首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal antibodies (MAb) reactive with the glycoprotein of vesicular stomatitis virus (VSV) serotypes Indiana (VSV-Ind) and New Jersey (VSV-NJ) were used to protect mice against lethal infection. MAb which reacted with a number of distinct epitopes and which could neutralize the virus in vitro could also protect against infection in vivo. MAb which could not neutralize the virus in vitro but which were specific for the glycoprotein of a single serotype were also able to protect mice against lethal VSV challenge. Interestingly, a group of MAb which cross-reacted with the glycoproteins of VSV-Ind and VSV-NJ could passively protect against challenge with either serotype. It was shown that as early as 2 h after infection, neither neutralizing nor nonneutralizing MAb could protect. Nonneutralizing MAb were found to be less effective at in vivo protection than neutralizing MAb. Furthermore, nonneutralizing MAb demonstrated a much lower binding efficiency to intact virions than did neutralizing MAb. These observations, plus the fact that the nonneutralizing MAb could lyse virus-infected cells in the presence of complement, suggested that in vivo protection by these antibodies may involve cell-associated viral determinants. To compare the mechanisms by which neutralizing and nonneutralizing MAb protected in vivo, F(ab')2 fragments were used in protection experiments. Although the F(ab')2 of a neutralizing MAb was still able to protect animals lethal virus challenge, the F(ab')2 of a cross-reactive nonneutralizing MAb was unable to do so. The reactivity of nonneutralizing MAb with virions and the apparent necessity of an intact Fc portion for protection further distinguish these antibodies from those MAb that are able to neutralize VSV solely by binding to the glycoprotein.  相似文献   

2.
The serological relationship between the two vesicular stomatitis virus (VSV) strains Indiana (VSV-Ind) and New Jersey (VSV-NJ) were analyzed by using an enzyme-linked immunosorbent assay (ELISA). Immunoglobulin G responses, defined by their resistance to treatment with 2-mercaptoethanol, were assessed by ELISA by using sucrose gradient-purified VSV or purified VSV glycoproteins (G) as antigens. When low doses (10(6) PFU) of live VSV or 10(8) PFU of UV-inactivated virus were given intraperitoneally (i.p.), only non-cross-reactive antibody responses were observed in a primary immune response. However, when 10(6) PFU of live VSV were injected intravenously (i.v.), cross-reactive antibodies were generated; anti-VSV-NJ antibodies cross-reacted more against VSV-Ind than did anti-VSV-Ind antibodies against VSV-NJ. When 10(8) PFU of live VSV or UV-inactivated VSV mixed with complete Freund adjuvant was given i.p., high levels of cross-reactive antibodies detectable by ELISA were induced in primary and secondary responses. When purified G protein was used instead of purified whole virus in the ELISA, the cross-reactivity was found to be asymmetrical after immunization with live VSV given i.v. but not after i.p. inoculation; anti-VSV-NJ sera bound almost equally well to VSV-Ind G protein, whereas anti-VSV-Ind sera bound virtually exclusively to the G protein of the homologous serotype. The data suggest that immunization with VSV given i.p. results in a more specific, i.e., less cross-reactive, response than that either after i.v. infection or after the virus antigen is made available in great amounts or if it persists for prolonged periods when given i.p. together with complete Freund adjuvant. The unique determinants were immunodominant because they induced antibodies preferentially, whereas partially shared determinants induced antibody responses asymmetrically, more slowly, and with lower titers. Interestingly, the asymmetric cross-reactivity of anti-VSV antibodies, as measured by ELISA, against purified VSV G was opposite that observed for cytotoxic T cells.  相似文献   

