首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
超微结构的研究证明,豌豆(Pisum sativum L.)生殖细胞自形成直至成熟花粉时期,始终存在少量质体和较多的线粒体。DNA 荧光的观察表明,在发育早期的生殖细胞中不含细胞质DNA 类核,但在成熟花粉的生殖细胞中有许多的类核。在花粉离体萌发过程中,随着花粉管的生长,生殖细胞中的类核逐渐降解。在花粉培养24 h 后,生殖细胞的类核全部消失。研究结果确定了豌豆质体母系遗传的细胞学基础,支持遗传分析及RFLP研究的结论,阐明了过去在细胞学上认为是双亲遗传的判断不正确的原因  相似文献   

2.
The mature pollen of sweet potato ( Ipomoea batatas lam. ) was bicellular. After pollination generative cell divided into a pair of sperm cells before its germination. The pair of sperm cells remained in the hydrated pollen was similar in their shape and volume with enriched cytoplasmic plastids and mitochondria. The specific fluorescence of cytoplasm DNA indicated that the sperm cells and the generative cell contained numerous organelle nucleoids. The pair of sperm cells had no significant difference in their numbers of organelle nucleoids. Two kinds of organelle nucleoids existed in the pair of sperm cells. Tile ones as big and strong fluorescent dots appeared to be the plastid nucleoids and the others as tile small and weak fluorescent dots could be the mitochondrial nucleoid. Few of the angiosperms were of biparental or paternal plastid inheritance. The result of this study has provided the cytological evidence for another genus, Ipomoea, which is of biparental or paternal plastid inheritance besides Pharbitis and Calystegia in Convolvulaceae.  相似文献   

3.
Electron microscopic and DNA fluorescence microscopic observations of the plastids, mitochondria and their DNA in the developing pollen of Phaseolus vulgaris L. have demonstrated that the male plastids were excluded during microspore mitosis. The formed generative cell was free of plastids because of regional localization of plastids in early developing microspore and the extremely unequal distribution during division. The fluorescence observations of DNA showed that cytoplasmic (plastid and mitochondria) nucleoids degenerated and disappeared during the development of microspore/pollen, and were never presented in the generative cell at different development stages. These results provided precise cytological evidence of maternal plastid inheritance in Phaseolus vulgaris, which was not in accord with the biparental plastid inheritance identified from early genetic analysis. Based on authors' previous observations in a variety of common bean that the organelle DNA of male gamete was completely degenerated, the early genetic finding of the biparental plastid inheritance was unlikely to be effected by genotypic difference. Thus those biparental plastid inheritance might be caused by occational male plastid transmission, and plastid uniparental maternal inheritance was the species character of Phaseolus vulgaris.  相似文献   

4.
Cytoplasmic nucleoids in the generative cell of mature pollens, sperm cells of pollens cultured in vitro and egg cell of mature embryo sac in Calystegia bederacea Wall. were studied by means of the DNA fluorochrome DAPI in conjunction with epitluorescence microscopy for in situ detection of cytoplasmic DNA in cells. Results showed that many cytoplasmic DNA nucleoids were present in the generative cell and speim cells. Two types of nucleoids were observed, one with big and strong fluorescent dots, and the other with small and weak fluorescence. Many dot-shaped and a few circle-shaped nucleoids were randomly distributed in the thin layered cytoplasm of the egg cell. It was suggested that different types of nucleoids might represent plastid DNA and mitochondrion DNA respectively. Results provided cytological data that Calystegia hederaeea had the potential of plastid DNA biparental inheritance, and the mode of which merits further study via molecular biological methods.  相似文献   

5.
打碗花生殖细胞,精细胞及卵细胞中的细胞质类核   总被引:3,自引:1,他引:2  
已有不少超微结构的资料阐明被子植物双亲和单亲母系质体遗传的细胞学基础。近年应用DAPI荧光染色的方法,可快速地从检测质体DNA存在的状况确定被子植物中具双亲遗传潜能的种。从质体的类核存在与否判断质体遗传方式为母系遗传或双亲遗传与已有的遗传分析结论基本一致,只有少数种类是矛盾的。DAPI荧光技术可以认为是研究细胞质遗传机理的一个重要手段。我们曾证明旋花科牵牛属植物生殖细胞、精细胞中存在细胞质类核,确定其具双亲或单亲父系质体遗传的潜能,并用RFLP技术进一步确定其为质体父系遗传型。本研究证明旋花科的打碗花属生殖细胞、精细胞和卵细胞中细胞质类核存在的状况与牵牛属的相似,提供了打碗花可能在质体遗传上与牵牛属 具相同的遗传方式的资料。  相似文献   

