首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[Ir(η5-C5Me5)(C3S5)] [C3S52− = 4,5-disulfanyl-1,3-dithiole-2-thionate(2−)] was prepared by a reaction of [NMe4]2[C3S5] with [Ir(η5- C5Me5)Cl2]2 in ethanol. It was reacted with bromine to afford a paramagnetic species [IrBr(η5-C5Me5)(C3S5)] with the Ir-Br bond and in the one-electron-oxidized state, and a diamagnetic dinuclear species [IrBr(η5-C5Me5)(μ-C2S4)IrBr(η5-C5Me5)]. ESR spectra for the one-electron-oxidized species in solution are discussed. The X-ray crystal structural analysis for the latter complex revealed the geometry consisting of dinuclear IrBr(η5-C5Me5) moieties bridged by the C2S42− ligand.  相似文献   

2.
The determination of the solid state structure of Cp*Ru(2,4-dimethyl-η5-pentadienyl) (1), where Cp* = pentamethylcyclopentadienyl, fills the gap in the series of previously established structures of closely related compounds. Compound 1 does not exhibit the ideal CS symmetry and its conformation is intermediate between the CS-synperiplanar eclipsed and CS-antiperiplanar arrangements of the ligands. Density functional theory studies indicate that the CS-synperiplanar eclipsed, CS-antiperiplanar, and intermediate conformations of 1 and Cp*Rh(2,4-dimethyl-η5-pentadienyl)+ (2) do not differ by more than a few tenths of 1 kcal/mol. The geometrical features of cation 2 are similar to those of 1, and in both complexes the pentadienyl ligands are not planar. The metal-carbon distances to the Cp* ligands in 1 and 2 are comparable, while the metal-carbon distances to the pentadienyl moiety are somewhat shorter in the Ru complex. A study of the conformational flexibility of the Cp* ligand in 5610 organometallic complexes showed that it usually shields the central metal by 36.2(10)%, provided the metal-centroid(Cp*) distances are normalized to 2.28 Å. The corresponding values in 1 and 2 are 37.2% and 37.4%, respectively.  相似文献   

3.
The metal-sulfur bonding present in the transition metal-thiolate complexes CpFe(CO)2SCH3, CpFe(CO)2StBu, CpRe(NO)(PiPr3)SCH3, and CpRe(NO)(PPh3)SCH3 (Cp = η5-C5H5) is investigated via gas-phase valence photoelectron spectroscopy. For all four complexes a strong dπ-pπ interaction exists between a filled predominantly metal d orbital of the [CpML2]+ fragment and the purely sulfur 3pπ lone pair of the thiolate. This interaction results in the highest occupied molecular orbital having substantial M-S π antibonding character. In the case of CpFe(CO)2SCH3, the first (lowest energy) ionization is from the Fe-S π orbital, the next two ionizations are from predominantly metal d orbitals, and the fourth ionization is from the Fe-S π orbital. The pure sulfur pπ lone pair of the thiolate fragment is less stable than the filled metal d orbitals of the [CpFe(CO)2]+ fragment, resulting in a Fe-S π combination that is higher in sulfur character than the Fe-S π combination. Interestingly, substitution of a tert-butyl group for the methyl group on the thiolate causes little shift in the first ionization, in contrast to the shift observed for related thiols. This is a consequence of the delocalization and electronic buffering provided by the Fe-S dπ-pπ interaction. For CpRe(NO)(PiPr3)SCH3 and CpRe(NO)(PPh3)SCH3, the strong acceptor ability of the nitrosyl ligand rotates the metal orbitals for optimum backbonding to the nitrosyl, and the thiolate rotates along with these orbitals to a different preferred orientation from that of the Fe complexes. The initial ionization is again the M-S π combination with mostly sulfur character, but now has considerable mixing among several of the valence orbitals. Because of the high sulfur character in the HOMO, ligand substitution on the metal also has a small effect on the ionization energy in comparison to the shifts observed for similar substitutions in other molecules. These experiments show that, contrary to the traditional interpretation of oxidation of metal complexes, removal of an electron from these metal-thiolate complexes is not well represented by an increase in the formal oxidation state of the metal, nor by simple oxidation of the sulfur, but instead is a variable mix of metal and sulfur content in the highest occupied orbital.  相似文献   

