首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cardiovascular disease prevention and treatment   总被引:1,自引:1,他引:0  
The incidence of fatal and non-fatal cardiovascular disease (sudden cardiac death (SCD), myocardial infarction, others) varies, depending on conventional risk factors. However, in Western countries, like the US or Germany, incidences of fatal and non-fatal cardiovascular disease are far higher than in countries like Japan. In the present article, these differences are discussed and related to eicosapentaenoic acid (C20:5omega-3 or C20:5n-3; EPA) and docosahexaenoic acid (C22:6omega-3; DHA). Dietary intake of EPA and DHA and a number of other factors determine levels of EPA and DHA in an individual—best assessed as the omega-3 index, defined as the percentage of EPA and DHA in red cells, and analyzed in a standardized fashion. A review of the literature, expanded by measurements of the omega-3 index, indicates that the risk of sudden cardiac death correlates inversely with the omega-3 index. For persons with an omega-3 index <4%, risk is tenfold, as compared to persons with an omega-3 index >8%. A similar, less-pronounced, correlation exists for non-fatal cardiovascular disease. EPA and DHA have anti-arrhythmic and anti-atherosclerotic mechanisms of action. In large-scale intervention studies, intake of EPA and DHA has been demonstrated to reduce SCD and non-fatal cardiovascular events. Assessing or recommending dietary intake of EPA and DHA does not predict the resulting omega-3 index. Taken together, the omega-3 index is a biomarker to assess a person's content of omega-3 fatty acids, and thus the risk for sudden cardiac death, as well as non-fatal cardiovascular events. EPA and DHA prevent fatal and non-fatal cardiovascular disease and complications of congestive heart failure.  相似文献   

2.
Cardiovascular disease and long-chain omega-3 fatty acids   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: Of all known dietary factors, long-chain omega-3 fatty acids may be the most protective against death from coronary heart disease. New evidence has confirmed and refined the cardioprotective role of these fatty acids. RECENT FINDINGS: Omega-3 fatty acid supplementation reduces the risk of sudden cardiac death and death from any cause within 4 months in post-myocardial infarction patients. Evidence continues to accrue for benefits in the primary prevention of coronary heart disease and stroke, and an anti-arrhythmogenic mechanism is emerging as the most likely explanation. SUMMARY: Current evidence suggests that individuals with coronary artery disease may reduce their risk of sudden cardiac death by increasing their intake of long-chain omega-3 fatty acids by approximately 1 g per day.  相似文献   

3.
PURPOSE OF REVIEW: N-3 fatty acids from fish reduce cardiovascular mortality including sudden cardiac death. In this paper, the authors discuss the results of human studies with regard to the hypothesis that n-3 fatty acids reduce the risk of fatal coronary heart disease through antiarrhythmic effects. RECENT FINDINGS: Results from two recent clinical trials do not support a protective effect of n-3 fatty acids. In light of the earlier published bulk of evidence that n-3 fatty acids reduce cardiovascular mortality and sudden cardiac death, it is hard to explain these findings. Two recent observational studies confirmed that intake of n-3 fatty acids from fish is associated with less cardiovascular disease in the general population. They indicated that the protective effect of a fish meal may depend on the n-3 fatty acid content or preparation method and suggested a protective effect on arrhythmia rather than on atherosclerosis. Intervention studies on electrophysiological predictors of arrhythmia do not clearly confirm a beneficial effect of n-3 fatty acids. However, most of these studies were small or performed in healthy populations. SUMMARY: The available evidence still suggests that n-3 fatty acids may prevent fatal cardiac arrhythmia, but more conclusive studies are urgently needed.  相似文献   