6.
The mature pollen grains of Rhododendron mucronulatum Turcz. conform to the 2-celled type. Sperm cells differentiated within the pollen tube about 24 hours after germination in vitro and paired together, one of which being linked with the vegetative nucleus, forming a male germ unit (MGU). Abundance of plastids, mitochondria, microtubules and single-membrane-bounded vesicles could be visualized in each sperm cell, however, endoplasmic reticulum and Golgi apparatus were scarce. The electron-dense plastids with normal structure gave ring-like or dumbbell appearance in sections. Mitochondria were smaller and less electron-dense' in contrast to the plastids. DNA epifluorescence technique revealed that the generative and sperm cells contained numerous organelle nuclei (nucleoids). There was no difference in nucleoid number between the two sperm cells in a pollen tube. The results confirmed the possible existance of cytoplasmic inheritance potential of the male gametes of Rhododendron.  相似文献   

7.
迎红杜鹃 ( Rhododendron mucronulatum Turcz.)的成熟花粉为二细胞型 ,精细胞在花粉管中形成。花粉管中的两个精细胞及与营养核之间互相联结 ,形成雄性生殖单位。两个精细胞的细胞质中均含有丰富的细胞器 ,包括质体、线粒体、小泡及微管 ,内质网和高尔基体稀少。具正常结构的精细胞质体在切面上多呈环形或哑铃形 ,内膜不发达 ,基质电子密度高。线粒体为球形或棒状 ,基质电子密度较低。 DNA特异性荧光染色显示 ,生殖细胞及精细胞中均含有大量类核 ( nucleoid) ,两个精细胞中的类核数量无明显差异。结果证明了杜鹃精细胞中存在大量具 DNA的可遗传细胞器 ,为杜鹃属植物的双亲细胞质遗传方式提供了细胞学证据。  相似文献   

8.
Summary The fate of plastid and mitochondrial nucleoids (pt and mt nucleoids) ofTriticum aestivum was followed during the reproductive organ formation using fluorescence microscopy after staining with 4'6-diamidino-2-phenylindole (DAPI). This investigation showed a drastic morphological change of pt nucleoids during the differentiation of reproductive organs from the shoot apex. Dot-shaped pt nucleoids grew into ring-shaped ones, which divided into small pieces in the monocellular pollen grain, as observed in this plant's earlier stage of leaf development. During the development of mature pollen grain from monocellular pollen grain, pt and/or mt nucleoids disappeared through the division of the male generative cell ofT. aestivum. Cytologically, this observation is direct evidence of the maternal inheritance of higher plants. Thus far, cytological evidence of this phenomenon has been found mostly by morphological criteria using electron microscopy, which admits some ambiguity. In the plants exemplified byLilium longiflorum, pt and/or mt nucleoids disappeared after the first pollen grain mitosis, which precededT. aestivum. In the plants exemplified byTrifolium repens, pt and/or mt nucleoids existed in the generative cells of the mature pollen grain.The significance of these observations was discussed in relation to the interaction between nuclear and organelle genomes during plant development.Abbreviations DAPI 4'6 diamidino-2-phenylindole - Mt DNA Mitochondrial DNA - Mt nucleoid Mitochondrial nucleoid - Pt DNA Plastid DNA - Pt nucleoid Plastid nucleoid On leave from Department of Biology, Nagoya University, Furocho, Chikusaku, Nagoya 464, Japan.  相似文献   

