首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The exposure of non-smokers to the tobacco-specific N-nitrosamine 4-(N-methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a rodent lung carcinogen, was determined in the air of various indoor environments as well as by biomonitoring of non-smokers exposed to environmental tobacco smoke (ETS) under real-life conditions using the urinary NNK metabolites 4-(N-methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and [4-(N-methylnitrosamino)-1-(3-pyridyl)but-1-yl]-beta-O-D-glucosiduronic acid (NNAL-Gluc). NNK was not detectable (<0.5 ng m-3) in 11 rooms in which smoking did not occur. The mean NNK concentration in 19 rooms in which smoking took place was 17.5 (2.4-50.0) ng m-3. The NNK levels significantly correlated with the nicotine levels (r=0.856; p< 0.0001). Of the 29 non-smokers investigated, 12 exhibited no detectable NNAL and NNAL-Gluc excretion (<3 pmol day) in their urine. The mean urinary excretion of NNAL and NNAL-Gluc of the 17 remaining non-smokers was 20.3 (<3-63.2) and 22.9 (<3-90.0) pmol day-1, respectively. Total NNAL excretion (NNAL+NNAL-Gluc) in all non-smokers investigated significantly correlated with the amount of nicotine on personal samplers worn during the week prior to urine collection (r=0.88; <0.0001) and with the urinary cotinine levels (r=0.40; p=0.038). No correlation was found between NNAL excretion and the reported extent of ETS exposure. Average total NNAL excretion in the non-smokers with detectable NNAL levels was 74 times less than in 20 smokers who were also investigated. The cotinine/total NNAL ratios in urine of smokers (9900) and non-smokers (9300) were similar. This appears to be at variance with the ratios of the corresponding precursors (nicotine/NNK) in mainstream smoke (16400) and ETS (1000). Possible reasons for this discrepancy are discussed. The possible role of NNK as a lung carcinogen in non-smokers is unclear, especially since NNK exposure in non-smokers is several orders of magnitude lower than the ordinary exposure to exogenous and endogenous N-nitrosamines and the role of NNK as a human lung carcinogen is not fully understood.  相似文献   

2.
BackgroundSexual minority women are consistently at increased risk for tobacco use compared to heterosexual women. Neither biomarkers of nicotine exposure nor biomarkers of tobacco toxicant exposure have been examined by sexual identity.MethodsThis study used interview and biomarker data from women in the biomarker core sample of Wave 1 of the Population Assessment of Tobacco and Health (PATH) study (2013–2014; n = 4930). We examined associations of sexual identity with nicotine exposure (measured with urinary cotinine and TNE-2) and with tobacco-specific nitrosamines (measured with urinary NNAL). Multivariable regression modeling was used to examine these associations among the full biomarker core sample, among past 30-day tobacco users, and among exclusive established cigarette users before and after controlling for tobacco use quantity and intensity.ResultsIn the full biomarker sample of women, prior to adjusting for tobacco use quantity and intensity, bisexual women had significantly higher cotinine, TNE-2, and NNAL levels compared to heterosexual women. Among exclusive established cigarette users, gay/lesbian women had significantly higher NNAL compared to heterosexual women prior to adjusting for tobacco quantity and intensity. No differences by sexual identity were found after adjusting for tobacco use quantity and intensity.ConclusionsThis is the first study to demonstrate differences in biological markers of tobacco exposure by sexual identity among women in the U.S. This has important public health implications as greater exposure to both nicotine and to tobacco-specific nitrosamines are strongly linked to cancer risk.  相似文献   

