首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 356 毫秒
1.
Empirical conformational energy calculations with the use of ECEPP energy functions have been carried out for linear dipeptides H-X-L -Pro-OH, with X = Gly, L -Ala, D -Ala, L -Leu, D -Leu, L -Phe, and D -Phe, in different states of protonation of the end groups. The results of these calculations are compared with the previously reported experimental equilibrium populations for the cis and trans isomers of the X-Pro bond in the different species. For all the protonation states of the seven dipeptides, the calculated nonbonded interactions and the conformational entropy term lead to a preference of the trans forms over the cis isomers by at least 1 kcal/mol. The electrostatic interactions stabilize the cis conformations in all species except the cationic forms of the D ,L -peptides, and it could further be shown that only the carbonyl group of X and the two end groups contribute significantly to the total electrostatic energy. One of the principal results of the experimental studies, i.e., the occurrence of 5–15% cis-proline in all the peptides with an uncharged C-terminus, was corroborated by our investigation of the cationic species. A detailed assessment of the electrostatic contribution to the total energy of the different conformations of H-Gly-L -Pro-OH indicates that the standard ECEPP parameters tend to overestimate the electrostatic interactions in aqueous solutions of the X-Pro dipeptides.  相似文献   

2.
P R Andrews 《Biopolymers》1971,10(11):2253-2267
The molecular orbital method PCILO is applied to eight. N-monsubstituted amides. Experimentally known geometric properties are reasonably predicted by minimization of total energy with respect to molecular geometry. The same procedure shows that molecular deformations during rotation around the peptide bond significantly lower calculated barriers. Experimental heats of activation and the free-energy changes associated with cis–trans isomerism are in good agreement with those calculated, which include qualitative estimates of configurational entropy contributions to the isomerism energies. Both the calculations and revised infrared data indicate that N-phenylurethane, which has been used as a model for the cis peptide bond, should be predominantly trans. However the variations in rotational barriers and cis–trans isomerism energies among the N-monosubstituted amides provide no reason to suppose that the cis peptide bond should be excluded from stable protein conformations.  相似文献   

3.
The preparation of all four stereoisomers of the proline analog that bears a phenyl group attached to the β carbon either cis or trans to the carboxylic acid (cis‐ and trans‐β‐phenylproline, respectively) has been addressed. The methodology developed allows access to multigram quantities of the target amino acids in enantiomerically pure form and suitably protected for use in peptide synthesis. Racemic precursors of cis‐β‐phenylproline and trans‐β‐phenylproline were prepared from easily available starting materials and subjected to high‐performance liquid chromatography enantioseparation. Semipreparative columns (250 × 20 mm) containing chiral stationary phases based on amylose (Chiralpak IA) (Daicel‐Chiral Technologies Europe, Illkirch, France) or cellulose (Chiralpak IC) were used respectively for the resolution of the cis‐ and trans‐β‐phenylproline precursors. Chirality, 24:1082‐1091, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Summary Ser/Thr-Pro motif is a widespread phosphorylated site in proteins, and its reversible phosphorylation is an important regulatory progress in many cell cycles and signal transduction. Recent research reveals that phosphorylation affects the local conformation of the peptide and its binding with the substrate through peptidyl--prolyl cis/trans isomerization. In order to further explore the effect of the phosphate group with different charges, four model peptides containing non- and phosphorylated Ser/Thr-Pro motif were synthesized using the classical solid-phase method. 1H-NMR, TOCSY, and ROESY were employed to characterize the conformation of the model peptides in solution with different pH value and analyze the peptidyl--prolyl isomerization at a molecular level. The results demonstrate that phosphorylation increases the cis conformation in the peptide and the maximum cis/trans ratio is obtained when the phosphate group has two negative charges. Furthermore, the experiments prove that the phosphorylation introduces a hydrogen bond between the phosphate and the NH of Ser/Thr residue, and the charges of the phosphate affect certain conformations of the phosphorylated Ser/Thr-Pro motif.  相似文献   