9.
The fates of mitochondrial and plastid nucleoids during pollen development in six angiosperm species (Antirrhinum majus, Glycine max, Medicago sativa, Nicotiana tabacum, Pisum sativum, and Trifolium pratense) were examined using epifluorescence microscopy after double staining with 4',6-diamidino-2- phenylindole (DAPI) to stain DNA and with a potentiometric dye (either DiOC7 or rhodamine 123) for visualization of metabolically active mitochondria. From the pollen mother cell stage to the microspore stage of pollen development, mitochondria and plastids both contained DNA detectable by DAPI staining. However, during the further maturation preceding anthesis, mitochondrial DNA became undetectable cytologically in either the generative or the vegetative cell of mature pollen; even in germinated pollen tubes containing hundreds of metabolically active mitochondria undergoing cytoplasmic streaming, vital staining with DAPI failed to reveal mitochondrial DNA. By the mature pollen stage, plastid DNA also became undetectable by DAPI staining in the vegetative cell. However, in the generative cell of mature pollen the timing of plastid DNA disappearance as detected by DAPI varied with the species. Plastid DNA remained detectable only in the generative cells of pollen grains from species known or suspected to have biparental transmission of plastids. The apparent absence of cytologically detectable organelle genomes in living pollen was further examined using molecular methods by hybridizing organelle DNA-specific probes to digests of total DNA from mature pollen and from other organs of A. majus and N. tabacum, both known to be maternal for organelle inheritance. Mitochondrial DNA was detected in pollen of both species; thus the cytological alteration of mitochondrial genomes during pollen development does not correspond with total mtDNA loss from the pollen. Plastid DNA was detectable with molecular probes in N. tabacum pollen but not in A. majus pollen. Since the organelle DNA detected by molecular methods in mature pollen may lie solely in the vegetative cell, further study of the basis of maternal inheritance of mitochondria and plastids will require molecular methods which distinguish vegetative cell from reproductive cell organelle genomes. The biological effect of the striking morphological alteration of organelle genomes during later stages of pollen development, which leaves them detectable by molecular methods but not by DAPI staining, is as yet unknown.  相似文献   

10.
应用电镜和DNA的DAPI荧光检测技术研究了菜豆(Phaseolus vulgaris L.)小孢子/花粉发育中质体和线粒体及其DNA存在的状况。观察表明:在小孢子分裂时质体全部分配到营养细胞中,初形成的生殖细胞已不含质体。线粒体和质体的DNA在花粉发育中也先后降解,生殖细胞从刚形成时发育至成熟花粉时期这两种细胞器DNA均不存在。研究结果为菜豆质体母系遗传提供了确切的细胞学证据。遗传分析的研究曾确定菜豆质体为双亲遗传,对与本研究结论不同的原因进行了讨论。  相似文献   

11.
The present study consists of the cytological observations on the process of microsporogenesis and pollen development in the regenerated stamen of hyacinth; and a comparative study of the cytological changes in stamens of both regenerated and produced under natural condition. Results showed that the cytological changes of microsporogenesis and the pollen deveLopment in the regenerated stamen of the hyacinth were basically normal. But in the stage of the mature pollen there was an obvious cytological difference between both stamens in vitro and in nature. The mature pollen of the regenerated stamen consisted of three cells: one vegetative cell and two sperms, while mature pollen grain under natural condition was made up of two cells: one vegetative cell and one generative cell. This difference mainly resulted from different time and place of the generative cell division. The reason resulting in the differences and their influence on sperms were discussed.  相似文献   

12.
Sperm cells within pollen grains and pollen tubes of alfalfa (Medicago sativa L.) were observed at the ultrastructural level, and their plastid DNA was detected by DAPI (4,6-diamidino-2-phenylindole) staining. One sperm pair within the pollen grain and three sperm pairs within pollen tubes were reconstructed in three-dimensions from serial ultrathin sections. The two sperm cells are linked by cytoplasmic bridges in both pollen grains and tubes, and the vegetative nucleus is closely associated with the sperm cells within the pollen tube. The number of plastids and plastid nucleoids (DNA aggregates) in the sperm cell pair, collectively, is not significantly different from that in the generative cell; however, over 60% of the sperm cell plastids contain no DNA detectable with DAPI. The mean number of mitochondria in sperm cells is reduced from that in the generative cell (from 54 to 17), which suggests that paternal mitochondrial inheritance probably does not occur in the genotype investigated. Sperm cells of a pair may vary in their shape within the pollen grain and tube, but the number of plastids and mitochondria is not significantly different between the sperm cells. Therefore, heterospermy is not a factor determining cytoplasmic inheritance patterns in this species.  相似文献   