4.
Omega-3 fatty acids from fish oils and cardiovascular disease   总被引:10,自引:0,他引:10  
Fish and fish oils contain the omega-3 fatty acids known as eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Epidemiological studies have shown an inverse relation between the dietary consumption of fish containing EPA/DHA and mortality from coronary heart disease. These relationships have been substantiated from blood measures of omega-3 fatty acids including DHA as a physiological biomarker for omega-3 fatty acid status. Controlled intervention trials with fish oil supplements enriched in EPA/DHA have shown their potential to reduce mortality in post-myocardial infarction patients with a substantial reduction in the risk of sudden cardiac death. The cardioprotective effects of EPA/DHA are widespread, appear to act independently of blood cholesterol reduction, and are mediated by diverse mechanisms. Their overall effects include anti-arrhythmic, blood triglyceride-lowering, anti-thrombotic, anti-inflammatory, endothelial relaxation, plus others. Current dietary intakes of EPA/DHA in North America and elsewhere are well below those recommended by the American Heart Association for the management of patients with coronary heart disease. (Mol Cell Biochem 263: 217–225, 2004)  相似文献   

5.
Epidemiological evidence from Greenland Eskimos and Japanese fishing villages suggests that eating fish oil and marine animals can prevent coronary heart disease. Dietary studies from various laboratories have similarly indicated that regular fish oil intake affects several humoral and cellular factors involved in atherogenesis and may prevent atherosclerosis, arrhythmia, thrombosis, cardiac hypertrophy and sudden cardiac death. The beneficial effects of fish oil are attributed to their n-3 polyunsaturated fatty acid (PUFA; also known as omega-3 fatty acids) content, particularly eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3). Dietary supplementation of DHA and EPA influences the fatty acid composition of plasma phospholipids that, in turn, may affect cardiac cell functions in vivo. Recent studies have demonstrated that long-chain omega-3 fatty acids may exert beneficial effects by affecting a wide variety of cellular signaling mechanisms. Pathways involved in calcium homeostasis in the heart may be of particular importance. L-type calcium channels, the Na+-Ca2+ exchanger and mobilization of calcium from intracellular stores are the most obvious key signaling pathways affecting the cardiovascular system; however, recent studies now suggest that other signaling pathways involving activation of phospholipases, synthesis of eicosanoids, regulation of receptor-associated enzymes and protein kinases also play very important roles in mediating n-3 PUFA effects on cardiovascular health. This review is therefore focused on the molecular targets and signaling pathways that are regulated by n-3 PUFAs in relation to their cardioprotective effects.  相似文献   

6.
Docosahexaenoic acid (DHA) and cardiovascular disease risk factors   总被引:2,自引:1,他引:1  
Numerous epidemiological and controlled interventional trials have supported the health benefits of long-chain omega-3 fatty acids in the form of docosahexaenoic acid (DHA, 22:6n-3) plus eicosapentaenoic acid (EPA, 20:5n-3) from fish and fish oils as well as from algal sources. The beneficial effects on cardiovascular disease and related mortality including various risk factors for cardiovascular disease (particularly lowering circulating triglyceride levels and the triglyceride:HDL-cholesterol ratio) have been observed in the absence of any concomitant blood cholesterol lowering. With appropriate dosages, consistent reductions in both fasting and postprandial triglyceride levels and moderate increases in fasting HDL-cholesterol levels have been observed with algal DHA in the majority of trials. These results are similar to findings for fish oils containing DHA and EPA. Related to greater fish intake, higher levels of DHA in circulating blood biomarkers (such as serum phospholipid) have been associated with reduced risks for the progression of coronary atherosclerosis and lowered risk from sudden cardiac death. Controlled clinical trials have also indicated the potential for algal DHA supplementation to have moderate beneficial effects on other cardiovascular disease risk factors including blood pressures and resting heart rates. Recommended intakes of DHA+EPA from numerous international groups for the prevention and management of cardiovascular disease have been forthcoming, although most have not offered specific recommendations for the optimal individual intake of DHA and EPA.  相似文献   