5.
In the native state of proteins there is a marked tendency for an aromatic amino acid to precede a cis proline. There are also significant differences between the three aromatic amino acids with Tyr exhibiting a noticeably higher propensity than Phe or Trp to precede a cis proline residue. In order to study the role that local interactions play in these conformation preferences, a set of tetrapeptides of the general sequence acetyl-Gly-X-Pro-Gly-carboxamide (GXPG), where X = Tyr, Phe, Trp, Ala, or cyclohexyl alanine, were synthesized and studied by nmr. Analysis of the nmr data shows that none of the peptides adopt a specific backbone structure. Ring current shifts, the equilibrium constants, the Van't Hoff enthalpy, and the measured rate of cis-trans isomerization all indicate that the cis proline conformer is stabilized by favorable interactions between the aromatic ring and the proline residue. Analysis of the side chain conformation of the aromatic residue and analysis of the chemical shifts of the pyrrolidine ring protons shows that the aromatic side chain adopts a preferred conformation in the cis form. The distribution of rotamers and the effect of an aromatic residue on the cis-trans equilibrium indicate that the preferred conformation is populated to approximately 62% for the Phe containing peptide, 67% for the Tyr containing peptide, and between 75 and 80% for the Trp containing peptide. The interaction is unaffected by the addition of 8M urea. These local interactions favor an aromatic residue immediately preceding a cis proline, but they cannot explain the relative propensities for Phe-Pro, Tyr-Pro, and Trp-Pro cis peptide bonds observed in the native state of proteins. In the model peptides the percentage of the cis proline conformer is 21% GYPG while it is 17% for GFPG. This difference is considerably smaller than the almost three to one preponderance observed for cis Tyr-Pro peptide bonds vs cis Phe-Pro peptide bonds in the protein database. © 1998 John Wiley & Sons, Inc. Biopoly 45: 381–394, 1998  相似文献   

6.
An attempt to elucidate the solution conformation(s) of the synthetic cyclic hexapeptide 5L -ala·D-ala is described. Nuclear magnetic resonance (nmr) spectra are recorded for the purpose of measuring the vicinal coupling constant between the amide and α-protons in each residue and to observe the deuterium exchange rate and temperature dependence of the chemical shift of each amide proton. Low-energy cyclic conformations, whose individual residues are in conformations consistent with the observed amide to α-proton coupling constant, are searched for in an approximate theoretical treatment. The two lowest energy, all trans peptide bond conformations generated are distinguishable by the presence or absence of a single intramolecular hydrogen bond. The observed temperature independence of the chemical shift of one of the amide protons is consistent with the presence of a single intramolecular hydrogen bond, while the observation of similar deuterium exchange rates for each of the amide protons indicates their comparable availability to solvent. Consequently, it is concluded that 5L -ala·D-ala is in rapid equilibrium between conformations with and without a single internal hydrogen bond and possesses considerable conformational flexibility in solution.  相似文献   

7.
A conserved cis proline residue located in the active site of Thermotoga maritima acetyl esterase (TmAcE) from the carbohydrate esterase family 7 (CE7) has been substituted by alanine. The residue was known to play a crucial role in determining the catalytic properties of the enzyme. To elucidate the structural role of the residue, the crystal structure of the Pro228Ala variant (TmAcEP228A) was determined at 2.1 Å resolution. The replacement does not affect the overall secondary, tertiary, and quaternary structures and moderately decreases the thermal stability. However, the wild type cis conformation of the 227–228 peptide bond adopts a trans conformation in the variant. Other conformational changes in the tertiary structure are restricted to residues 222–226, preceding this peptide bond and are located away from the active site. Overall, the results suggest that the conserved proline residue is responsible for the cis conformation of the peptide and shapes the geometry of the active site. Elimination of the pyrrolidine ring results in the loss of van der Waals and hydrophobic interactions with both the alcohol and acyl moeities of the ester substrate, leading to significant impairment of the activity and perturbation of substrate specificity. Furthermore, a cis‐to‐trans conformational change arising out of residue changes at this position may be associated with the evolution of divergent activity, specificity, and stability properties of members constituting the CE7 family. Proteins 2017; 85:694–708. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
It has long been understood that the proline residue has lower configurational entropy than any other amino acid residue due to pyrrolidine ring hindrance. The peptide bond between proline and its preceding amino acid (Xaa-Pro) typically exists as a mixture of cis- and trans-isomers in the unfolded protein. Cis–trans isomerization of Xaa-Pro peptide bonds are infrequent, but still occur in folded proteins. Therefore, the effects of the cis–trans isomerization equilibrium in both unfolded and folded states should be taken into account when estimating the stability contribution of a specific proline residue. In order to study the stability contribution of the four proline residues to the hyperthermophilic protein Ssh10b, in this work, we expressed and purified a series of Pro→Ala mutants of Ssh10b, and performed correlative unfolding experiments in detail. We proposed a new unfolding model including proline isomerization. The model predicts that the contribution of a proline residue to protein stability is associated with the thermodynamic equilibrium between cis- and trans-isomers both in the unfolded and folded states, agreeing well with the experimental results.  相似文献   