3.
Antigenic variants of vesicular stomatitis virus (VSV) serotypes New Jersey and Indiana (VSV-NJ, VSV-Ind) were selected by using a panel of monoclonal antibodies (MAb) specific for the major surface glycoprotein (G-protein). The reactivity of antigenic variants with the panel of MAb confirmed observations made by competitive binding assays that four distinct antigenic sites (A-D)NJ on the VSV-NJ G-protein and four partially overlapping sites (A, B1, B2, C)Ind on the VSV-Ind G-protein are involved in virus neutralization. Furthermore, subregions within the A epitopes of both serotypes were detected by variant analysis. The frequency of variation at most epitopes was 1 in 10(5) for VSV-NJ and 1 in 10(6) for VSV-Ind. The A3 and C determinants of VSV-Ind, however, defined by MAb that exhibited overlap in binding to other epitopes, appeared to be relatively invariant. Multiple mutations may be necessary to abolish antibody binding at these sites. Overlap of the C group of anti-VSV-Ind MAb with the A epitopes was assigned to the A2 subregion, because variants selected with A2 MAb show reduced binding of C MAb. Heterogeneous antisera from a primary immune response could detect differences in reactivity between variants at the A epitopes and wild-type VSV-NJ or VSV-Ind, suggesting the A epitope is immunodominant. Hyperimmune sera could detect a small difference between ANJ and BNJ variants compared to wild-type VSV-NJ, but could not distinguish between VSV-Ind variants and wild-type VSV-Ind.  相似文献   

4.
We have investigated virus-lymphocyte interactions by using cloned subpopulations of interleukin-2-dependent effector lymphocytes maintained in vitro. Cloned lines of H-2-restricted hapten- or virus-specific cytotoxic T lymphocytes (CTL) and alloantigen-specific CTL were resistant to productive infection by vesicular stomatitis virus (VSV). In contrast, cloned lines of natural killer (NK) cells were readily and persistently infected by VSV, a virus which is normally highly cytolytic. VSV-infected NK cells continued to proliferate, express viral surface antigen, and produce infectious virus. Furthermore, persistently infected NK cells showed no marked alteration of normal cellular morphology and continued to lyse NK-sensitive target cells albeit at a slightly but significantly reduced level. The persistence of VSV in NK cells did not appear to be caused by the generation of temperature-sensitive viral mutants, defective interfering particles, or interferon. Consequently, studies comparing the intracellular synthesis and maturation of VSV proteins in infected NK and mouse L cells were conducted. In contrast to L cells, in which host cell protein synthesis was essentially totally inhibited by infection, the infection of NK cells caused no marked diminution in the synthesis of host cell proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoprecipitates of viral proteins from infected cells showed that the maturation rate and size of VSV surface G glycoprotein were comparable in L cells and NK cells. Nucleocapsid (N) protein synthesis also appeared to be unaffected in NK cells. In contrast, the viral proteins NS and M appeared to be selectively degraded in NK cell extracts. Mixing experiments suggested that a protease in NK cells was responsible for the selective breakdown of VSV NS protein. Finally, VSV-infected NK cells were resistant to lysis by virus-specific CTL, suggesting that persistently infected NK cells may harbor virus and avoid cell-mediated immune destruction in an immunocompetent host.  相似文献   

5.
Human cytotoxic T-cell (CTL) clones that lyse autologous cells infected with herpes simplex virus (HSV) type 1 or 2 were generated by stimulating lymphocytes with a recombinant vaccinia virus (recombinant vaccinia-gD-1 virus) that expresses HSV type 1 glycoprotein D (gD-1). Furthermore, CTL clones generated with HSV type 1 or with cloned gD-1 lysed autologous cells infected with the recombinant vaccinia-gD-1 virus. Our findings thus showed that gD serves as a target antigen for human CTLs and that a recombinant vaccinia-gD virus activates HSV-specific human CTL.  相似文献   

6.
Cytotoxic thymus-derived lymphocytes from mice infected with vesicular stomatitis virus (VSV) are H-2 restricted and virus specific for the Indiana and New Jersey strains of VSV. VSV-Indiana-immune T cells can lyse target cells infected with the temperature sensitive (ts) mutant ts 045 about 30 times better when target cell infection occurs at the permissive rather than the non-permissive temperature. Since this mutant fails to express the glycoprotein at the cell surface when grown at the nonpermissive temperature, our results support the view that the viral glycoprotein is involved in defining the major target antigen for VSV-specific T cells. However, the tl 17 mutant that expresses a mutant glycoprotein at the cell surface was lysed, suggesting that the expressed mutated glycoprotein can cross-react with Indiana wild-type glycoprotein. Targets infected at the nonpermissive temperature with VSV ts G31 (mutant in the matrix protein) are still susceptible to T cell-mediated lysis but at a lower level of sensitivity. These results are compatible with the interpretation that for VSV-specific T cell lysis of infected target cells, the viral glycoprotein is a major target antigen and must be expressed, and that the matrix protein plays a lesser role, probably by indirectly influencing glycoprotein configuration at the cell surface.  相似文献   