4.
The dicarbonyl and diphosphine complexes of the type (η5-C5H5)Fe(L)2ER3 (L2 = (CO)2 (a), (Ph2P)2CH2 (b); ER3 = CH3 (1a/b); SiMe3 (2a/b), GeMe3 (3a/b), SnMe3 (4a/b)) were synthesized and studied electrochemically. Cyclic voltammetric studies on the dicarbonyl complexes 1a-4a revealed one electron irreversible oxidation processes whereas the same processes for the chelating phosphine series 1b-4b were reversible. The Eox values found for the series 1a-4a were in the narrow range 1.3-1.5 V and in the order Si > Sn ≈ Ge > C; those for 1b-4b (involving replacement of the excellent retrodative π-accepting CO ligands by the superior σ-donor and poorer π-accepting phosphines) have much lower oxidation potentials in the sequence Sn > Si ≈ Ge > C. This latter oxidation potential pattern relates directly to the solution 31P NMR chemical shift data illustrating that stronger donation lowers the Eox for the complexes; however, simple understanding of the trend must await the results of a current DFT analysis of the systems.  相似文献   

5.
The reaction of cyanamide and its derivatives with the (η5-C5H5)Mn(CO)2(THF) and (η5-C5H4CH3)Mn(CO)2(THF) complexes affords the cyanamide substituted complexes of types (η5-C5H5)Mn(CO)2(NCN(R′)(R″)) (2a-d) and (η5-C5H4CH3)Mn(CO)2(NCN(R′)(R″)) (3a-e). All complexes were characterized by spectroscopy (1H, 13C NMR, IR), elemental and mass spectroscopy analysis. Complex 2b5-C5H5)Mn(CO)2(NCN(CH3)2) was additionally examined by single crystal X-ray structure determination.  相似文献   

6.
The reaction of the racemic chiral methyl complex (η5-C5H5)Re(NO)(PPh3)(CH3) (1) with CF3SO3H and then NH2CH2C6H5 gives [(η5-C5H5)Re(NO)(PPh3)(NH2CH2C6H5)]+ ([4a-H]+; 73%), and deprotonation with t-BuOK affords the amido complex (η5-C5H5)Re(NO)(PPh3)(NHCH2C6H5) (76%). Reactions of 1 with Ph3C+ X and then primary or secondary amines give [(η5-C5H5)Re(NO)(PPh3)(CH2NHRR′)]+ X ([6-H]+ X; R/R′/X = a, H/NH2CH2C6H5/BF4; a′, H/NH2CH2C6H5/PF6; b, H/NH2CH2(CH2)2CH3/PF6; c, H/(S)-NH2CH(CH3)C6H5/BF4); d, CH2CH3/CH2CH3/PF6; e, CH2(CH2)2CH3/CH2(CH2)2CH3/PF6; f, CH2C6H5/CH2C6H5/PF6; g, -CH2(CH2)2CH2-/PF6; h, -CH2(CH2)3CH2-/PF6; i, CH3/CH2CH2OH/PF6 (62-99%). Deprotonations with t-BuOK afford the amines (η5-C5H5)Re(NO)(PPh3)(CH2NRR′) (6a-i; 99-40%), which are more stable and isolated in analytically pure form when R ≠ H. Enantiopure 1 is used to prepare (RReSC)-[6c-H]+, (RReSC)-6c, (S)-[6g-H]+, and (S)-6g. The crystal structures of [4a-H]+, a previously prepared NH2CH2Si(CH3)3 analog, [6a′,d,f,h-H]+, (RReSC)-6c, and 6f are determined and analyzed in detail, particularly with respect to cation/anion hydrogen bonding and conformation. In contrast to analogous rhenium containing phosphines, 6a-i show poor activities in reactions that are catalyzed by organic amines.  相似文献   

7.
[Ir(η5-C5Me5)(C8H4S8)] (1) [ = 2-{(4,5-ethylenedithio)-1,3-dithiole-2-ylidene}-1,3-dithiole-4,5-dithionate(2−)] was reacted with iodine in dichloromethane to afford one-electron- and two-electron-oxidized species [IrI(η5-C5Me5)(C8H4S8)] (2), [IrI(η5-C5Me5)(C8H4S8)](I3) (3) and [IrI(η5-C5Me5)(C8H4S8)](I5) (4). The oxidized species exhibit electrical conductivities of (1.1-5.0) × 10−6 S cm−1 measured for compacted pellets at room temperature. The X-ray crystal structures of the two-electron-oxidized complexes 3 and 4 revealed the Ir-I bonds for both of them and the presence of for 3 and ions for 4 as the counter anions. They have many S-S and S-I non-bonding contacts to form two-dimensional molecular interaction sheets in the solid state.  相似文献   