7.
Diabetes is a significant risk factor for cardiovascular diseases with the majority of these complications being attributed to coronary vascular pathology. However, both in humans and animal models of diabetes, an additional heart muscle specific disease in the absence of any vascular pathology has also been described. Even though diverse mechanisms have been suggested to explain the etiology of this diabetic heart disease, important roles of oxidative stress and cell death have been implicated behind this disorder. Apart from hyperglycemia, cardiac lipid overload is currently believed to be responsible for oxidative stress and cell death in the diabetic heart. Although lipotoxicity is considered a major player in precipitating cardiac cell death, most of the existing work revolves around saturated and monounsaturated fatty acids. Looking at the current western diet with its preponderance of omega-6 polyunsaturated fatty acids (PUFA), more emphasis should be placed on its role in the diabetic heart. In this review, we shall highlight the most intriguing and updated findings of the differential fatty acid classes including omega-6 PUFA and their established/probable roles on diabetic myocardial cell death.  相似文献   

8.
Health consciousness has increased the desire of people around the world to consume functional foods. Omega-3 essential fatty acids are one among these beneficial and important health supplements without which a general predisposition to degenerative and stress related disorders can occur. Saudi Arabia has shown an alarming increase in obesity (Al-Nozha et al., 2005), diabetes (Alqurashi et al., 2011), and cardiovascular disease (Al-Nozha et al., 2004) in the last few decades mainly due to nutritional transitions and lifestyle alterations (Amuna and Zotor, 2008). Lack of nutrient dense foods and the prevailing food related disorder of obesity (Popkin, 2001; Prentice, 2014) especially render egg as a choice food to be value-added for attaining nutritional security in Saudi Arabia and in effect reverse the increasing incidences of lifestyle diseases. Nutritional intervention through a commonly consumed food product would be an important step in improving the health of the people, and reducing health care costs. As eggs are a frequently consumed food item in Saudi Arabia, enriching them with omega-3 fatty acids would be an excellent way to alleviate the existing problems. A significant deposition of omega-3 fatty acids in the eggs was observed when the diet of hens was supplemented with omega-3 fatty acids from either flaxseed or fish oil source. Inadequacy of omega-3 fatty acids could thus be rectified by producing omega-3 enriched eggs from hens supplemented with flaxseed or fish oil source, and thus contribute toward better health choice of the consumer.  相似文献   

9.
The concept that diet-induced changes in membrane lipids could modify heart function partly arose from observations that membrane composition and physical properties were closely associated with the capacity of the heart to respond appropriately to torpor and hibernation. Observations of natural hibernators further revealed that behavior of key membrane-bound enzymes could be influenced through the lipid composition of the cell membrane, either by changing the surrounding fatty acids through reconstitution into a foreign lipid milieu of different composition, or by alteration through diet. Myocardial responsiveness to beta-adrenoceptor stimulation, including initiation of spontaneous dysrhythmic contractions, was altered by both hibernation and dietary modulation of membrane fatty acids, suggesting modified vulnerability to cardiac arrhythmia. Subsequent studies using whole-animal models recognized that vulnerability to ventricular fibrillation decreased as the polyunsaturated: saturated fat (P:S) ratio of the diet increased. However, dietary fish oils, which typically contain at least 30% saturated fatty acids and only 30% long-chain n-3 (omega-3) polyunsaturated fatty acids (PUFA), exhibit antiarrhythmic effects that exceed the predicted influence of the P:S ratio, suggesting properties unique to the long-chain n-3 PUFA. Large-scale clinical trials and epidemiology have confirmed the arrhythmia prevention observed in vitro in myocytes, papillary muscles, and isolated hearts and in whole-animal models of sudden cardiac death. Some progress has been made towards a biologically plausible mechanism. These developments highlight nature’s ability to provide guidance for the most unexpected applications.  相似文献   

