首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mixtures of cytochrome c oxidase and cytochrome c have been titrated by coulometrically generated reductant, methyl viologen radical cation, and physiological oxidant, O2. Charge distribution among the heme components in mixtures of these two redox enzymes has been evaluated by monitoring the absorbance changes at 605 and 550 nm. Differences in the pathway of the electron transfer process during a reduction cycle as compared to an oxidation cycle are indicated by variations found in the absorbance behavior of the heme components during successive reductive and oxidative titrations. It is apparent that the potential of the cytochrome a heme is dependent upon whether oxidation or reduction is occurring.  相似文献   

2.
Motion of cytochrome c bound to giant (2-10-micron diam) mitochondria isolated from the waterbug Lethocerus indicus was examined using the technique of fluorescence recovery after photobleaching. Fluorescent cytochrome c was exchanged for native cytochrome c through partly damaged outer membrane. Recovery profiles were not statistically different when the fluorescence from iron-free cytochrome c or fluorescein-labeled cytochrome c was used and were essentially the same in the presence or absence of an uncoupler. In the presence of excess porphyrin cytochrome c, the apparent diffusion coefficient was 6 X 10(-11) cm2/s in 0.3 M sucrose-mannitol-EDTA and 3 X 10(-10) cm2/s in 0.10 M KCl/0.10 M sucrose. At concentrations of porphyrin cytochrome c that are stoichiometric with cytochrome c oxidase and for mitochondria in which excess cytochrome c was washed away, two components were observed in the recovery profile. The diffusion coefficient of the fast component was 1 X 10(-10) cm2/s. The second component showed no recovery during the time scale of measurement (D less than 10(-12) cm2/s). We speculate on the origin of the immobile fraction.  相似文献   

3.
On the basis of polarographic data it is shown that protamine has a biphasic effect on the respiration of intact mitochondria. At lower protamine concentrations respiration is stimulated and this combined with a decrease of the respiratory control index; at higher ones respiration is inhibited and respiratory control is lost. In cytochrome c-depleted and restored mitochondria protamine effect on oxidative phosphorylation is only inhibitory. Increasing cytochrome c concentrations restore respiration in protamine-treated cytochrome c depleted mitochondria but not the respiratory control. Binding of cytochrome c to mitochondria is studied by determining from Scatchard plots the number of high affinity binding sites (n) and their stability constants (K). In absence of protamine in intact mitochondria n = 2.7 and K = 4.67-10(6) M-1; in cotochrome c depleted mitochondria n = 4.7 and K = 5.16-10(6) M-1. In both types of mitochondria protamine decreases significantly n as well as K. These data show that protamine may affect oxidative phosphorylation by causing desorption of cytochrome c from the inner mitochondrial membrane.  相似文献   

4.
By an improved isolation procedure chloroplasts could be obtained from the alga Bumilleriopsis filiformis (Xanthophyceae) which exhibited high electron transport rates tightly coupled to ATP formation. Uncouplers both stimulate electron transport and inhibit photophosphorylation. These chloroplasts retain almost all soluble cytochrome c-553 besides a membrane-bound cytochrome c-554.5 (=f-554.5). Sonification or iron deficiency removed the soluble cytochrome only with a concurrent decrease of electron transport from water to methyl viologen or to NADP and decreased non-cyclic and cyclic photophosphorylation. However, photosynthetic control and the P/2e ratios remain unaltered. In Bumilleriopsis, which apparently has no plastocyanin, the soluble cytochrome c-553 seemingly links electron transport between the bound cytochrome c and P-700.  相似文献   

