首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 690 毫秒
1.
The self-association of proteolytic enzymes can be looked upon as an interesting possibility of the manifestation of enzyme-substrate complex. Hence the involvement of active site in such processes is a centre of investigation for many years. In the case of alpha-chymotrypsin, considerable controversy exists with regard to the involvement of active site of the enzyme in its self-association. A historical perspective of the problem and an overview of the available evidence, for and against, is presented and critically analysed. Despite contradicting observations, accumulated evidence indicates that His-57 and Ser-195 at the active site are involved, at least partially, in the self-association; a few other groups such as Tyr-146 and Met-192 are also involved in such processes.  相似文献   

2.
Chymotrypsin is a prominent member of the family of serine proteases. The present studies demonstrate the presence of a native fragment containing 14 residues from Ile16 to Trp29 in alpha-chymotrypsin that binds to chymotrypsin at the active site with an exceptionally high affinity of 2.7 +/- 0.3 x 10(-11) M and thus works as a highly potent competitive inhibitor. The commercially available alpha-chymotrypsin was processed through a three phase partitioning system (TPP). The treated enzyme showed considerably enhanced activity. The 14 residue fragment was produced by autodigestion of a TPP-treated alpha-chymotrypsin during a long crystallization process that lasted more than four months. The treated enzyme was purified and kept for crystallization using vapour the diffusion method at 295 K. Twenty milligrams of lyophilized protein were dissolved in 1 mL of 25 mM sodium acetate buffer, pH 4.8. It was equilibrated against the same buffer containing 1.2 M ammonium sulfate. The rectangular crystals of small dimensions of 0.24 x 0.15 x 0.10 mm(3) were obtained. The X-ray intensity data were collected at 2.2 angstroms resolution and the structure was refined to an R-factor of 0.192. An extra electron density was observed at the binding site of alpha-chymotrypsin, which was readily interpreted as a 14 residue fragment of alpha-chymotrypsin corresponding to Ile-Val-Asn-Gly-Glu-Glu-Ala-Val-Pro-Gly-Ser-Trp-Pro-Trp(16-29). The electron density for the eight residues of the C-terminus, i.e. Ala22-Trp29, which were completely buried in the binding cleft of the enzyme, was of excellent quality and all the side chains of these eight residues were clearly modeled into it. However, the remaining six residues from the N-terminus, Ile16-Glu21 were poorly defined although the backbone density was good. There was a continuous electron density at 3.0 sigma between the active site Ser195 Ogamma and the carbonyl carbon atom of Trp29 of the fragment. The final refined coordinates showed a distance of 1.35 angstroms between Ser195 Ogamma and Trp29 C indicating the presence of a covalent linkage between the enzyme and the native fragment. This meant that the enzyme formed an acyl intermediate with the autodigested fragment Ile16-Trp29. In addition to the O-C covalent bond, there were several hydrogen bonds and hydrophobic interactions between the enzyme and the native fragment. The fragment showed a high complementarity with the binding site of alpha-chymotrypsin and the buried part of the fragment matched excellently with the corresponding buried part of Turkey ovomucoid inhibitor of alpha-chymotrypsin.  相似文献   

3.
Conformational changes of alpha-chymotrypsin, induced by pH and pressure, have been studied with Raman spectroscopy. The secondary structure of alpha-chymotrypsin, chymotrypsinogen and DFP-chymotrypsin has been calculated by a singular value analysis of the Raman amide-I band. The changes in secondary structure, with pH and pressure titration of alpha-chymotrypsin, indicate a conformational transition. The salt bridge between Asp-194 and Ile-16 is disrupted, and the enzyme becomes inactive. No changes are observed for chymotrypsinogen. It is concluded that the proenzyme exhibits the same conformation at different pH values as alpha-chymotrypsin at alkaline pH. The results for DFP-chymotrypsin indicate that the active conformation is stabilized by the presence of the DFP inhibitor in the binding site.  相似文献   

4.
The covalent fixation of the phosphinoyl residues in the active site of alpha-chymotrypsin is proved by the application of the fluorescent phosphinoyl fluorides 1 [( 5-(dimethylamino)-1-naphthyl]phenylphosphinoyl-fluoride) or 4 [(5-methoxy-1-naphthyl)phenyl-phosphinoylfluoride]. The differences in the rates of the phosphinoylation of alpha-chymotrypsin and "methyl-alpha-chymotrypsin" as compared to 1 agree with model reactions. In both enzymes the serine-OH in the active site is phosphinoylated. The non-fluorescent 4-nitrophenyl [5-(dimethylamino)-1-naphthyl]phenylphospinate (3) and the corresponding non-fluorescent 5-methoxynaphthyl derivative 5 inhibit alpha-chymotrypsin far more slowly than the corresponding fluorides 1 and 4. The phosphinoyl residues of the nitrophenyl esters 3 and 5 are covalently linked in a yield of 80% to the active site of the enzyme with evolution of fluorescence. 20% of the nitrophenyl ester inhibits the enzyme by adsorption.  相似文献   

