal weight, shorten larval duration, and increase pupal recovery of C. capitata. The results suggest that WGO can be substituted with corn oil, vegetable oil, or canola oils for B. cucurbitae, while corn oil is a better alternative for B. dorsalis, and vegetable oil is best for C. capitata.  相似文献   

13.
Hu J  Zhang JL  Nardi F  Zhang RJ 《Genetica》2008,134(3):319-324
The melon fly, Bactrocera cucurbitae Coquillett, is a species of fruit flies of significant agricultural interest. Of supposed Indian origin, the melon fly is now widely distributed throughout South East Asia up to China, while it has been recently eradicated from Japan. The population structure of seven geographic populations from coastal China, as well as samples from other regions of South East Asia and Japan, including lab colonies, have been studied using a 782 bp fragment of mitochondrial cytochrome oxidase I (COI) gene sequence. The observed genetic diversity was exceedingly low, considering the geographic scale of the sampling, and one single haplotype was found to be predominant from Sri Lanka to China. We confirm that Bactrocera cucurbitae exists in South East Asia as a single phyletic lineage, that Chinese populations are genetically uniform, and that no apparent genetic differentiation exists between these and three available Japanese melon fly sequences.  相似文献   

14.
The study was conducted with the aim of furthering our understanding of seasonality in the population dynamics and infestation rates of the fruit fly Bactrocera spp. in sweet gourd (Cucurbita moschata) during winter and summer in 2017. We also investigated the effects of using methyl eugenol traps on fly abundance and infestation. Two fruit fly species, namely, B. cucurbitae and B. dorsalis, were present in the sweet gourd field, and we observed fluctuations in their abundance. Compared to B. dorsalis, B. cucurbitae was significantly more abundant in both winter and summer. Infestation level was found to be the highest in fields lacking methyl eugenol traps in both seasons. Fruit fly larval population per infested fruit was higher in summer than in winter. Fly abundance was significantly and positively correlated with mean temperature and rainfall but significantly and negatively correlated with light intensity. Relative humidity was insignificantly but positively correlated with fly abundance. The temperature, light intensity, relative humidity, and rainfall individually explained 48.9, 24.1, 0.8, and 1.6% of variation in fruit fly abundance, respectively. The combined effect of the weather parameters on fruit fly abundance was 75.4% and was significant predictor of fruit fly abundance.  相似文献   

15.

Zeugodacus cucurbitae (Coquillet) is one of the most significant and widespread tephritid pest species of agricultural crops. This study reports the bacterial communities associated with Z. cucurbitae from three geographical regions in Southeast Asia (Thailand, Peninsular Malaysia, and Sarawak). The bacterial microbiota were investigated by targeted 16S rRNA gene (V3–V4 region) sequencing using the Illumina Mi-Seq platform. At 97% similarity and filtering at 0.001%, there were seven bacterial phyla and unassigned bacteria, comprising 11 classes, 23 orders, 39 families and 67 genera. The bacterial diversity and richness varied within and among the samples from the three geographical regions. Five phyla were detected for the Sarawak sample, and six each for the Thailand and Peninsular Malaysia samples. Four phyla—Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria—were represented in all the fruit fly specimens, forming the core members of the bacterial community. Proteobacteria was the predominant phylum, followed by Bacteroidetes, Firmicutes, and Actinobacteria. Fifty-three genera were represented in the Thailand sample, 56 in the Peninsular Malaysia sample, and 55 in the Sarawak sample. Forty-two genera were present in all the three geographical regions. The predominant core members were order Enterobacteriales (Proeteobacteria), and family Enterobacteriaceae (Enterobacteriales). Klebsiella (Enterobacteriaceae) was the predominant genus and K. oxytoca the predominant species with all specimens having?>?10% relative abundance. The results indicate the presence of a great diversity as well as core members of the bacterial community associated with different populations of Z. cucurbitae.

  相似文献   

16.
The application of methoprene, and providing access to diet including hydrolyzed yeast, are treatments known to enhance mating success in the male melon fly Bactrocera cucurbitae Coquillett (Diptera: Tephritidae), supporting their use in mass rearing protocols for sterile males in the context of sterile insect technique (SIT) programmes. The objective of the present laboratory study was to investigate the effect of methoprene application and diet supplementation with hydrolyzed yeast (protein) on the turnover of body lipids and protein to confirm the feasibility of their application in melon fly SIT mass-rearing programmes. While females had access to a diet that included hydrolyzed yeast (protein), males were exposed to one of the following treatments: (1) topical application of methoprene and access to diet including protein (M+P+); (2) only diet including protein (M−P+); (3) only methoprene (M+P−) and (4) untreated, only sugar-fed, control males (M−P−). Total body carbon (TBC) and total body nitrogen (TBN) of flies were measured at regular intervals from emergence to 35 days of age for each of the different treatments. Nitrogen assimilation and turnover in the flies were measured using stable isotope (15N) dilution techniques. Hydrolyzed yeast incorporation into the diet significantly increased male body weight, TBC and TBN as compared to sugar-fed males. Females had significantly higher body weight, TBC and TBN as compared to all males. TBC and TBN showed age-dependent changes, increasing until the age of sexual maturity and decreasing afterwards in both sexes. Methoprene treatment did not significantly affect TBC or TBN. The progressive increase with age of TBC suggests that lipogenesis occurs in adult male B. cucurbitae, as is the case in other tephritids. Stable isotope dilution was shown to be an effective method for determining N uptake in B. cucurbitae. This technique was used to show that sugar-fed males rely solely on larval N reserves and that the N uptake rate in males with access to diet including hydrolyzed yeast was higher shortly after emergence and then stabilized. The implications of the results for SIT applications are discussed.  相似文献   