10.
There is evidence that omega-3 (omega3) fatty acids derived from fish and fish oils reduce the risk of cardiovascular disease via mechanisms underlying atherosclerosis, thrombosis and inflammation. Despite these benefits, there has been concern that these fatty acids may increase lipid peroxidation. However, the in vivo data to date are inconclusive, due in part to limitations in the methodologies. In this regard, our findings using the measurement of F(2)-isoprostanes, a reliable measure of in vivo lipid peroxidation and oxidant stress, do not support adverse effects of omega3 fatty acids on lipid peroxidation.  相似文献   

11.
Dietary n-3 polyunsaturated fatty acids (PUFA) derived from fatty fish or fish oil may reduce the incidence of lethal myocardial infarction and sudden cardiac death. This might be due to a prevention of fatal cardiac arrhythmias. So far, however, only few clinical data are available being adequate to define indications for an antiarrhythmic treatment with n-3 PUFA. In a randomized, double-blind, placebo-controlled study 65 patients with cardiac arrhythmias without coronary heart disease or heart failure were subdivided into 2 groups. One group (n = 33) was supplemented with encapsulated fish oil (3g/day, equivalent to 1g/day of n-3 PUFA) over 6 months. The other group (n = 32) was given 3g/day of olive oil as placebo. In the fish oil group a decrease of serum triglycerides, total cholesterol, LDL cholesterol, plasma free fatty acids and thromboxane B2 as well as an increase of HDL cholesterol were observed. Moreover, a reduced incidence of atrial and ventricular premature complexes, couplets and triplets were documented. Accordingly, higher grades of Lown's classification switched to lower grades at the end of the dietary period. No changes were seen in the placebo group. The data indicate an antiarrhythmic action of n-3 PUFA under conditions of clinical practice which might help to explain the reduced incidence of fatal myocardial infarction and sudden cardiac death in cohorts on a fish-rich diet or supplemented with n-3 PUFA. Further studies elucidating the possible link between the reduced incidence of cardiac arrhythmias and sudden cardiac death by dietary intake of n-3 PUFA are warranted.  相似文献   

12.
The type of diet consumed by individuals has been associated with the development of some chronic diseases, including cardiovascular disease (CVD), cancer, diabetes, and others. Populations that consume diets rich in fruits and vegetables and drink wine in moderation, as the Mediterranean, have a higher life expectancy and less chronic diseases than other occidental populations. We carried out an intervention study in humans to evaluate the effect of a Mediterranean diet (MD), an Occidental diet (OD) and their supplementation with red wine, on biochemical, physiological and clinical parameters related to atherosclerosis and other chronic diseases. For 3 months, two groups of 21 male volunteers each, received either a MD or an OD; during the second month, red wine was added isocalorically, 240 ml/day. At days 0, 30, 60 and 90, clinical, physiological and biochemical evaluations were made. In this article we report on the results obtained in plasma fatty acids profile that includes saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), omega-6 fatty acids, omega-3 fatty acids and omega-6/omega-3 ratio. Other results have been published previously. Plasma fatty acid percentages in the OD group, compared to the MD group, did not show differences in SFA, but the OD group showed lower levels of MUFA and omega-3 fatty acids, and higher levels of PUFA and omega-6 fatty acids, with a higher omega-6/omega-3 ratio than the MD group. Wine supplementation reduced MUFA and increased PUFA in both dietary groups, suggesting that wine could improve a diet with a good omega-6/omega-3 ratio. Volunteers on MD showed a better fatty acid profile than those on OD, suggesting a lower cardiovascular risk. Moderate consumption of wine improves this profile in the MD group.  相似文献   