5.
The stereospecificity of α-chymotrypsin   总被引:1,自引:0,他引:1       下载免费PDF全文
1. The rates of deacylation of acyl-alpha-chymotrypsins in which the hydrogen-bonding capacity of the acylamino group of the substrate has been systematically removed were measured. 2. The ratio of deacylation rates of l- and d-acyl-enzymes is found to depend largely on the existence in the substrate of an amido -NH- group. 3. The data presented agree with the postulate that the stereospecificity of alpha-chymotrypsin is exercised in catalytic rather than binding steps, and that the active site of the enzyme presents three loci to the substrate: the site containing the catalytic functionalities (including serine-195), the hydrophobic area for amino acid side-chain binding, and a hydrogen-bond acceptor site for acylamino group binding. 4. It is noted that, though the hydrogen-bonding site is crucial for the stereospecificity, the free energy of binding of substrates and inhibitors is dominated by the hydrophobic interaction. 5. It is tentatively proposed that alpha-chymotrypsin selects a high-energy conformation of the substrate when the latter binds at the enzyme's active site.  相似文献   

6.
Conflicting evidence exists as to whether "conventional" protein kinase C isoforms (cPKCs) function as monomers or oligomers. In this report, we demonstrate that purified cPKC isoforms can be rapidly cross-linked by the sulfhydryl-selective cross-linker bis(maleimido)hexane, but only in the presence of both Ca(2+) and phosphatidylserine; cross-linking was minimal in the presence of either of these activators alone. In addition, cross-linking of these cPKCs did not require Mg(2+) or ATP. Among the various phospholipids tested, phosphatidylserine was found to be the most effective in the promotion of cPKC self-association and for the stimulation of protein kinase activity toward the exogenous substrate histone. Phosphatidic acid and phosphatidylinositol were less effective in this regard, whereas phosphatidylcholine exhibited little ability to induce cPKC self-association or to stimulate kinase activity. An examination of the mechanism by which the cPKC isoforms self-associate in the presence of phospholipid/Ca(2+) revealed that this process occurred independently of phospholipid aggregation. Moreover, self-association was not inhibited by saturating the enzyme active site with a peptide substrate, suggesting that self-association is distinct from an enzyme-substrate interaction. Isoform-specific antibodies revealed that all cPKC isoforms (alpha, beta, and gamma) self-associate and that, in a mixture of cPKC isoforms, PKC-alpha forms primarily alpha-alpha homodimers. Besides cPKC interactions detected with purified enzyme, PKC-alpha also appeared capable of self-association in murine B82L fibroblasts that were treated with calcium ionophore, phorbol ester, or epidermal growth factor but not in untreated cells. Collectively, these data indicate that self-association occurs in parallel with cPKC activation, that self-association is not mediated by the substrate binding site, and, at least in the case of PKC-alpha, that the formation of isoform homodimers predominates.  相似文献   

7.
The kinetic behavior of alpha-chymotrypsin was studied in water-DMSO mixtures at concentrations of the organic solvent that do not cause irreversible denaturation of the enzyme. Various substrates (N-substituted derivatives of L-tyrosine) were found to display substantially different kinetic patterns of interaction with alpha-chymotrypsin, which can be described by totally different kinetic schemes. The differences were ascribed to competition between the N-acyl group of the substrate and the DMSO molecule at the S2-site of substrate binding to the active site of the enzyme.  相似文献   