8.
Novel two iridium terphenyl complexes were prepared and their structures were characterized crystallographically. The reaction of [Ir(cod)2]BF4 with p-terphenyl (p-tp) in CH2Cl2 was carried out to afford dinuclear Ir(I) complex {[Ir2(p-tp)(cod)2](BF4)2 · 2CH2Cl2}3 (cod=1,5-cyclooctadiene) (1 · 2CH2Cl2), whereas the reaction of the intermediate [Ir(η5-C5Me5)(Me2CO)3]3+ in Me2CO with m-terphenyl (m-tp) was done to provide mononuclear Ir(III) complex [Ir(m-tp)(η5-C5Me5)](BF4)2 (2). In complex 1 · 2CH2Cl2, two Ir atoms are η6-coordinated to both sides of terminal benzene rings from the upper and lower sides in the p-tp ligand, while one Ir atom is η6-coordinated to one side of the terminal benzene ring in the m-tp ligand in complex 2. Each crystal structure describes the first coordination mode found in metal complexes with the m- and p-tp ligands.  相似文献   

9.
The single crystals of dichloro-bridged dinuclear Rh-Cp* complex with neutral Me2CO molecules, [Rh2(Cp*)2(μ-Cl)2(Me2CO)2](BF4)2 (Cp* = η5-C5Me5), was isolated and the structure was in first determined crystallographically.  相似文献   

10.
The benzaldehyde functionalized phosphine Ph2PC6H4CHO-2 underwent reaction with [(η5-C5Me5)MCl(μ-Cl)]2 (M=Rh, Ir) to form (η5-C5Me5)MCl2P-Ph2PC6H4CHO-2), which underwent activation of the aldehyde C-H bond to form (η5-C5Me5)MCl(κPC-Ph2PC6H4CO-2). Formally the reaction involves oxidative addition of C-H across the metal and reductive elimination of HCl. The structure of (η5-C5Me5)RhCl(κPC-Ph2PC6H4CO-2) has been determined by single-crystal X-ray diffraction.  相似文献   

11.
The reactions of cycloaurated gold(III) dichloride complexes [LAuCl2] (L = 2-C6H4CH2NMe2 or 2-C6H4PPh2NPh) with monoanionic tripodal oxygen donor Kläui ligands [(η5-C5H5)Co{P(O)(OR)2}3] (R = Me or Et) results in the formation of cationic gold(III) salts [LAu{OP(OR)2}3Co(η5-C5H5)]+. An X-ray structure determination on [(2-C6H4PPh2NPh)Au{OP(OR)2}3Co(η5-C5H5)]BF4 shows that the Kläui ligand coordinates strongly to the gold through two oxygen atoms, and weakly through the third, giving the gold(III) a distorted square pyramidal geometry. This is the first structurally characterised example of this geometry for gold(III) with ligands other than those containing rigid bipyridine or phenanthroline backbones. In solution at room temperature there is rapid interchange (on the NMR timescale) between the oxygen atoms of the Kläui ligands, which is frozen out on cooling.  相似文献   

12.
《Inorganica chimica acta》2004,357(10):3119-3123
Fused double-cluster [(η5-C5Me5)IrB18H18(PH2Ph)] (8), from syn-[(η5-C5Me5)IrB18H20] (1) and PH2Ph, retains the three-atoms-in-common cluster fusion intimacy of 1, in contrast to [(η5-C5Me5)HIrB18H19(PHPh2)] (6), from PHPh2 with 1, which exhibits an opening to a two atoms-in-common cluster fusion intimacy. Compound 8 forms via spontaneous dihydrogen loss from its precursor [(η5-C5Me5)HIrB18H19(PH2Ph)] (7), which has two-atoms-in-common cluster-fusion intimacy and is structurally analogous to 6.  相似文献   