7.
Nude mice immunized with either of the two serotypes of vesicular stomatitis virus (VSV), VSV Indiana (VSV-Ind) or VSV-New Jersey (VSV-NJ), showed an early T cell independent immunoglobulin (Ig) M antibody response comparable with normal euthymic mice. Unlike euthymic mice, however, nude mice reinjected with the homologous serotype were unable to mount a second measurable serum neutralizing (SN) antibody response; a second injection with the heterologous serotype induced a normal primary type of SN antibody response. The serotype-specific refractoriness to a second challenge recovered at about 10 wk after primary infection. When antibody responses were assayed by enzyme-linked immunoabsorbent assay (ELISA), suppressive effects by previous immunization could be observed even after challenge with the heterologous serotypes; this finding probably reflects the known existence of common nonneutralizing determinants shared between the two serotypes. A weak 2-mercaptoethanol (2-ME)-resistant anti-VSV IgG SN antibody response was noticed during the primary response in nude mice and was also found in ELISA; after second infections, this 2-ME-resistant response did not develop. Serum transfer studies in nude and +/+ mice confirmed that the serotype-specific transitory refractoriness of a second response in nude mice was mediated through the anti-VSV-specific IgM antibodies.  相似文献   

8.
Eleven cytotoxic T lymphocyte (CTL) clones were derived from C57BL/6 spleen cells immunized with HLA-B7 expressing human lymphoblastoid cell lines. Reactivity against HLA-B7 was initially established because the clones lysed 2 target cells that shared only HLA-B7 with the immunizing cell line and they did not lyse five other cell lines that were HLA-B7 negative but expressed other class I or class II antigens found on the immunizing cell. Six of the clones were subsequently shown to lyse all tested HLA-B7-positive B and T lymphoid cell lines, peripheral blood lymphocytes, and a murine L cell that expressed HLA-B7 as a consequence of DNA-mediated gene transfer. On the basis of the inability of the clones to lyse a panel of HLA-B7-negative cell lines, up to 18 other class I antigens could be eliminated as being cross-reactively recognized. However, two of the clones recognized a single HLA-B7-negative cell line. It is suggested that in these cases the clones were cross-reactively recognizing the HLA-B27 or HLA-B40 antigens that were present on these target cells. The remaining five CTL clones failed to lyse one out of seven tested HLA-B7-positive lymphoid lines (either RPMI-1788 or DR1B) and failed to lyse peripheral blood lymphocytes from one out of three tested HLA-B7-positive individuals. These five clones also did not recognize the HLA-B7-positive murine L cell. However, based on analysis with a large target cell panel, the reactivity pattern of these five clones could only be correlated with recognition of HLA-B7. This conclusion is further supported by antibody-blocking studies to be reported elsewhere. As before, lysis of single HLA-B7-negative target cells by two of the clones could be ascribed to recognition of HLA-B27 or HLA-B40. The results show that murine clones raised against HLA-B7 exhibit a high degree of specificity for determinants that are unique or largely confined to the HLA-B7 alloantigen. In addition, these clones define different antigenic determinants on the molecule. Thus, such clones appear to be excellent candidates for use as human tissue typing reagent. The results further show that there is a strong correlation between recognition of particular HLA-B7-positive human cell lines and recognition of the HLA-B7 expressing murine L cell. Possible reasons for such a correlation and their relationship to the general phenomenon of CTL recognition are discussed.  相似文献   