5.
6.
The role of cytochrome c diffusion in mitochondrial electron transport   总被引:3,自引:0,他引:3  
We have compared the modes and rates of cytochrome c diffusion to the rates of cytochrome c-mediated electron transport in isolated inner membranes and in whole intact mitochondria. For inner membranes, an increasing ionic strength results in an increasing rate of cytochrome c diffusion, a decreasing concentration (affinity) of cytochrome c near the membrane surface as well as near its redox partners, and an increasing rate of electron transport. For intact mitochondria, an increasing ionic strength results in a parallel, increasing rate of cytochrome c-mediated electron transport. In both inner membranes and intact mitochondria the rate of cytochrome c-mediated electron transport is highest at physiological ionic strength (100-150 mM), where the diffusion rate of cytochrome c is highest and its diffusion mode is three-dimensional. In intact mitochondria, succinate and duroquinol-driven reduction of endogenous cytochrome c is greater than 95% at all ionic strengths, indicating that cytochrome c functions as a common pool irrespective of its diffusion mode. Using a new treatment to obtain bimolecular diffusion-controlled collision frequencies in a heterogenous diffusion system, where cytochrome c diffuses laterally, pseudo-laterally, or three-dimensionally while its redox partners diffuse laterally, we determined a high degree of collision efficiency (turnover/collisions) for cytochrome c with its redox partners for all diffusion modes of cytochrome c. At physiological ionic strength, the rapid diffusion of cytochrome c in three dimensions and its low concentration (affinity) near the surface of the inner membrane mediate the highest rate of electron transport through maximum collision efficiencies. These data reveal that the diffusion rate and concentration of cytochrome c near the surface of the inner membrane are rate-limiting for maximal (uncoupled) electron transport activity, approaching diffusion control.  相似文献   

7.
Stigmatellin and its derivatives represent a third class of Qo site inhibitors besides the hydroxyquinone derivatives and the E-beta-methoxyacrylate (MOA) inhibitors [von Jagow and Link (1986) Methods Enzymol. 126, 253-271]. The stigmatellins consist of a chromone ring system connected to an substituted alkenyl side chain. Alterations in the side chain, i.e. saturation of the C = C double bonds, shift of a methoxy group or loss of the methyl groups, specifically affect the binding characteristics. Besides changing the red shift spectrum of reduced cytochrome b566 and the EPR spectrum of the Rieske iron-sulfur cluster, the side chain alterations diminish the binding affinity and the extent of the midpoint potential shift of the iron-sulfur protein. Thus, the side chain of the molecule makes an essential contribution to the binding energy and is not necessary solely for partitioning the molecule into the hydrophobic phase, as assumed so far.  相似文献   

8.
9.
The effect of a monoclonal antibody to a soluble cytochrome c from Paracoccus denitrificans was tested on the membrane-bound electron-transport system of this bacterium. This antibody (F3-10.2) and one previously described (F3-29.4) (Kuo, L.M., Davies, H.C. and Smith, L. (1984) Biochim. Biophys. Acta 766, 472-482) were deduced to bind to the cytochrome c in the area including amino acid residue number 23 on a loop on the side of the heme crevice. In contrast to the observations with the previously tested antibody, the present data show the second antibody to block completely the reaction of the cytochrome c with cytochrome c oxidase but not that with cytochrome c reductase. Neither antibody has an appreciable inhibitory effect on the NADH oxidase of the isolated detergent-treated membranes. The two antibodies bind in different ways, giving insight into the interaction of a soluble protein with membrane-bound enzymes. The data indicate that the reaction sites on the cytochrome c for the oxidase and reductase moieties of P. denitrificans are different. They also argue against the need for a dissociable cytochrome c comparable to that which functions on the mitochondrial inner membrane.  相似文献   

10.
A novel method for initiating intramolecular electron transfer in cytochrome c oxidase is reported. The method is based upon photoreduction of cytochrome c labeled with thiouredopyrene-3,6, 8-trisulfonate in complex with cytochrome oxidase. The thiouredopyrene-3,6,8-trisulfonate-labeled cytochrome c was prepared by incubating the thiol reactive form of the dye with yeast iso-1-cytochrome c, containing a single cysteine residue. Laser pulse excitation of a stoichiometrical complex between thiouredopyrene-3,6,8-trisulfonate-cytochrome c and bovine heart cytochrome oxidase at low ionic strength resulted in the reduction of cytochrome c by the excited form of thiouredopyrene-3,6, 8-trisulfonate and subsequent intramolecular electron transfer from the reduced cytochrome c to cytochrome oxidase. The maximum efficiency by a single laser pulse resulted in the reduction of approximately 17% of cytochrome a, and was achieved only at a 1 : 1 ratio of cytochrome c to cytochrome oxidase. At higher cytochrome c to cytochrome oxidase ratios the heme a reduction was strongly suppressed.  相似文献   