3.
《Biomarkers》2013,18(2):112-119
The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), a metabolite of the tobacco-specific nitrosamine (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), has been measured in urine samples from all participants aged 6 years and older from the National Health and Nutrition Examination Survey 2007–2008. Participants with a serum cotinine concentration of ≥10?ng/mL were identified as tobacco users, primarily cigarette smokers. Regression models were developed to calculate geometric mean NNAL concentrations adjusted for serum cotinine, urinary creatinine, cigarettes per day, and Federal Trade Commission tar values of the cigarettes smoked. Significant differences were found by gender (p?=?0.003) and race/ethnicity (p?=?0.022 for non-Hispanic white versus non-Hispanic black smokers), but not by menthol type of the cigarettes. Females and non-Hispanic white smokers had the highest adjusted means for urinary NNAL (353 and 336 pg/mL, respectively). The results from this study demonstrated significant relationships between NNAL concentrations and serum cotinine (p?<?0.001) and urine creatinine (p?<?0.001). The joint effect of linear and quadratic terms for number of cigarettes smoked per day was also statistically significant (p?=?0.001). In addition to addressing current NNK exposure levels, these results will form a baseline for future estimates of tobacco users’ exposure to this carcinogen.  相似文献   

4.
Abstract

An objective assessment of exposure to tobacco smoke may be accomplished by means of examining particular biomarkers in body fluids. The most common biomarker of tobacco smoke exposure is urinary, or serum, cotinine. In order to distinguish non-smokers from passive smokers and passive smokers from active smokers, it is necessary to estimate cotinine cut-off points. The objective of this article was to apply statistical distribution of urinary cotinine concentration to estimate cut-off points distinguishing the three above-mentioned groups. The examined group consisted of 327 volunteers (187 women and 140 men) who were ethnically homogenous inhabitants of the same urban agglomeration (Sosnowiec, Poland). The values which enabled differentiation of the examined population into groups and subgroups were as follows: 50 µg l?1 (differentiation of non-smokers from passive smokers), 170 µg l?1 (to divide the group of passive smokers into two subgroups: minimally and highly exposed to environmental tobacco smoke), 550 µg l?1 (differentiation of passive smokers from active smokers), and 2100 µg l?1 (to divide group of active smokers into two subgroups: minimally and highly exposed to tobacco smoke). The results suggest that statistical distribution of urinary cotinine concentration is useful for estimating urinary cotinine cut-off points and for assessing the smoking status of persons exposed to tobacco smoke.  相似文献   

5.
《Biomarkers》2013,18(8):547-553
Tobacco-specific N-nitrosamines (TSNA) include 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N′-nitrosonornicotine (NNN), N′-nitrosoanabasine (NAB) and N′-nitrosoanatabine (NAT) and are found in tobacco and tobacco smoke. TSNA are of interest for biomonitoring of tobacco-smoke exposure as they are associated with carcinogenesis. Both NNK and NNN are classified by IARC as Group 1 carcinogens. Samples of 24?h urine collections (n?=?108) were analysed from smokers and non-smokers, using a newly developed and validated LC-MS/MS method for determining total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, the major metabolite of NNK), and total NNN, NAB and NAT. TSNA levels in smokers’ urine were significantly higher than in non-smokers. In smokers, urinary excretion of total TSNA correlated significantly (r?>?0.5) with markers of smoking dose, such as daily cigarette consumption, salivary cotinine and urinary nicotine equivalents and increased with the ISO tar yield of cigarettes smoked. The correlation between urinary total NNN and the smoking dose was weaker (r?=?0.4–0.5). In conclusion, this new method is suitable for assessing tobacco use-related exposure to NNK, NNN, NAB and NAT.  相似文献   

6.
Myosmine is a minor tobacco alkaloid with widespread occurrence in the human diet. Myosmine is genotoxic in human cells and is readily nitrosated and peroxidated yielding reactive intermediates with carcinogenic potential. For biomonitoring of short-term and long-term exposure, analytical methods were established for determination of myosmine together with nicotine and cotinine in plasma, saliva and toenail by gas chromatography–mass spectrometry (GC/MS). Validation of the method with samples of 14 smokers and 10 non-smokers showed smoking-dependent differences of myosmine in toenails (66?±?56 vs 21?±?15?ng?g?1, p?<0.01) as well as saliva (2.54?±?2.68 vs 0.73?±?0.65?ng ml?1, p <0.01). However, these differences were much smaller than those with nicotine (1971?±?818 vs 132?±?82?ng g?1, p <0.0001) and cotinine (1237?±?818 vs <35?ng?g?1) in toenail and those of cotinine (97.43?±?84.54 vs 1.85?±?4.50?ng ml?1, p <0.0001) in saliva. These results were confirmed in plasma samples from 84 patients undergoing gastro-oesophageal endoscopy. Differences between 25 smokers and 59 non-smokers are again much lower for myosmine (0.30?±?0.35 vs 0.16?±?0.18?ng?ml?1, p <0.05) than for cotinine (54.67?±?29.63 vs 0.61?±?1.82?ng ml?1, p <0.0001). In conclusion, sources other than tobacco contribute considerably to the human body burden of myosmine.  相似文献   