13.
Zhang Q  Sodmergen 《Protoplasma》2003,221(3-4):211-216
Summary.  Following 4′,6-diamidino-2-phenylindole staining of mature pollen grains of Chlorophytum comosum, fluorescence microscopy confirmed that cytoplasmic nucleoids (DNA aggregates) were present in the generative cells, which indicated the possibility of biparental cytoplasmic inheritance. Electron and immuno-electron microscopy showed that both plastids and mitochondria were present in the generative cells, and both organelles contained DNA. These results indicate that mitochondria and plastids of C. comosum have the potential for biparental inheritance. Similar results were obtained with mature pollen grains of C. chinense. Therefore, we conclude the coincident biparental inheritance for mitochondria and plastids in the members of the genus Chlorophytum. Received June 28, 2002; accepted September 26, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: College of Life Science, Peking University, Bejing 100871, People's Republic of China.  相似文献   

14.
玉竹(Polygonatum simizui Kitag)小孢子在分裂前,质体极性分布导致分裂后形成的生殖细胞不含质体,而营养细胞包含了小孢子中全部的质体。生殖细胞发育至成熟花粉时期,及在花粉管中分裂形成的两个精细胞中始终不含质体。虽然生殖细胞和精细胞中都存在线粒体,但细胞质中无DNA类核。玉竹雄性质体的遗传为单亲母本型。在雄配子体发育过程中,营养细胞中的质体发生明显的变化。在早期的营养细胞质中,造粉质体增殖和活跃地合成淀粉。后期,脂体增加而造粉质体消失。接近成熟时花粉富含油滴。对百合科的不同属植物质体被排除的机理及花粉中贮藏的淀粉与脂体的转变进行了讨论。  相似文献   

15.
The pollen of Pinus tabulaeformis Cart. comprised two prothallial cells, a generative cell and a tube cell which degenerated at pollen maturation. The generative cell had its own cell wall, seperating from the intine of pollen, but with its side wall attached to the infine. Cytoplasmic channels were present on the side of the generative cell wall, which faced to the tube cell cytoplasm. The generative cell differed conspicuously from the tube cell. The main differences include: ( 1 ) The chromatin in the generative cell nucleus was condensed, but was dispersed and had numerous nueleare pores in the tube cell nucleus; (2)There was no microbody in the generative cell but many microbodies were present in the tube cell cytoplasm; (3)More inclusions were present in the tube cell than in the generative cell. Both the generative cell and the tube cells contained lipid bodies and amyloplasts in the cytoplasm, but there were more amyloplasts in the former. The tube cell also contained a few proteins which was absent in the generative cell. In addition, there were numerous mitochondria, polyribosomes, and a few endoplasmic reticulums and dictyosomes in the generative and tube cells. DAPI staining demonstrated numerous cytoplasmic DNA in both generative cell and tube cell. The mode of cytoplasmic inheritance, and the composition, structure and the nature of the pollen wall of P. tabulaefonnis are also discussed in this paper.  相似文献   

16.
DAPI(4’,6-diamidino-2-phenylindole)是一种DNA特异结合的荧光染料,可以用于在荧光显微镜下观察和检测各种DNA,尤其是细胞内含量甚微的DNA,包括质体DNA和线粒体DNA,其灵敏性和可靠性是被公认的,并得到了越来越多的Southern杂交实验的证明,而且实验操作简便易行。近几年,DAPI荧光技术已在细胞质遗传的研究领域获得了成功的应用。  相似文献   