9.
Summary A Z-orE-ethenyl group has been inserted between the α-carbon and the carboxyl group of the proline residue by stereoselective Horner synthesis. The resulting vinylogous amino acid has been coupled with amino compounds by classical methods, and model amino acid derivatives and dipeptides containing a Z-orE-CH=CMe group have been investigated in solution by1H-NMR and IR spectroscopy, and in the solid state by X-ray diffraction. TheE-ethenyl group gives rise to an open conformation and the Z-conformer to a folded structure with an intramolecular hydrogen bond closing a ninemembered pseudocycle.  相似文献   

10.
A series of proline-containing linear oligopeptides (4 dipeptides and 15 tripeptides) were synthesized and examined in aqueous and nonaqueous solutions using 13C-nmr spectroscopy. Spectra of linear tripeptides showing cis-trans isomerism about the X-Pro bond (X = Pro, Gly, and Ala) also show neighboring effects on the chemical shifts of residues both preceding and following the prolyl moiety. The extent of cis-trans isomerism observed about the X-Pro peptide bond correlates not only with the nature of X, but also depends on the size of the residue following proline; the larger substituents favor an increase in cis content about the X-Pro bond.  相似文献   

11.
Summary The conformationalcis-trans equilibrium around the peptide bond in model tripeptides has been determined by 2D NMR methods (HOHAHA, ROESY). The study was limited to three different N-substituted amino acids in position 2, namely Pro (proline), Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), and N-MePhe (N-methylphenylalanine). In all cases the amino acid in position 1 was tyrosine and in position 3, phenylalanine. The results of our studies show that thecis-trans ratio depends mostly on the configuration of the amino acids forming the peptide bond undergoing thecis-trans isomerisation. The amino acid following the sequence (in position 3) does not have much influence on thecis-trans isomerisation, indicating that there is no interaction of the side chains between these amino acids. The model peptides with the L-Tyr-L-AA-(L-or D-)Phe (where AA is N-substituted amino acid) chiralities give 80–100% more of thecis form in comparison to the corresponding peptides with the D-Tyr-L-AA-(L-or D-)Phe chiralities. These results indicate that the incorporation of N-substituted amino acids in small peptides with the same chirality as the precedent amino acid involved in the peptide bound undergoing thecis/trans isomerisation moves the equilibrium to a significant amount of thecis form.  相似文献   

12.
There has been considerable debate about the intrinsic PPII propensity of amino-acid residues in denatured polypeptides. Experimentally, the propensity scale is based on the behavior of guest amino-acid residues placed in the middle of polyproline hosts. We have used classical molecular dynamics simulations, with state-of-the-art force fields to carry out a comprehensive analysis of the conformational equilibria of the proline-based host oligopeptides with single guests. The tracked structural characteristics include the PPII content, the cis/trans isomerization of the prolyl bonds, the puckering of the pyrrolidine rings of the proline residues, and the secondary structural motifs. We find no evidence for an intrinsic PPII propensity in any of the guest amino acids other than proline. Instead, the PPII content as derived from experiments may be explained in terms of: 1), a local correlation between the dihedral angles of the guest amino acid and the proline residue immediately preceding it; and 2), a nonlocal correlation between the cis/trans states of the peptide bonds. In terms of the latter, we find that the presence of a guest (other than proline, tyrosine, or tryptophan) increases the trans content of most of the prolyl bonds, which results in an effective increase of the peptide PPII content. With respect to the local dihedral correlations, we find that these are well described in terms of the so-called odds-ratio statistic. Expressed in terms of free energy language, the PPII content based on the odds-ratio of the relevant residues correlate well with the experimentally measured PPII content.  相似文献   