9.
BALB/c-H-2dm2 mice (H-2KdI-AdI-EdDd), a congenic strain of BALB/c mice, have a deletion of the class I MHC Ag, H-2Ld. This gene encodes the exclusive class I MHC-restricting gene product for vesicular stomatitis virus-specific cytolytic T lymphocytes. When dm2 mice were immunized with infectious vesicular stomatitis virus, a specific CTL response was generated. These CTL lysed VSV-infected targets that expressed Iad gene products, but not VSV-infected Iad- targets. The CTL were used initially as long term cytolytic lines; 13 CTL clones were derived by limit dilution. All of the clones expressed the phenotype CD3+, CD4+, CD8-; some clones expressed TCR that are members of the V beta 8 family, others did not. The clones were restricted by class II MHC Ag, both I-Ad and I-Ed serving as restricting elements for individual clones of the panel. All of the clones derived from dm2 mice were specific for the immunizing serotype, Indiana, of VSV and did not lyse syngeneic cells infected with VSV of the New Jersey serotype. Studies using defective interfering virus particles, UV light-inactivated virus, and purified micelles of the viral glycoprotein indicated that infectious virus was not required for sensitization of target cells for immune recognition by the class II MHC-restricted CTL clones. Additional studies using recombinant vaccinia virus vectors to sensitize targets confirmed the specificity of the clones for the viral glycoprotein. These studies also demonstrated a cryptic population of class II-restricted CTL in BALB/c lines specific for VSV G. Naturally occurring variant viruses and mutant viruses, selected for escape from neutralization by mAb, were used in an effort to map the determinant(s) recognized; on the basis of patterns of target cell lysis, three groups of epitopes recognized by the clones were defined. Therefore, in the absence of the class I MHC Ag required for a CTL response to VSV, dm2 mice generated CTL with the CD4+ phenotype that recognized different epitopes on the viral glycoprotein, and lysed cells in a class II-MHC restricted, Ag-specific manner.  相似文献   

10.
We have analyzed the requirement for the expression of the major surface glycoprotein (G protein) of vesicular stomatitis virus (VSV) on target cells for recognition and lysis by anti-VSV cytotoxic T lymphocytes (CTL). In addition, we have attempted to determine if the carbohydrate moieties on the G protein are required for recognition and lysis by anti-VSV CTL. When VSV (Orsay) is grown at 30 degrees C in the presence of tunicamycin (TM), glycosylation of G protein is inhibited; however, nonglycosylated G protein is found on the surface of the cell and active virus particles are produced. In contrast, VSV (Orsay) grown at 39 degrees C in the presence of TM produces low titers of virus and the presence of G protein on the surface of cells is not detectable. The susceptibility of these target cells to lysis by anti-VSV CTL was analyzed. The results suggest that expression of the G protein is required for target cell lysis by anti-VSV CTL. However, the presence of the carbohydrate moieties on the G protein are nt an absolute requirement for recognition by anti-VSV CTL. VSV-infected target cells incubated in the presence of TM were lysed by anti-VSV CTL up to 50 to 80% of the infected target cell control. This result suggests either that some clones of anti-VSV CTL recognize carbohydrate moieties or that carbohydrate moieties play some as yet undefined nonantigenic role in the recognition of the target antigen by the CTL receptor.  相似文献   

11.
I have compared the requirements for T helper (Th) cell function during the generation of virus-specific and alloreactive cytotoxic thymus (T)-derived lymphocyte (CTL) responses. Restimulation of vesicular stomatitis virus (VSV)-immune T cells (VSV memory CTLs) with VSV-infected stimulators resulted in the generation of class I-restricted, VSV-specific CTLs. Progression of VSV memory CTLs (Lyt-1-2+) into VSV-specific CTLs required inductive signals derived from VSV-induced, Lyt-1+2- Th cells because: (i) cultures depleted by negative selection of Lyt-1+ T cells failed to generate CTLs; (ii) titration of VSV memory CTLs into a limiting dilution (LD) microculture system depleted of Th cells generated curves which were not consistent with a single limiting cell type; (iii) LD analysis of VSV memory CTLs did produce single-hit curves in the presence of Lyt-1+2- T cells sensitized against VSV; and (iv) monoclonal anti-L3T4 antibody completely abrogated CTL generation against VSV. Similar results were also obtained with Sendai virus (SV), a member of the paramyxovirus family. The notion that a class II-restricted, L3T4+ Th cell plays an obligatory role in the generation of CTLs against these viruses is also supported by the observation that purified T cell lymphoblasts (class II antigen negative) failed to function as antigen-presenting cells for CTL responses against VSV and SV. T cell lymphoblasts were efficiently lysed by class I-restricted, anti-VSV and -SV CTLs, indicating that activated T cells expressed the appropriate viral peptides for CTL recognition. Furthermore, heterogeneity in the VSV-induced Th cell population was detected by LD analysis, suggesting that at least two types of Th cells were required for the generation of an anti-VSV CTL response. VSV-induced Th cell function could not simply be replaced by exogenous IL-2 because this lymphokine induced cytotoxic cells that had the characteristics of lymphokine-activated killer (LAK) cells and not anti-viral CTLs. In contrast, CTL responses against allogeneic determinants could not be completely blocked with antibodies against L3T4 and depletion of L3T4+ cells did not prevent the generation of alloreactive CTLs in cultures stimulated with allogeneic spleen cells or activated T cell lymphoblasts. Thus, these studies demonstrate an obligatory requirement for an L3T4-dependent Th cell pathway for CTL responses against viruses such as VSV and SV; whereas, CTL responses against allogeneic determinants can utilize an L3T4-independent pathway.  相似文献   