8.
The role of several active site residues of alpha-chymotrypsin in the prototypical refolding transition between active and inactive forms of this enzyme is examined using chemical modification. Oxidation of Met-192 to the sulfoxide results in a derivative which remains entirely in an active state from pH 6 to 9. The derivative becomes inactive only at high pH with pKa = 10.3, delta H0 = 9.5 kcal and delta S0 = -15 eu., indicating the sulfoxide group supplies about 2.1 kcal of active state stabilization relative to the unoxidized methionine side chain. The refolding transition of N-methyl-His-57-alpha-chymotrypsin, in which a nitrogen of the "charge relay" histidine is methylated, displays one ionization process with an apparent pKa of 9.45. The absence of an additional ionization process with a pKa near 7 provides evidence that one of the ionizations in the six state mechanism which describes this transition in alpha-chymotrypsin is linked to the charge relay system. We also demonstrate, using alpha-chymotrypsin, Met-192-sulfoxide-alpha-chymotrypsin and N-methyl-His-57-alpha-chymotrypsin, that the 230 nm circular dichroism band is a quantitative probe of the active-inactive equilibrium, although the chromophore or chromophores responsible for this and another very large negative band at 202 nm have not been identified. Circular dichroism was used to observe the active-inactive equilibrium in methan sulfonyl-alpha-chymotrypsin and phenylmethane sulfonyl-alpha-chymotrypsin. The enhanced stability of the active state of these derivatives relative to alpha-chymotrypsin can be rationalized in terms of steric effects in the substrate side chain binding site.  相似文献   

9.
The crystal structure of the molecular complex formed by bovine alpha-chymotrypsin and the recombinant serine proteinase inhibitor eglin c from Hirudo medicinalis has been solved using monoclinic crystals of the complex, reported previously. Four circle diffractometer data at 3.0 A resolution were employed to determine the structure by molecular replacement techniques. Bovine alpha-chymotrypsin alone was used as the search model; it allowed us to correctly orient and translate the enzyme in the unit cell and to obtain sufficient electron density for positioning the eglin c molecule. After independent rigid body refinement of the two complex components, the molecular model yielded a crystallographic R factor of 0.39. Five iterative cycles of restrained crystallographic refinement and model building were conducted, gradually increasing resolution. The current R factor at 2.6 A resolution (diffractometer data) is 0.18. The model includes 56 solvent molecules. Eglin c binds to bovine alpha-chymotrypsin in a manner consistent with other known serine proteinase/inhibitor complex structures. The reactive site loop shows the expected conformation for productive binding and is in tight contact with bovine alpha-chymotrypsin between subsites P3 and P'2; Leu 451 acts as the P1 residue, located in the primary specificity S1 site of the enzyme. Hydrogen bonds equivalent to those observed in complexes of trypsin(ogen) with the pancreatic basic- and secretory-inhibitors are found around the scissile peptide bond.  相似文献   

10.
The concentration-dependent self-association of α-chymotrypsin is known to be influenced by various factors including the presence of small molecules and autolysis products. In this connection the effect of various amino acids on the self-association of α-chymotrypsin has been studied, as a point of interest, by measuring the sedimentation coefficient of α-chymotrypsin. The influence of an amino acid is seen to be governed by the nature of its side chain. Some amino acids do not affect the self-association of α-chymotrypsin at all while some affect it moderately and some others considerably. Functional groups such as the - OH group of Ser or the phenolic ring of Tyr do not seem to influence self-association behaviour. Based on these effects, amino acids could be categorized into 3 groups. Activity studies in the presence of amino acids indicate that the site of self-association and the active-site are probably mutually exclusive.  相似文献   

11.
The electronic properties of the active-sites of the structurally unrelated serine peptidases, alpha-chymotrypsin and subtilisin, have been expressed in the form of three-dimensional electrostatic potential maps derived from integrals calculated at the quantum chemistry level. As a consequence of the asymmetrical distribution of the secondary structures that occur within a 7 A sphere around the serine of the catalytic triad, the active sites are highly polarized entities and exhibit large dipole moments. One part of the active sites generates a nucleophilic suction-pump. Its isocontour at -10 kcal mol-1 defines an impressive, negatively-charged volume which bears a narrow channel in the immediate vicinity of the active-site serine 195 in alpha-chymotrypsin or 221 in subtilisin. In native alpha-chymotrypsin, there is a perfect complementation between this nucleophilic suction-pump and the positively-charged electrophilic hole that is generated by the backbone NH of Ser 195 and Gly 193. In subtilisin, generation of the complementing electrophilic hole requires binding of a carbonyl donor ligand and may be achieved by rotation of the side-chain amide of Asn 155 towards the backbone NH of Ser 221. Small variations in the atomic co-ordinates of alpha-chymotrypsin used for the calculations, the presence of water molecules in its active site and the occurrence of point mutations in the amino acid sequence of subtilisin have little effects on the shape and characteristics of the electrostatic potential.  相似文献   