17.
Generative and vegetative nuclei of mature and germinated pollen grains from Hippeastrum belladonna were separated in a continuous Ficoll gradient. Less than 3% contamination was observed between the generative and vegetative nuclear fractions. The vegetative nuclei were composed of two populations; the larger population consisted of nuclei with 1C levels of DNA and the smaller with 2C levels. The generative nuclei consisted of a homogeneous population composed of nuclei possessing 2C levels of DNA. Histone synthesis did not occur in vegetative nuclei. Changes appeared in the gel-electrophoretic banding patterns of the F1 histones of vegetative nuclei during germination. Changes were not observed in the generative nuclei. A reduction of general proteins and RNA was observed in vegetative nuclei by 20 h of germination. The phenol-soluble nuclear proteins of vegetative nuclei revealed transitions in electrophoretic banding patterns during pollen germination that were greater than those shown by the histones. These changes in the PSNP primarily involved reduced concentrations of certain proteins rather than synthesis of new ones. However, a new band was observed in the electrophoretic pattern of the PSNP of vegetative nuclei after 12 h of pollen tube growth. No transition was seen in the PSNP of generative nuclei during pollen germination and tube growth. The regulatory role of the PSNP in cell differentiation is discussed in the light of these findings.  相似文献   

18.
In the male gametophyte of Pelargonium zonale, generative and sperm cells contain cytoplasmic DNA in high density compared to vegetative cells. Cytoplasmic DNA was examined using the DNA fluorochrome DAPI (4'6-diamidino-2-phenylindole) and observed with epifluorescence and electron microscopy. The microspore cell contains a prominent central vacuole before mitosis; mitochondria and plastids are randomly distributed throughout the cytoplasm. Following the first pollen grain mitosis, neither the vegetative cell nor the early generative cell display a distributional difference in cytoplasmic DNA, nor is there in organelle content at this stage. During the maturation of the male gametophyte, however, a significant discrepancy in plastid abundance develops. Plastids in the generative cell return to proplastids and do not contain large starch grains, while those in the vegetative cell develop starch grains and differentiate into large amyloplasts. Plastid nucleoids in generative and sperm cells in a mature male gametophyte are easily discriminated after DAPI staining due to their compactness, while those in vegetative cells stained only weakly. The utility of the hydrophilic, non-autofluorescent resin Technovit 7100 in observing DAPI fluorescence is also demonstrated.  相似文献   

19.
Summary Irradiation of dry, mature pollen from Petunia hybrida with near-ultraviolet light from an erythemal-sunlamp gave rise to a repair-like, unscheduled DNA synthesis during the early stages of in vitro germination. Like that brought about by farultraviolet light from a germicidal lamp, this DNA synthesis is enhanced by hydroxyurea added to the germination medium, and reduced by photoreactivating light given after ultraviolet irradiation and before germination begins. It is concluded that pollen, often receiving considerable exposure to sunlight, has, in addition to the protection afforded by the ultraviolet filtering effect of yellow pigments, also the capacity to repair ultraviolet produced changes in DNA, by both photoreactivation and dark repair processes.Because mature Petunia pollen is arrested at the G2 stage of the cell cycle, germinating pollen provides us with a highly synchronous plant tissue with a very low background of DNA replicative synthesis suitable for sensitive measurement of DNA repair synthesis. Thus we have shown that 4-nitroquinoline-1-oxide, at concentrations greater than 0.001 mM, gives rise to an unscheduled DNA synthesis which is enhanced by hydroxyurea. Like that induced by ultraviolet radiation, the chemical mutagen brings about DNA repair only during the early stages of pollen germination, and further it has been possible to show that repair ceases at about the time that generative cell division and pollen tube elongation begins.Boron addition enhances both ultraviolet and 4-nitroquinoline-1-oxide induced repair synthesis. By delaying the chemical mutagen initiation of repair until after germination has begun, we have been able to show that boron is most beneficial during the first hour of germination. It is postulated that this is achieved through an as yet unknown effect of boron on the supply of precursors before pollen cell metabolism is fully committed to pollen tube synthesis later in the germination period.  相似文献   

20.
Summary Ornithogalum virens is a bicellular pollen species. In mature pollen, the generative nucleus is at advanced prophase. Mitosis of the generative cell is resumed just after pollen rehydration and prometaphase occurs within 10 min of germination. Prometaphase is manifested by nuclear envelope breakdown and the appearance of spindle microtubules in the nucleoplasm region. At this stage the number of cytoplasmic microtubules located in the generative cell periphery appears to decrease. Endoplasmic reticulum-like cisternae originating from the nuclear envelope tend to be spaced around the chromosomes, outside the area of the forming mitotic spindle. Some also begin to penetrate the spindle area. The results are discussed in terms of the generative cell cycle in bicellular pollen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号