17.
K Shen  J Hu  B Wu  K An  J Zhang  J Liu  R Zhang 《Neotropical Entomology》2014,43(4):335-343
The melon fly, Bactrocera cucurbitae (Coquillett), and the pumpkin fly, Bactrocera tau (Walker), are economically important pests that attack mainly cucurbitacean fruits. The two fruit fly species have similar natural distributions, host ranges, and population growth capacities. This study was designed to assess the asymmetrical competitions through resource exploitation between the larvae of B. cucurbitae and B. tau at different density levels and temperatures, and on different hosts by comparing the relative effects of interspecific and intraspecific interactions on four life history parameters: survival rate, puparial mass, puparial duration, and developmental duration. Our results showed that intraspecific and interspecific competitions occurred under some laboratory conditions, and B. cucurbitae took advantage over B. tau at the high-density level and at low and high temperatures on pumpkin, bitter gourd, and bottle gourd when interspecific competition took place. Intraspecific and interspecific competitions mainly affected the puparial mass and the survival rate of the two fruit fly species but had no marked effect on the puparial duration or development duration.  相似文献   

18.
Melon fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae), is an important quarantine tephritid fruit fly with resident populations established in Hawai'i, USA. In the male‐annihilation approach, male flies are targeted using dispensers with cue‐lure (C‐L) and insecticides, typically organophosphates. The efficacy of the male annihilation approach is thought to be limited to individual male flies, contacting the lure and the pesticide, after which they die. Alternative classes of insecticides, such as fipronil, have been investigated for use in male‐annihilation. We hypothesized that ingestion of fipronil by male flies could lead to horizontal transfer and mortality in female flies. Horizontal insecticide transfer extends pesticide control beyond the individual contacting the toxicant through indirect contact via food sharing or other mechanisms. We tested the possibility for horizontal transfer of fipronil from male to female Z. cucurbitae through field and laboratory studies. Two repeated field trials were conducted to compare the numbers of female flies collected in fields treated with Amulet C‐L (0.34% fipronil active ingredient) bait stations, sanitation, and spot treatments of GF‐120 Fruit Fly Bait to numbers collected in fields where sanitation and spot‐treatments were used without Amulet C‐L. In fields with Amulet C‐L bait stations in conjunction with sanitation and weekly protein bait spot treatments of GF‐120 Fruit Fly Bait, female captures were significantly lower than those in field plots treated with weekly protein bait spot treatments and sanitation. In subsequent laboratory studies, all females died within 6 h after direct exposure to male flies that had access to Amulet C‐L for 1–4 min. The possibility that male regurgitant could be a mechanism for horizontal transfer and subsequent female mortality was determined by collecting regurgitated droplets from fipronil‐fed male flies and feeding them to males and females. Both male and female flies exposed to regurgitant from fipronil‐fed male flies or droplets containing fipronil had higher mortality than the male and female flies that were exposed to regurgitant or droplets with only the C‐L compound or sugar solution. Thus, female flies do experience mortality from exposure to regurgitant from males that have fed on fipronil laced solutions. This provides evidence of at least one mechanism of horizontal transfer of insecticide in tephritid fruit flies. These findings are discussed in the context of Zcucurbitae integrated pest management programs in Hawai'i.  相似文献   

19.
The male annihilation technique (MAT) and sterile insect technique (SIT) are often used to control pestiferous tephritid fruit flies (Diptera: Tephritidae). MAT involves the deployment of traps containing a male attractant and insecticide with the goal of drastically reducing male abundance and ultimately eliminating the entire population. SIT, which involves the mass production, sterilization, and release of the target species, may also be implemented to achieve final extirpation. Generally, simultaneous implementation of MAT and SIT is counterproductive, because the presence of large numbers of male-specific traps in the environment (MAT) would greatly reduce the number of sterile males available for copulating with wild females (SIT). However, studies on the Queensland fruit fly, Bactrocera tryoni (Froggatt), indicate that concurrent use of MAT and SIT may be feasible. Sexually mature males of B. tryoni are attracted to the raspberry ketone and its synthetic analogue cue-lure. Males of B. tryoni fed raspberry-ketone-supplemented diet when newly emerged showed lower attraction to cue-lure baited traps than control males. In addition, newly emerged males provided this diet displayed accelerated sexual maturation, which would allow the early release of sterile males and reduce pre-release holding costs. Here, we examined whether the addition of raspberry ketone to the adult diet of male melon flies, Zeugodacus cucurbitae (Coquillett), produced effects similar to those observed for B. tryoni. Despite using similar methods, no significant effect of raspberry ketone-supplemented diet on time to sexual maturity, survival, mating competitiveness, or attraction to cue-lure baited traps in mass-reared Z. cucurbitae males.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号