12.
Structure of alpha-chymotrypsin refined at 1.68 A resolution   总被引:16,自引:0,他引:16  
  相似文献   

13.
The binding of the fluorescence probe 1-anilinonaphthalene-8-sulfonate (Ans) to alpha-chymotrypsin (alpha-CHT) at pH 3.6 is accompanied by a dramatic enhancement of Ans fluorescence and a shift of the emission maximum to shorter wavelengths. Our study reveals that one Ans molecule binds to alpha-CHT at a site different from either the active site of alpha-CHT or the 2-p-toluidinylnapthalene-6-sulfonate binding site. the binding constant of Ans is about the same (10(4) M-1) at pH 3.6 and 6.4. Nanosecond fluorescence depolarization data indicate that Ans is rigidly bound to alpha-CHT. The fluorescence enhancement due to binding of Ans to alpha-CHT at low pH could be due to binding either to a hydrophobic site or to a site where local dipoles do not relax during the excited-state lifetime of Ans. As the pH is increased, fluorescence intensity of the Ans-alpha-CHT complex decreases appreciably; and the emission maximum shifts to longer wavelengths. The fluorescence decay curves exhibit a corresponding sensitivity to pH. The pH effect on the fluorescence of Ans-alpha-CHT can be interpreted in terms of a pH-dependent equilibrium between alpha-CHT conformers differing in the degree of mobility of polar residues and water molecules at the Ans binding site or structural changes in the Ans binding site.  相似文献   

14.
N G Galakatos  C T Walsh 《Biochemistry》1987,26(25):8475-8480
Native DadB and Alr alanine racemases (Mr 39,000) from Salmonella typhimurium are proteolyzed at homologous positions by alpha-chymotrypsin, trypsin, and subtilisin to generate in all cases two nonoverlapping polypeptides of Mr 28,000 and 11,000. Under nondenaturing conditions, chymotryptic digest results in an associated form of the two fragments which possesses 3% of the original catalytic activity, incorporates 0.76 equiv of the mechanism-based inactivator beta-chloro-[14C]-D-alanine [Badet, B., Roise, D., & Walsh, C. T. (1984) Biochemistry 23, 5188], and exhibits a UV circular dichroism profile identical with that of native enzyme. Protein sequence analysis of the denatured chymotryptic fragments indicates the presence of a tetrapeptide interdomain hinge (DadB, residues 254-257; Alr, residues 256-259) that is attacked at both ends during proteolysis. Under the previously employed digest conditions, NaB3H4-reduced DadB holoenzyme is resistant to alpha-chymotrypsin and trypsin and is labile only toward subtilisin. These data suggest that the hinge structure is essential for a catalytically efficient enzyme species and is sensitive to active site geometry. The sequence at the hinge region is also conserved in alanine racemases from Gram-positive bacteria.  相似文献   

15.
Previous experiments (H?rmann, H. & Jelini?, V. (1980) Hoppe-Seyler's Z. Physiol. Chem. 361, 379-387) had shown that heparin promoted the binding of plasma fibronectin to peritoneal macrophages of guinea pigs. The present data reveal that this effect only takes place at higher fibronectin concentrations indicating cooperative processes, most likely association of fibronectin at the cell surface. An unspecific precipitation of fibronectin by heparin was prevented by calcium in the medium. The accumulation at the cell surface was inhibited by the following fibronectin fragments: N-terminal 30 kDa and 70 kDa containing a potential self-association site and a transamidase-reactive site; central 95 kDa which comprised a negatively charged region possibly involved in self-association as well as the so-called alternative cell-binding site, but was lacking the cell-binding Arg-Gly-Asp sequence; heparin-binding 37-kDa and 60-kDa fragments. All these domains and sites, therefore, were potentially important in the assembly process at the cell surface. A peptide comprising the sequence Arg-Gly-Asp was ineffective pointing against an involvement of this fibronectin cell-binding site in the overall process. Macrophages of older animals were less capable of accumulating fibronectin under the reaction conditions. Their capability was improved after preincubation with activated plasma transglutaminase (coagulation factor XIIIa) suggesting that a cell-attached transamidase might be important for the assembly process.  相似文献   