12.
Using the vesicular stomatitis virus (VSV) pseudotype system, we studied the functional properties of the Ebola virus glycoprotein (GP). Amino acid substitutions at the GP cleavage site, which reduce glycoprotein cleavability and viral infectivity in some viruses, did not appreciably change the infectivity of VSV pseudotyped with GP. Likewise, removal of two acylated cysteine residues in the transmembrane region of GP showed no discernible effects on infectivity. Although most filoviruses are believed to target endothelial cells and hepatocytes preferentially, the GP-carrying VSV showed greater affinity for epithelial cells than for either of these cell types, indicating that Ebola virus GP does not necessarily have strong tropism toward endothelial cells and hepatocytes. Finally, when it was used to screen for neutralizing antibodies against Ebola virus GP, the VSV pseudotype system allowed us to detect strain-specific neutralizing activity that was inhibited by secretory GP (SGP). This finding provides evidence of shared neutralizing epitopes on GP and SGP molecules and indicates the potential of SGP to serve as a decoy for neutralizing antibodies.  相似文献   

13.
The frequency and fine specificity of herpes simplex virus (HSV)-reactive cytotoxic T lymphocytes (CTL) of C57BL/6 mice was investigated in limiting dilution culture. The reactivity patterns of virus-specific CTL were assayed on target cells infected with HSV type 1, strain KOS, HSV type 2, strain Mueller, and mutants of HSV-1 (KOS) antigenically deficient or altered in glycoproteins gC or gB, two of the four major HSV-1-encoded cell surface glycoprotein antigens. Most CTL clones recognized type-specific determinants on target cells infected with the immunizing HSV serotype. In addition, the majority of HSV-1-specific CTL did not cross-react with cells infected with syn LD70, a mutant of HSV-1 (KOS) deficient for the presentation of cell surface glycoprotein gC. These data are the first demonstration of the clonal specificity of HSV-1-reactive CTL, and they identify gC as the immunodominant antigen. The fine specificity of gC-specific CTL clones was analyzed on target cells infected with mutant viruses altered in the antigenic structure of gC. These mutants were selected by resistance to neutralization with monoclonal antibodies, referred to as monoclonal antibody-resistant (mar) mutants. Most mar mutations in gC did not affect recognition by the majority of CTL clones. This indicated that most epitopes recognized by CTL are distinct from those defined by antibodies. The finding, however, that one mar mutation in gC affected both CTL and antibody recognition of this antigen may help to define antigenic sites important to both humoral and cell-mediated immunity to herpesvirus infection.  相似文献   

14.
Several cloned lines of IL 2-dependent human T cells derived from alloantigen, mitogen, or IL 2-stimulated peripheral blood lymphocytes were examined for their surface marker expression, cytolytic activity in a 51Cr-release assay, and capacity to release cytotoxic lymphokines. Thirty cell lines exhibiting either antigen-specific natural killer cell activity or lectin-dependent killer cell function, which expressed either the CD4 or CD8 surface differentiation markers, were capable of producing cytotoxin(s) in response to the lectins phytohemagglutinin and concanavalin A. Cytotoxin activity was detected on the murine L929 target cell in a 16-hr cytotoxicity assay. In contrast, several nonlytic T cell tumor lines failed to produce a soluble cytotoxin. Antibodies capable of neutralizing human alpha-lymphotoxin were completely ineffective in inhibiting the cytotoxin(s) produced by any of the cytotoxic T lymphocytes (CTL) cell lines. Comparative gel filtration and HPLC hydrophobic chromatography of alpha-lymphotoxin and CTL toxin produced by the CTL-830.B2 clone revealed significant differences in their elution profiles. The CTL-produced toxin and alpha-lymphotoxin exhibited similar kinetics of lysis of the L929 target cells, with 50% target cell lysis occurring at 10 hr. These data indicate human CTL produce a cytotoxin(s) antigenically distinct from alpha-lymphotoxin and imply that human cytolytic effector T cells are not the cellular source for the production of human alpha-lymphotoxin. The relationship of alpha-lymphotoxin and CTL toxin production was investigated in unseparated peripheral blood mononuclear cells stimulated with lectins or IL 2 for 1 and 5 days. Anti-alpha-lymphotoxin antibodies were capable of neutralizing only 30 to 50% of the cytotoxic activity in 24-hr supernatants. Cytotoxic activity in supernatants harvested after 120 hr stimulation with PHA or Con A was neutralized 70 to 100%, whereas the toxin(s) released from IL 2-stimulated lymphocytes was only neutralized 30%. These data suggest the observed heterogeneity of cytotoxic lymphokines produced by unseparated mononuclear cells depends in part on the subpopulations of effector cells responding to a given stimulus and the capacity of different subpopulations to produce distinct cytotoxins.  相似文献   