13.
The bimetallic cyano-bridged [(η5-C5H5)(PPh3)2Ru(μ-CN)Ru(PPh3)25-C5H5)][PF6] (1) was prepared by reaction of [(η5-C5H5)(PPh3)2RuCl] with N,N′-bis(cyanomethyl)ethylenediamine. The single crystal structure determined by X-ray diffraction showed crystallization on the triclinic P1 space group with a perfect alignment of the cyanide bridges. This accentric crystallization was explored having in view the NLO properties at the macroscopic level, determined by the Kurtz Powder technique. Besides the very low efficiency values for the second harmonic generation, the value obtained for the bimetallic complex 1 showed to be higher than one of the parent complex [(η5-C5H5)(PPh3)2RuCN] (2).  相似文献   

14.
The new thiocyanato- (5) and azido- (6) complexes were synthesized and studied under their Fe(II) and Fe(III) redox states. For the first time among the various [Fe(η5-C5Me5)(η2-dppe)]-based cationic radicals studied so far, the magnitude and spatial orientation of the g-tensor diagonal values were experimentally determined for 5[PF6]. These data are in good agreement with those issued from a DFT modelization. The changes experienced by the electronic structure of the Fe(II) complexes subsequent to oxidation are reminiscent of these previously observed for the known arylalkynyl analogues, albeit some differences can be pointed out. Thus, the differences observed in the 1H NMR spectra of 5[PF6] and 6[PF6] are attributed to a slower electronic spin relaxation and to the differently oriented magnetic anisotropy. The sizeable spin density evidenced by DFT on the terminal atom of the ligands of the Fe(III) complexes renders these new paramagnetic metallo-ligands quite appealing for accessing larger polynuclear molecular assemblies with magnetically interacting centers.  相似文献   

15.
Treatment of the ruthenium(II) diene complexes [(η22-nbd)RuCl2]n or [(η22-cod)RuCl2]n with 4 equiv. of methyllithium in the presence of N,N,N′,N′-tetramethylethylenediamine (tmed) yields the methyl complexes [Li(tmed)]2[(η22-nbd)RuMe4] (1) and [Li(tmed)]2[(η32-C8H11)RuMe3] (2), respectively, where nbd = norbornadiene and cod = 1,5-cyclooctadiene. In the latter compound, the cyclooctadiene ligand has been deprotonated to afford a η32-1,2,3:5,6-cyclooctadienyl group. Both complexes were studied by 1H and 13C{1H} NMR spectroscopy, and the crystal structure of 2 was determined. One lithium atom in 2 is four-coordinate and bridges between one ruthenium-bound methyl group and one of the wingtip allylic carbon atoms in the η32-C8H11 ligand. The other lithium atom is five-coordinate, and forms contacts with the other two Ru-Me groups and with the other wingtip carbon atom of the allyl unit.  相似文献   

16.
The ansa-titanocene complexes, [Ti{Me2Si(η5-C5Me4)(η5-C5H3R)}Cl2] (R = Me (5), iPr (6), tBu (7), SiMe3 (8)), were obtained from the reaction of Li2{Me2Si(C5Me4)(C5H3R)} (R = Me (1), iPr (2), tBu (3), SiMe3 (4)) with [TiCl4(THF)2], respectively. Compounds 5-8 have been tested as catalysts in the polymerization of ethylene and compared with the ansa-titanocene complexes [Ti{Me2Si(η5-C5H4)2}Cl2] and [Ti{Me2Si(η5-C5Me4)(η5-C5H4)}Cl2]. The resulting polyethylene showed molecular weights of about 200 000 g mol−1 and polydispersity values of approximately 3. In addition, the molecular structure of 6 has been determined by single crystal X-ray diffraction studies.  相似文献   

17.
The reaction of [CpCr(CO)3]2 (Cp = η5-C5H5) (1) with an equivalent of Bz2S3 at ambient temperature gave [CpCr(CO)2]2S (3) [L.Y. Goh, T.W. Hambley, G.B. Robertson, Organometallics 6 (1987) 1051], novel complexes of [CpCr(CO)2(SBz)]2 (4) and together with [CpCr(SBz)]2S (5) as main products. Thermolytic studies showed that 4 underwent complete decarbonylation to give [CpCr(SBz)]2S (5). Final thermal decomposition of 3 and 5 eventually yielded Cp4Cr4S4 (6) (Goh et al., 1987) after prolonged reaction at 100 °C. However, the reaction of [CpCr(CO)2]2 (CrCr) (2) with Bz2S3 was much slower at ambient temperature which required 72 h to complete eventually yielding 3 and 5. All the products have been characterized by elemental and spectral analyses. 4 has been structurally determined.  相似文献   