13.
In the present paper we describe the synthesis, purification, single crystal x-ray analysis, and nmr solution characterization, combined with restrained molecular dynamic simulations, of the cyclic hexapeptide cyclo-(L -Pro-L -Phe-β-Ala)2. The peptide was synthesized by classical solution methods and the cyclization of the free hexapeptide was accomplished in good yields in diluted methylene chloride solution using N,N-dicyclohexyl-carbodiimide. The compound crystallizes in the monoclinic space group P21 from methanol-dichloro-methane solution. The two identical halves of the molecule adopt in the solid state two different conformations. One β-Ala-L -Pro peptide bond is trans, while the second is cis. The molecule is present in dimethylsulfoxide d6 solutions as a mixture of conformational families. One of these corresponds to a C2 symmetrical molecule with both β-Ala-Pro cis peptide bonds, while the second major conformation is very similar to that observed in the solid state. All Pro-Phe segments, both in the solid state and the symmetrical and unsym-metrical solution conformations, display ?,ψ angles close to that of position i + 1 and i + 2 of type II β-turns. In addition, the segments preceeded by a trans β-Ala-Pro peptide bond are characterized by a typical ii + 3 hydrogen bond, which is absent in the conformer containing a cis β-Ala-Pro peptide bond. The latter conformation corresponds to a new structural domain we define as the “pseudo type II β-turn.” © 1994 John Wiley & Sons, Inc.  相似文献   

14.
C‐2 dimethylated/unmethylated thiazolidine‐4‐carboxylic acid and C‐2 dimethylated oxazolidine‐4‐carboxylic acid were introduced into the insect kinin core pentapeptide in place of Pro3, yielding three new analogues. NMR analysis revealed that the peptide bond of Phe2‐pseudoproline (ΨPro)3 is practically 100% in cis conformation in the case of dimethylated pseudoproline‐containing analogues, about 50% cis for the thiazolidine‐4‐carboxylic acid analogue and about 33% cis for the parent Pro3 peptide. The diuretic activities are consistent with the population of cis conformation of the Phe2‐ΨPro3/Pro3 peptide bonds, and the results confirm a cis Phe‐Pro bond as bioactive conformation. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
The conformational characteristics of the peptide sequence X-l-Pro, where X  Gly or l-Ala and the peptide bond joining X and l-Pro is cis, are evaluated. Semi-empirical potential functions are used to estimate the contributions to the conformational energy made by the non-bonded van der Waals' and electrostatic interactions and the intrinsic torsional potentials about the NCa and CaC′ bonds. Rotations φ1 and ψ1 about the NCa and CaC′ bonds in residue X and rotation ψ2 about the CaC′ bond in l-Pro are permitted, while the angle of rotation φ2 about the NCa bond in l-Pro is fixed at 120 ° by the pyrrolidine ring. The presence of the cis peptide bond connecting X and l-Pro renders the backbone rotations φ1, ψ1 in X dependent upon the rotation ψ2 about the CaC′ bond in l-Pro. (Interdependence of rotations in neighboring residues joined by a cis peptide bond was previously observed in l-alanine oligomers.) The number of energetically allowed conformations for the Gly and l-Ala residues preceding a cis peptide bond l-Pro residue are found to be substantially reduced from those permitted when the peptide bond is trans or when l-Pro is replaced by an amino acid residue. On the other hand, ψ2 = 100 to 160 ° (cis′) and 300 to 0 ° (trans′) are found to be the lowest energy conformations of the l-Pro residue irrespective of the cis or trans conformation of the X-l-Pro peptide bond.  相似文献   

16.
An 1H-nmr study of 2-acetamido-2-deoxy-3,4,6-tri-O-acetyl-D-galactopyranose (AcGalNAc) glycosylated Thr-containing tripeptides in Me2SO-d6 solution reveals two mutually exclusive intramolecular hydrogen bonds. In Z-Thr(AcGalNAc)-Ala-Ala-OMe, there is an intramolecular hydrogen bond between the Thr amide proton and the sugar N-acetyl carbonyl oxygen. The strength of this hydrogen bond will be dependent on the amino acid residues on the Thr C terminal side to some undetermined distance. In Ac-Thr(AcGalNAc)-Ala-Ala-OMe, a different intramolecular hydrogen bond between the sugar N-acetyl amide proton and the Thr carbonyl oxygen exists. The choice of hydrogen bonds seems dependent on the bulkiness of the residues on the Thr N terminal side. The consequence of such strong hydrogen bonds is a clearly defined orientation of the sugar moiety with respect to the peptide backbone. In the former, the plane of the sugar pyranose ring is roughly oriented perpendicularly to the peptide backbone. The latter orientation is where the plane of the sugar ring is roughly in line with the peptide backbone. In both orientations, the sugar moiety can increase the shielding of the neighboring amino acid residues from the solvent. The idea that the amino acid residues near the glycosylated Thr influence orientation of the sugar moiety with respect to the peptide backbone and in turn possibly hinder peptide backbone flexibility has interesting implications in the conformational as well as the biological role of O-glycoproteins.  相似文献   