13.
Several sources of information suggest that human beings evolved on a diet with a ratio of omega-6 to omega-3 essential fatty acids (EFA) of approximately 1 whereas in Western diets the ratio is 15/1-16.7/1. Western diets are deficient in omega-3 fatty acids, and have excessive amounts of omega-6 fatty acids compared with the diet on which human beings evolved and their genetic patterns were established. Excessive amounts of omega-6 polyunsaturated fatty acids (PUFA) and a very high omega-6/omega-3 ratio, as is found in today's Western diets, promote the pathogenesis of many diseases, including cardiovascular disease, cancer, and inflammatory and autoimmune diseases, whereas increased levels of omega-3 PUFA (a lower omega-6/omega-3 ratio), exert suppressive effects. In the secondary prevention of cardiovascular disease, a ratio of 4/1 was associated with a 70% decrease in total mortality. A ratio of 2.5/1 reduced rectal cell proliferation in patients with colorectal cancer, whereas a ratio of 4/1 with the same amount of omega-3 PUFA had no effect. The lower omega-6/omega-3 ratio in women with breast cancer was associated with decreased risk. A ratio of 2-3/1 suppressed inflammation in patients with rheumatoid arthritis, and a ratio of 5/1 had a beneficial effect on patients with asthma, whereas a ratio of 10/1 had adverse consequences. These studies indicate that the optimal ratio may vary with the disease under consideration. This is consistent with the fact that chronic diseases are multigenic and multifactorial. Therefore, it is quite possible that the therapeutic dose of omega-3 fatty acids will depend on the degree of severity of disease resulting from the genetic predisposition. A lower ratio of omega-6/omega-3 fatty acids is more desirable in reducing the risk of many of the chronic diseases of high prevalence in Western societies, as well as in the developing countries.  相似文献   

14.
The brain is one of the organs with the highest level of lipids (fats). Brain lipids, formed of fatty acids, participate in the structure of membranes, for instance 50 % fatty acids are polyunsaturated in the gray matter, 1/3 are of the omega-3 family, and are thus of dietary origin. The omega-3 fatty acids (mainly alpha-linolenic acid, ALA) participated in one of the first experimental demonstration of the effect of dietary substances (nutrients) on the structure and function of the brain. Experiments were first of all carried out on ex vivo cultured brain cells, then on in vivo brain cells (neurons, astrocytes and oligodendrocytes) from animals fed ALA deficient diet, finally on physicochemical (membrane fluidity), biochemical, physiological, neurosensory (vision an auditory responses), and behavioural or learning parameters. These findings indicated that the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for human infants determines to a certain extend the visual, neurological, and intellectual abilities. Thus, in view of these results and of the high polyunsaturated fatty acid content of the brain, it is normal to consider that they could be involved in psychiatric diseases and in the cognitive decline of ageing. Omega-3 fatty acids appear effective in the prevention of stress, however their role as regulator of mood is a matter for discussion. Indeed, they play a role in the prevention of some disorders including depression (especially post partum), as well as in dementia, particularly Alzheimer's disease. Their role in major depression and bipolar disorder (manic-depressive disease), only poorly documented, is not clearly demonstrated. The intervention of omega-3 in dyslexia, autism, and schizophrenia has been suggested, but it does not necessarily infer a nutritional problems. The respective importance of the vascular system (where the omega-3 are actually active) and the cerebral parenchyma itself, remain to be resolved. However, the insufficient supply of omega-3 fatty acids in today diet in occidental (less than 50 % of the recommended dietary intakes values for ALA) raises the problem of how to correct inadequate dietary habits, by prescribing mainly rapeseed (canola) and walnut oils on the one hand, fatty fish (wild, or farmed, but the nature of fatty acids present in fish flesh is the direct consequence of the nature of fats with which they have been fed), and eggs from laying hens fed omega-3 fatty acids.  相似文献   