15.
The role of innate, alpha/beta interferon (IFN-alpha/beta)-dependent protection versus specific antibody-mediated protection against vesicular stomatitis virus (VSV) was evaluated in IFN-alpha/beta receptor-deficient mice (IFN-alpha/beta R0/0 mice). VSV is a close relative to rabies virus that causes neurological disease in mice. In contrast to normal mice, IFN-alpha/beta R0/0 mice were highly susceptible to infection with VSV because of ubiquitous high viral replication. Adoptive transfer experiments showed that neutralizing antibodies against the glycoprotein of VSV (VSV-G) protected these mice efficiently against systemic infection and against peripheral subcutaneous infection but protected only to a limited degree against intranasal infection with VSV. In contrast, VSV-specific T cells or antibodies specific for the nucleoprotein of VSV (VSV-N) were unable to protect IFN-alpha/beta R0/0 mice against VSV. These results demonstrate that mice are extremely sensitive to VSV if IFN-alpha/beta is not functional and that under these conditions, neutralizing antibody responses mediate efficient protection, but apparently only against extraneuronal infection.  相似文献   

16.
Cytotoxic T lymphocytes (CTL) generated in C57BL/6 (H-2b) mice in response to infection with the serologically distinct herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2) were cross-reactive against target cells infected with either serotype. However, HSV-2-infected cells were shown to be much less susceptible to CTL-mediated lysis, and analysis through the use of HSV-1 X HSV-2 intertypic recombinants mapped the reduced susceptibility to a region contained within 0.82 to 1.00 map units of the HSV-2 genome. The study reported here was undertaken to determine the possible reasons for the reduced susceptibility of HSV-2-infected cells to lysis by CTL. Competition for the specific lysis of labeled HSV-1-infected cells by either HSV-1- or HSV-2-infected, unlabeled inhibitor cells and frequency analysis of the CTL precursor able to recognize HSV-1- and HSV-2-infected cells suggested that the reduced susceptibility of HSV-2-infected cells to lysis could be explained, at least in part, by reduced levels of target cell recognition. A determination of the surface expression of the critical elements involved in target cell recognition by CTL following infection with HSV-1 or HSV-2 revealed that all the major HSV-specific glycoprotein species were expressed. Infection with both HSV-1 and HSV-2 caused a reduction in the expression of the class I H-2 antigens. However, this reduction was much greater following infection with HSV-2. This suggested that one important factor contributing to reduced lysis of HSV-2-infected cells may be the altered or reduced expression of the class I H-2 self-antigens.  相似文献   

17.
Cytolytic human T cell clones generated in response to the intracellular bacterium Rickettsia typhi were characterized. Growing clones were tested for their ability to proliferate specifically in response to antigens derived from typhus group rickettsiae or to lyse targets infected with R. typhi or Rickettsia prowazekii. Two clones were able to lyse targets infected with typhus group rickettsiae. One of these clones was more fully characterized because of its rapid growth characteristics. This cytolytic clone was capable of lysing an autologous infected target as well as a target matched for class I and II histocompatibility leukocyte antigens (HLA). It was not capable, however, of lysing either a target mismatched for both class I and II HLA or a target partially matched for class I HLA. In addition, the clone exhibited specificity in that it was able to lyse an autologous target infected with typhus group rickettsiae, but did not lyse an autologous target infected with an antigenically distinct rickettsial species, Rickettsia tsutsugamushi. These results demonstrate, for the first time, that cells infected with intracellular bacteria can be lysed by human cytotoxic T lymphocytes.  相似文献   