11.
[3H]-p-Azidophenacylbromide-(methyl-4-mercaptobutyrimidate)-cytochrome c from Saccharomyces cerevisiae was prepared and its properties determined. The radioactive photoaffinity-labeled cytochrome c was linked by irradiation into a covalent complex with cytochrome c oxidase. Analysis of the complex on SDS-polyacrylamide gels showed that cytochrome c bound to one of the smaller subunits of cytochrome c oxidase with an apparent molecular weight of 15,000.  相似文献   

12.
Flöck D  Helms V 《Proteins》2002,47(1):75-85
Electron transferring protein complexes form only transiently and the crystal structures of electron transfer protein--protein complexes involving cytochrome c could so far be determined only for the pairs of yeast cytochrome c peroxidase (CcP) with iso-1-cytochrome c (iso-1-cyt c) and with horse heart cytochrome c (cyt c). This article presents models from computational docking for complexes of cytochrome c oxidase (COX) from Paracoccus denitrificans with horse heart cytochrome c, and with its physiological counterpart cytochrome c552 (c552). Initial docking is performed with the FTDOCK program, which permits an exhaustive search of translational and rotational space. A filtering procedure is then applied to reduce the number of complexes to a manageable number. In a final step of structural and energetic refinement, the complexes are optimized by rigid-body energy minimization with the molecular mechanics package CHARMM. This methodology was first tested on the CcP:iso-1-cyt c complex, in which the complex with the lowest CHARMM energy has an RMSD from the crystal structure of only 1.8 A (C(alpha) carbon atoms). Notably, the crystal conformation has an even lower energy. The same procedure was then applied to COX:cyt c and COX:c552. The lowest-energy COX:cyt c complex is very similar to a docking model previously described for the complex of bovine cytochrome c oxidase with horse heart cytochrome c. For the COX:c552 complex, cytochrome c552 is found in two different orientations, depending on whether it is docked against COX from a two-subunit or from a four-subunit crystal structure, respectively. Both conformations are discussed critically in the light of the available experimental data.  相似文献   

13.
The kinetic rates and equilibrium association constants for cyanide binding have been measured for a series of cytochrome c derivatives as a probe of heme accessibility. The series included horse and yeast cytochromes iodinated at Tyr 67 and 74, horse cytochrome formylated at Trp 59 in both a low and high redox potential form, the Met 80 sulfoxide derivative of horse cytochrome and the N-acylisourea heme propionate derivative of tuna cytochrome. Native cytochromes c are well known to bind cyanide slowly in a reaction simply first order both in cytochrome and cyanide up to at least 100 mM in cyanide. The derivative demonstrate markedly different kinetics which indicate the following conclusions. (1) In spite of chemical modification at different loci, all the derivatives have highly similar reactivity, suggesting common ligation structures and mechanisms for reaction. (2) Compared to native cytochromes, reaction rates are 10-20 fold greater. This is in accord with a more accessible heme crevice, but not a completely opened crevice. For the completely opened case, rate increases are expected to be between three and five orders of magnitude. (3) Reaction rates are either independent of cyanide concentration (zero order) or show only slight variation. A mechanism which accounts for the data over four orders of magnitude in concentration postulates a protein conformation step, opening of the heme crevice, as the rate determining step. This conformation change has a limiting rate of 6 . 10(-2) s-1.  相似文献   

14.
Import of cytochrome c into mitochondria. Cytochrome c heme lyase   总被引:16,自引:0,他引:16  
The import of cytochrome c into mitochondria can be resolved into a number of discrete steps. Here we report on the covalent attachment of heme to apocytochrome c by the enzyme cytochrome c heme lyase in mitochondria from Neurospora crassa. A new method was developed to measure directly the linkage of heme to apocytochrome c. This method is independent of conformational changes in the protein accompanying heme attachment. Tryptic peptides of [35S]cysteine-labelled apocytochrome c, and of enzymatically formed holocytochrome c, were resolved by reverse-phase HPLC. The cysteine-containing peptide to which heme was attached eluted later than the corresponding peptide from apocytochrome c and could be quantified by counting 35S radioactivity as a measure of holocytochrome c formation. Using this procedure, the covalent attachment of heme to apocytochrome c, which is dependent on the enzyme cytochrome c heme lyase, could be measured. Activity required heme (as hemin) and could be reversibly inhibited by the analogue deuterohemin. Holocytochrome c formation was stimulated 5--10-fold by NADH greater than NADPH greater than glutathione and was independent of a potential across the inner mitochondrial membrane. NADH was not required for the binding of apocytochrome c to mitochondria and was not involved in the reduction of the cysteine thiols prior to heme attachment. Holocytochrome c formation was also dependent on a cytosolic factor that was necessary for the heme attaching step of cytochrome c import. The factor was a heat-stable, protease-insensitive, low-molecular-mass component of unknown function. Cytochrome c heme lyase appeared to be a soluble protein located in the mitochondrial intermembrane space and was distinct from the previously identified apocytochrome c binding protein having a similar location. A model is presented in which the covalent attachment of heme by cytochrome c heme lyase also plays an essential role in the import pathway of cytochrome c.  相似文献   