15.
Epidemiological evidence suggests that dietary consumption of the long chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), commonly found in fish or fish oil, may modify the risk for certain neuropsychiatric disorders. As evidence, decreased blood levels of omega-3 fatty acids have been associated with several neuropsychiatric conditions, including Attention Deficit (Hyperactivity) Disorder, Alzheimer's Disease, Schizophrenia and Depression. Supplementation studies, using individual or combination omega-3 fatty acids, suggest the possibility for decreased symptoms associated with some of these conditions. Thus far, however, the benefits of supplementation, in terms of decreasing disease risk and/or aiding in symptom management, are not clear and more research is needed. The reasons for blood fatty acid alterations in these disorders are not known, nor are the potential mechanisms by which omega-3 fatty acids may function in normal neuronal activity and neuropsychiatric disease prevention and/or treatment. It is clear, however, that DHA is the predominant n-3 fatty acid found in the brain and that EPA plays an important role as an anti-inflammatory precursor. Both DHA and EPA can be linked with many aspects of neural function, including neurotransmission, membrane fluidity, ion channel and enzyme regulation and gene expression. This review summarizes the knowledge in terms of dietary omega-3 fatty acid intake and metabolism, as well as evidence pointing to potential mechanisms of omega-3 fatty acids in normal brain functioning, development of neuropsychiatric disorders and efficacy of omega-3 fatty acid supplementation in terms of symptom management.  相似文献   

16.
Dietary omega-3 polyunsaturated fatty acids have a proven role in reducing the risk of cardiovascular disease and precursor disease states such as metabolic syndrome. Although most studies have focussed on the predominant omega-3 fatty acids found in fish oils (eicosapentaenoic acid and docosahexaenoic acid), recent evidence suggests similar health benefits from their common precursor, stearidonic acid. Stearidonic acid is a Δ6-unsaturated C18 omega-3 fatty acid present in a few plant species (mainly the Boraginaceae and Primulaceae ) reflecting the general absence of Δ6-desaturation from higher plants. Using a Δ6-desaturase from Primula vialii , we generated transgenic Arabidopsis and linseed lines accumulating stearidonic acid in their seed lipids. Significantly, the P. vialii Δ6-desaturase specifically only utilises α-linolenic acid as a substrate, resulting in the accumulation of stearidonic acid but not omega-6 γ-linolenic acid. Detailed lipid analysis revealed the accumulation of stearidonic acid in neutral lipids such as triacylglycerol but an absence from the acyl-CoA pool. In the case of linseed, the achieved levels of stearidonic acid (13.4% of triacylglycerols) are very similar to those found in the sole natural commercial plant source ( Echium spp.) or transgenic soybean oil. However, both those latter oils contain γ-linolenic acid, which is not normally present in fish oils and considered undesirable for heart-healthy applications. By contrast, the stearidonic acid-enriched linseed oil is essentially devoid of this fatty acid. Moreover, the overall omega-3/omega-6 ratio for this modified linseed oil is also significantly higher. Thus, this nutritionally enhanced linseed oil may have superior health-beneficial properties.  相似文献   

17.
Phytosterols and omega-3 fatty acids are natural compounds with potential cardiovascular benefits. Phytosterols inhibit cholesterol absorption, thereby reducing total- and LDL cholesterol. A number of clinical trials have established that the consumption of 1.5–2.0 g/day of phytosterols can result in a 10–15% reduction in LDL cholesterol in as short as a 3-week period in hyperlipidemic populations. Added benefits of phytosterol consumption have been demonstrated in people who are already on lipid-lowering medications (statin drugs). On the other hand, omega-3 fatty acid supplementation has been associated with significant hypotriglyceridemic effects with concurrent modifications of other risk factors associated with cardiovascular disease, including platelet function and pro-inflammatory mediators. Recent studies have provided evidence that the combination of phytosterols and omega-3 fatty acids may reduce cardiovascular risk in a complementary and synergistic way. This article reviews the health benefits of phytosterols and omega-3 fatty acids, alone or in combination with statins, for the treatment/management of hyperlipidemia, with particular emphasis on the mechanisms involved.  相似文献   