18.
Mononuclear [2.2]paracyclophane complexes of Rh and Ir, [M(η6-pcp)(η5-C5Me5)](BF4)2 (M=Rh (1) and Ir (2); pcp=[2.2]paracyclophane) were crystallized and their structures were first characterized crystallographically. On both pcp complexes the metal atom is bonded to the benzene ring on one side of the pcp ligand in the η6-coordination mode. The metal atom is also supported by the η5-C5Me5 ligand to afford a triple-decker sandwich structure. In Rh pcp complex 1 the average RhC(pcp) and RhC(C5Me5) distances are 2.284(2) and 2.161(2) Å, respectively. The average C(pcp)C(pcp) distance of 1.407(4) Å with the Rh atom is longer than that (1.388(4) Å) without a Rh atom. Similarly, the average IrC(pcp) and IrC(C5Me5) distances in Ir pcp complex 2 are 2.275(3) and 2.174(3) Å, respectively. The average C(pcp)C(pcp) distance of 1.410(4) Å with the Ir atom is longer than that (1.388(4) Å) without an Ir atom. It is interesting that the average interannular distances of 2.97 Å for 1 and 2 between two decks of the pcp ligand are shorter than that (3.09 Å) of the metal-free pcp ligand, indicative of the decrease of the repulsive π-interaction between benzene rings. The Rh pcp complex gave the well-resolved 1H NMR signals of [Rh(η6-pcp)(η5-C5Me5)]2+, whereas the Ir pcp complex exhibited two kinds of 1H NMR signals which were assigned as [Ir(η6-pcp)(η5-C5Me5)]2+ and [Ir26-pcp)(η5-C5Me5)2]4+ in (CD3)2CO at 23 °C.  相似文献   

19.
The reaction of [(η7-C7H7)Zr(η5-C5H5)] with two Lewis bases, tetramethylimidazolin-2-ylidene and PMe3, is reported and their stability probed via spectroscopic and theoretical methods. The strongly σ-basic N-heterocyclic carbene forms a stable adduct which has been structurally characterised, whilst the PMe3 ligand coordinates weakly to the metal centre. Variable temperature 31P NMR spectroscopy has been used to determine the activation energy for this process (ΔG = 40.5 ± 1.9 kJ mol−1). DFT calculations have been performed on both complexes and the structures discussed. In addition, the enthalpies for the formation of these compounds have been calculated [ΔH0(Zr-IMe) = −56.3 kJ mol−1; ΔH0(Zr-PMe3) = −2.3 kJ mol−1] and show that the N-heterocyclic carbene forms a thermodynamically much more stable adduct than that with PMe3.  相似文献   

20.
The title complexes were obtained as MIIM′II species [(bpy)2M(μ-abpy)M′(bpy)2](PF6)4, M,M′ = Ru or Os, using the new mononuclear precursor [(bpy)2Os(abpy)](PF6)2 for the osmium-containing dinuclear complexes. One-electron reduction produces radical complexes [(bpy)2M(μ-abpy)M′(bpy)2]3+ and [(bpy)2M(abpy)]+ with significant contributions from the metals, as evident from the EPR effects on successive replacement of ruthenium by osmium with its much higher spin-orbit coupling constant. The diruthenium and diosmium radical complexes were also studied by EPR at high-frequency (285 GHz), the latter shows an unusually large g anisotropy g1 − g3 = 0.25 in frozen solution. Further reduction was monitored by UV/Vis spectroelectrochemistry. Oxidation produced OsIII EPR signals for [(bpy)2Os(abpy)]3+ and [(bpy)2Os(μ-abpy)Ru(bpy)2]5+, indicating a RuIIOsIII species for the latter. The diosmium(III,II) and diruthenium(III,II) mixed-valent species remained EPR silent at 4 K, however, they exhibit weak inter-valence charge transfer (IVCT) bands at about 1460 nm. Whereas the cyclic voltammetric response towards reduction is only marginally different for the three dinuclear complexes, successive replacement of ruthenium by osmium causes the first oxidation potential to decrease. The much higher comproportionation constant Kc for the mixed valent diosmium(III,II) state (Kc > 1015) in comparison to the diruthenium(III,II) analogue with Kc = 1010 confirms the electron transfer alternative for the valence exchange mechanism, in contrast to the hole transfer established for analogous dinuclear complexes with the formally related diacylhydrazido(2−) bridging ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号