15.
Cytochrome c3 (cyt c3) can mediate electron transport across phosphatidylcholine (PC)/cardiolipin (CL) and PC/phosphatidylglycerol (PG) membranes. A two-molecule process is involved in the electron transport across PC/CL membranes in the liquid-crystalline state. In contrast, a single-molecule process dominates the electron transport across PC/CL membranes in the gel state and PC/PG membranes in the liquid-crystalline and gel states. Namely, the electron transport mechanism differs with the phospholipid composition and membrane fluidity. The rate-limiting step of the two-molecule process was lateral diffusion of cyt c3 in membranes. The rate constants for the three single-molecule process cases were similar to each other. To elucidate these reaction processes, interactions between cyt c3 and phosphate groups and between cyt c3 and the glycerol backbones of phospholipid bilayers were investigated by means of 31P and 2H solid-state NMR, respectively, for CL and PC/CL membranes. The results showed that the polar headgroups of both phosphatidylcholine and CL are involved in the binding of cyt c3. Also, cyt c3 penetrates into membranes, which would induce distortion of the lipid bilayer. The molecular mechanisms underlying the single- and two-molecule processes are discussed in terms of membrane structure.  相似文献   

16.
17.
18.
19.
Respiratory chains are crucial for cellular energy conversion and consist of multi‐subunit complexes that can assemble into supercomplexes. These structures have been intensively characterized in various organisms, but their physiological roles remain unclear. Here, we elucidate their function by leveraging a high‐resolution structural model of yeast respiratory supercomplexes that allowed us to inhibit supercomplex formation by mutation of key residues in the interaction interface. Analyses of a mutant defective in supercomplex formation, which still contains fully functional individual complexes, show that the lack of supercomplex assembly delays the diffusion of cytochrome c between the separated complexes, thus reducing electron transfer efficiency. Consequently, competitive cellular fitness is severely reduced in the absence of supercomplex formation and can be restored by overexpression of cytochrome c. In sum, our results establish how respiratory supercomplexes increase the efficiency of cellular energy conversion, thereby providing an evolutionary advantage for aerobic organisms.  相似文献   

20.
The polyphenolic structure common to flavonoids enables them to donate electrons and exert antioxidant activity. Since the mitochondrial electron transport chain consists of a series of redox intermediates, the effect of flavonoids in a complex mixture of polyphenols, as well as related pure flavonoids, was evaluated on the rat liver mitochondrial electron transport chain. A French maritime pine bark extract (PBE), a complex mixture of polyphenols and related pure flavonoids, was able to reduce cytochrome c reversibly, possibly by donation of electrons to the iron of the heme group; the donated electrons can be utilized by cytochrome c oxidase. Among single flavonoids tested, (-)-epicatechin gallate had the greatest ability to reduce cytochrome c. In addition, PBE competitively inhibited electron chain activity in both whole mitochondria and submitochondrial particles. A 3.5-fold increase in the apparent Km value for succinate was calculated from reciprocal plots. Among the flavonoids tested, taxifolin and (-)-epicatechin gallate showed minor inhibitory effects, while (+/-)-catechin and (+)-epicatechin were ineffective. Activities of NADH-ubiquinone, succinate-ubiquinone, and ubiquinol-cytochrome c reductases were inhibited by low concentrations of PBE to a similar extent. However, inhibition of cytochrome c oxidase activity required 4-fold higher PBE concentrations. These results suggest that flavonoids reduce cytochrome c and that PBE inhibits electron transport chain activity mainly through NADH-ubiquinone, succinate-ubiquinone, and ubiquinol-cytochrome c reductases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号