17.
Model tetrapeptide system was designed to investigate the cis/trans isomerization of peptidyl-prolyl imide bond of Ser–Pro motif. To establish the side-chain O-phosphorylation effect in regulating the peptides conformations, molecular dynamics (MD) simulations where carried out on the designed tetrapeptides and their corresponding phosphorylated forms by MD Insight II Discovery3 approach. The most stable configurations and the statistic cis/trans concentration distribution demonstrated that the phosphorylation evidently influences the peptidyl-prolyl imide bond isomerization and works as a key effect in regulating the peptide conformations. The charge state and the site provided for the charge of the phosphate moiety might be an important key. The results also demonstrated that phosphorylation changes the cis conformation ratio of the peptide and the maximum cis value is obtained when the phosphate group has no negative charge.  相似文献   

18.
The 13C chemical shifts of several 85% 13C-enriched amino acids and small peptides were studied as a function of pH. The results show that the chemical shifts of carbon atoms of ionizable groups vary significantly within the zone of their pK. Generally with the pH going from 7 to 1 all the δC are shifted more or less upfield with the exception of the carbonyl group of the second last residue which is shifted slightly downfield. This suggests the formation of an hydrogen bond at acid pH involving in a seven-membered ring the C=O in question and the COOH terminal.The percentage of cis and trans conformers of glycyl-l-proline and glycyl-l-prolylglycine were studied as a function of pH. The trans form is always preponderant whatever the pH. The accessibility of the carbonyl group to protonation of the proline residue strongly influences the cis-trans equilibrium. Thus, with the pH varying from 7 to 1, the trans isomer changes from 61 to 85% for glycyl-l-proline and only from 77 to 80% for glycyl-l-prolylglycine.The proton NMR studies underline the important differences existing between the two molecular forms of glycyl-l-proline. The cis conformation is characterized with regard to the trans form by the non-equivalence of the α-protons of the glycine residue, by a lower pK1 and by a larger ΔδHα of the proline residue as a function of pH. These results could suggest an end-to-end interaction in the cis form of the glycyl-l-proline molecule.The 13C-13C coupling constants were also studied as a function of pH. The results show that JCo-Cα of a C-terminal residue, varying from 5 to 6 Hz and reflecting the pK of the carboxylate group, is a linear function of δCo and δCα as in the case of the amino acids. The total variation of the electron density of those two carbons in an amino acid is approximately 40% weaker than in a C-terminal residue. The charge distribution along the Cα−Co bond, however, is practically the same in both cases.Finally the ratios of the conversion rate constants of the two isomers cis-trans of glycyl-proline were calculated at different pH values; the relations between the isomer percentages and δCo, δCα on the one hand and the JCo-Cα on the other were established.  相似文献   

19.
Stavrakoudis A 《FEBS letters》2011,585(3):837-491
The Epstein–Barr virus determinant peptide EENLLDFVRF shows high immunogenicity when presented by HLA-B*4405 allotype. This fact is accompanied by a cistrans isomerization of the Leu5-Asp6 peptide bond upon TCR binding of the pMHC complex. Molecular dynamics simulations of pMHC/TCR structures, with the EENLLDFVRF peptide in cis and trans conformations have been employed in order to examine the structure and dynamics of the pMHC complex with such an unusual conformation. The results, based on MM-PBSA free energy computations as well as buried surface area analysis and interactions at the pMHC/TCR interface, indicate that the TCR binds preferably the pMHC complex with the Leu5-Asp6 peptide bond in cis conformation. It is the first time that this notable conformational feature of T-cell epitope is investigated.  相似文献   

20.
An nmr spectral comparison of a model cyclic pentapeptide cyclo(Gly-Pro-Gly-D-Phe-Pro) with an analogous pseudopeptide has been made. The pseudopeptide contains a ψ[CH2S] amide bond replacement at the only amide linkage that, in the model, is not involved in an intramolecular hydrogen bond. Both proton and carbon-13 nmr spectral evidence confirms the retention of β- and γ-turns in the pseudopeptide in chloroform. Characteristic chemical shifts, temperature dependence, and glycine α-resonances support this interpretation. However, evidence of a more flexible conformation involving cistrans proline isomerism is seen on addition of dimethylsulfoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号