18.
MAGE genes are expressed by many human tumors of different histological types but not by normal cells, except for male germline cells. The Ags encoded by MAGE genes and recognized by T cells are therefore strictly tumor-specific. Clinical trials involving therapeutic vaccination of cancer patients with MAGE antigenic peptides or proteins are in progress. To increase the range of patients eligible for therapy with peptides, it is important to identify additional MAGE epitopes recognized by CTL. Candidate peptides known to bind to a given HLA have been used to stimulate T lymphocytes in vitro. In some instances, CTL clones directed against these synthetic peptides have been obtained, but these clones often failed to recognize tumor cells expressing the relevant gene. Therefore, we designed a method to identify CTL epitopes that selects naturally processed peptides. Monocyte-derived dendritic cells infected with a recombinant canarypoxvirus (ALVAC) containing the entire MAGE-A1 gene were used to stimulate CD8+ T lymphocytes from the blood of individuals without cancer. Responder cell microcultures that specifically lysed autologous cells expressing MAGE-A1 were cloned using autologous stimulator cells either transduced with a retrovirus coding for MAGE-A1 or infected with recombinant Yersinia-MAGE-A1 bacteria. The CTL clones were tested for their ability to lyse autologous cells loaded with each of a set of overlapping MAGE-A1 peptides. This strategy led to the identification of five new MAGE-A1 epitopes recognized by CTL clones on HLA-A3, -A28, -B53, -Cw2, and -Cw3 molecules. All of these CTL clones recognized target cells expressing gene MAGE-A1.  相似文献   

19.
BALB/c mice inoculated with 6 x 10(4) plaque-forming units of a myocarditic variant of Coxsackievirus, group B, type 3 (CVB3M) developed three distinct CTL populations recognizing putative virion (virus specific CTL, VCTL), normally expressed heart (autoreactive CTL, ACTL), and aberrant metabolic (MCTL) Ag. Induction of the MCTL-specific Ag on cardiocytes correlated with the ability of the myocarditic viruses and actinomycin D to interfere with cellular metabolism as measured by 3H-uridine and 3H-leucine incorporation. ACTL specifically lysed uninfected cardiocyte targets, but ACTL Ag expression was lost soon after infection of monocytes only to reappear 6 h later. MCTL and VCTL could be separated by adsorption to myocytes treated with either actinomycin D- or UV-inactivated CVB3M. MCTL cross-reactively lysed myocytes infected with another virus suppressing 3H-uridine incorporation (encephalomyocarditis virus) but failed to react to targets infected with viruses not inhibiting cell metabolism. VCTL specifically lysed only cells infected with the homologous virus. ACTL belonged to the CD8 (Lyt-2+) T cell subset, whereas both VCTL and MCTL were CD4 (L3T4+) T cells.  相似文献   

20.
We have evaluated the efficacy of mitogen (LPS/DxSO4)-activated B cells (B lymphoblasts) to function as antigen-presenting cells (APC) for vesicular stomatitis virus (VSV). Our studies revealed that B lymphoblasts induced potent cytotoxic thymus (T)-derived lymphocyte (CTL) activity in VSV-immune splenic T cells depleted of adherent accessory cells. Dose-response curves indicated that B lymphoblasts were approximately 15-20 times more efficient APC than spleen cells for CTL induction against VSV. There was little evidence of reprocessing of viral antigens by the responder population because only CTL activity restricted to the parental haplotype of the B lymphoblast was generated following stimulation of VSV-immune F1 T cells. B lymphoblasts activated VSV-specific memory CTL which expressed the Lyt-1-23+, AsGM1+ phenotype without activating natural killer and/or lymphokine-activated killer cells. The ability of B lymphoblasts to function as efficient APC was not related to enhanced viral replication in these cells because potent VSV-specific proliferative and class I-restricted CTL responses were induced by B lymphoblasts infected with VSV rendered noninfectious by exposure to ultraviolet (uv) light. This indicates that activated B cells can efficiently process and present input virion protein. Purified splenic B cells that were not activated by mitogen stimulation did not function as APC for VSV even at high multiplicities of infection. The failure of B cells to function as APC for VSV was related to inefficient uptake of VSV and their inability to provide accessory cell signals required for T-cell proliferation; both these functions developed following mitogen stimulation. These data suggest that activated B cells may function as a potent APC population for virus independent of the specificity of their immunoglobulin antigen receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号