16.
The crystal structures of two homologous inhibitors (PMP-C and PMP-D2v) from the insect Locusta migratoria have been determined in complex with bovine alpha-chymotrypsin at 2.1- and 3.0-A resolution, respectively. PMP-C is a potent bovine alpha-chymotrypsin inhibitor whereas native PMP-D2 is a weak inhibitor of bovine trypsin. One unique mutation at the P1 position converts PMP-D2 into a potent bovine alpha-chymotrypsin inhibitor. The two peptides have a similar overall conformation, which consists of a triple-stranded antiparallel beta-sheet connected by three disulfide bridges, thus defining a novel family of serine protease inhibitors. They have in common the protease interaction site, which is composed of the classical protease binding loop (position P5 to P'4, corresponding to residues 26-34) and of an internal segment (residues 15-18), held together by two disulfide bridges. Structural divergences between the two inhibitors result in an additional interaction site between PMP-D2v (position P10 to P6, residues 21-25) and the residues 172-175 of alpha-chymotrypsin. This unusual interaction may be responsible for species selectivity. A careful comparison of data on bound and free inhibitors (from this study and previous NMR studies, respectively) suggests that complexation to the protease stabilizes the flexible binding loop (from P5 to P'4).  相似文献   

17.
A series of new 7-substituted-4-chloro-3-alkoxy isocoumarin derivatives were synthesized and evaluated as inhibitors of representative classes of proteases: serine protease (alpha-chymotrypsin, trypsin), cysteine protease (Caspase-3), and aspartyl protease (HIV-protease), 20S proteasome and also as inhibitors of amyloid peptide gamma-secretase-mediated production. Protease inhibition selectivity is directly related to the structure of the substituent at the 7-position of the isocoumarin nucleus. 7-Nitro-isocoumarin derivatives (4c, 4d, 4f) are potent alpha-chymotrypsin inhibitors but slightly active or inactive on HIV-protease, as well as on cysteine protease. In contrast, only derivatives bearing a free amino (5d, 5f) or a substituted amino group (6f) at the 7-position of the isocoumarin nucleus, were found weakly active or inactive on alpha-chymotrypsin, trypsin, Caspase-3 and HIV-protease, but prevent gamma-secretase-mediated production of Abeta 40/42 amyloid peptides, which is known to be involved in Alzheimer's disease. Moreover, the most active compounds on beta-amyloid peptide production [JLK6 (5d), JLK2 (5f) and JLK7 (6f)] show only weak or moderate inhibitory activity on the 20S proteasome. The obtained results suggest that the described new isocoumarin analogues could be of interest, since compounds like JLK6 (5d), JLK2 (5f) and JLK7 (6f) can be considered as possible hits for the development of new agents directed towards Alzheimer's disease.  相似文献   

18.
Pulsed laser photolysis has been used to study the very rapid relaxation of the complex of alpha-chymotrypsin (EC 3.4.21.1) with the coloured inhibitor Biebrich Scarlet. The light absorption causes the dissociation of the proton in the dye naphthol ring and we are able to follow the recombination process under conditions of different ionic strength and pH. The recombination is markedly influenced by the pH around pH 7. The data suggest the existence of relevant interactions in the active site area between the hydrophobic binding site and the proton relay system of the enzyme.  相似文献   

19.
Three-dimensional 2.8 A resolution x-ray crystallographic studies show that toluenesulfonamide and pipsylamide bind isomorphously in the aromatic specificity binding site of alpha-chymotrypsin. However, their orientation differs by about 90 degrees from that usually associated with substrate-like molecules, suggesting a nonproductive binding mode. A secondary binding site is also operative in one molecule of the dimer of the pipsylamide derivative and it is located some 22 A from the active site; however, this site is not operative in the toluenesulfonamide derivative. Binding of toluenesulfonamide and pipsylamide in the specificity site occurs without inducing any significant changes in the native enzyme structure, in contrast to the behavior observed upon tosylation or upon transition state analogue binding of phenylethaneboronic acid. The structural changes accompanying the formation of the latter derivatives are generally asymmetric with respect to the dimeric structure of alpha-chymotrypsin and are generally confined to the binding domain or cylinder 2 of the enzyme (sequence greater than 122). These changes are displayed in a new way via diagonal distance map representation.  相似文献   

20.
A method has been devised which permits the observation of the loss of active sites promoted by aggregation of alpha-chymotrypsin. When alpha-chymotrypsin in unbuffered solution at pH 7 is mixed with buffered proflavin by stopped flow instrumentation to give a final pH of 3.89, a decrease in active sites occurs, as measured by a decrease in enzyme-dye complex. The decrease in the rate of active sites shows a linear dependence on the square of the concentration of active sites remaining at equilibrium. The kinetic data of the reaction have been correlated with equilibrium measurements. Rate constants for formation and dissociation of dimer are 9.45 X 10(3) M(-1)S(-1) and 1.9 S(-1),, respectively. Calculation of Kdis for dimer from rate constants gives a value of 2.01 X 10(-4) M, while direct determination of Kdis gives a value of 1.44 X 10(-4) M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号