18.
n-3 Polyunsaturated fatty acids (n-3 PUFA) are suggested to prevent cardiac death via inhibition of cardiac arrhythmia. In this review we discuss the results of human studies on intake of n-3 PUFAs and heart disease and, more specifically, on cardiac arrhythmia. Observational studies indicate that intake of fish is associated with a lower incidence of fatal coronary heart disease in several populations. These studies are fairly consistent, but people that have a high intake of fatty fish might have a healthier lifestyle in general, and such confounding is difficult to remove completely with statistical adjustments and corrections. Evidence from trials is less clear. In two open label trials in patients with a previous myocardial infarction intake of fish or fish oil prevented fatal coronary heart disease. In contrast, a trial in patients with angina suggested a higher risk of sudden cardiac death in patients taking fish oil. Furthermore, results of trials in patients with an implantable cardioverter defibrillator (ICD) that investigated effects of fish oil on arrhythmia in patients already suffering from ventricular tachycardia are not consistent. Also, studies on relationships between intake of n-3 PUFA from fish and less life-threatening forms of arrhythmia, such as atrial fibrillation and premature ventricular complexes (PVCs) are equivocal. Thus, after 35 years of research the question whether fish prevents heart disease remains unanswered, and an anti-arrhythmic effect of fish oil remains unproven although the idea is still viable and is being actively tested in further trials.  相似文献   

19.
Dietary intake of omega-3 fatty acids has been positively correlated with cardiovascular and neuropsychiatric health in several studies. The high seafood intake by the Japanese and Greenland Inuit has resulted in low ratios of the omega-6 fatty acid arachidonic acid (AA, 20:4n-6) to eicosapentaenoic acid (EPA, 20:5n-3), with the Japanese showing AA:EPA ratios of approximately 1.7 and the Greenland Eskimos showing ratios of approximately 0.14. It was the objective of this study to determine the effect of supplementation with high doses (60 g) of flax and fish oils on the blood phospholipid (PL) fatty acid status, and AA/EPA ratio of individuals with Attention Deficit Hyperactivity Disorder (ADHD), commonly associated with decreased blood omega-3 fatty acid levels. Thirty adults with ADHD were randomized to 12 weeks of supplementation with olive oil (< 1% omega-3 fatty acids), flax oil (source of alpha-linolenic acid; 18:3n-3; alpha-LNA) or fish oil (source of EPA and docosahexaenoic acid; 22:6n-3; DHA). Serum PL fatty acid levels were determined at baseline and at 12 weeks. Flax oil supplementation resulted in an increase in alpha-LNA and a slight decrease in the ratio of AA/EPA, while fish oil supplementation resulted in increases in EPA, DHA and total omega-3 fatty acids and a decrease in the AA/EPA ratio to values seen in the Japanese population. These data suggest that in order to increase levels of EPA and DHA in adults with ADHD, and decrease the AA/EPA ratio to levels seen in high fish consuming populations, high dose fish oil may be preferable to high dose flax oil. Future study is warranted to determine whether correction of low levels of long-chain omega-3 fatty acids is of therapeutic benefit in this population.  相似文献   

20.
PURPOSE OF REVIEW: This review discusses recent advances in delineating basic mechanisms underlying the beneficial effects of omega-3 fatty acids on health and on disease. RECENT FINDINGS: While a substantial number of studies have delineated many differences between the biological effects of saturated versus polyunsaturated fatty acids, less is known about the long-chain omega-3 fatty acids commonly present in certain fish oils. In this review, we focus on recent studies relating to basic mechanisms whereby omega-3 fatty acids modulate cellular pathways to exert beneficial effects on promoting health and decreasing risks of certain diseases. We will use, as examples, conditions of the cardiovascular, neurological, and immunological systems as well as diabetes and cancer, and then discuss basic regulatory pathways. SUMMARY: Omega-3 fatty acids are major regulators of multiple molecular pathways, altering many areas of cellular and organ function, metabolism and gene expression. Generally, these regulatory events lead to "positive" endpoints relating to health and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号