7.
Subjects enrolled in studies are not always screened for routine habits such as smoking. Personal history is not always reliable and therefore an objective biomarker is necessary to screen for smokers. The objectives of this article were to review the metabolism of nicotine and other metabolic considerations associated with smoking; to review some of the routine methods used to assess exposure to nicotine-containing products; to revisit cotinine breakpoints utilized to distinguish smokers from non-smokers during screening for clinical trials; to assess the utility of screening questions regarding smoking practices; and to recommend standards for clinical pharmacology studies. The results indicated that cotinine levels serve as a useful biomarker of tobacco exposure; racial issues may be clinically relevant in determining smoking status; cessation of smoking should occur at least 14 days prior to the start of the study; adverse effects from nicotine withdrawal such as craving, hunger and weight gain may persist for more than 6 months; potential metabolic interactions via cytochrome P2A6 and P1A2 need to be considered when designing a study; and the use of a single calibrator as a breakpoint is acceptable if a categorical outcome such as 'smoker' versus 'non-smoker' is desired. Nicotine from food products is not expected to impact assay sensitivity or to be clinically relevant; a serum cotinine concentration of 10 ng ml?1 be employed as a breakpoint for non-smokers versus smokers; other non-invasive alternatives are collection of urine, saliva, or hair (with suggested breakpoints of 200 ng ml?1, 5 ng ml?1 and 0.3 ng mg?1, respectively; screening questions be accompanied by testing for cotinine; and the inclusion of smokers in studies should be considered once the impact of smoking on the targeted population is understood.  相似文献   

8.
The nicotine metabolite cotinine is widely used to assess the extent of tobacco use in smokers, and secondhand smoke exposure in non-smokers. The ratio of another nicotine metabolite, trans-3'-hydroxycotinine, to cotinine in biofluids is highly correlated with the rate of nicotine metabolism, which is catalyzed mainly by cytochrome P450 2A6 (CYP2A6). Consequently, this nicotine metabolite ratio is being used to phenotype individuals for CYP2A6 activity and to individualize pharmacotherapies for tobacco addiction. In this paper we describe a highly sensitive liquid chromatography-tandem mass spectrometry method for determination of the nicotine metabolites cotinine and trans-3'-hydroxycotinine in human plasma, urine, and saliva. Lower limits of quantitation range from 0.02 to 0.1ng/mL. The extraction procedure is straightforward and suitable for large-scale studies. The method has been applied to several thousand biofluid samples for pharmacogenetic studies and for studies of exposure to low levels of secondhand smoke. Concentrations of both metabolites in urine of non-smokers with different levels of secondhand smoke exposure are presented.  相似文献   

9.
Tobacco smoking during pregnancy is associated with a variety of negative consequences not only for the mother, but also for the developing fetus. Many studies have shown that carcinogens contained in tobacco smoke permeate across the placenta, and are found in fetus. The aim of the study was to determine the prenatal exposure to tobacco-specific carcinogenic N-nitrosamines on the basis of measurements of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in urine of smoking and second-hand smoke (SHS) exposed women and in the first urine of their newborns. A questionnaire documenting demographics and socio-economical data, smoking habits and exposure to SHS was completed by 121 delivering women near or at term. Maternal concentrations of cotinine and NNAL were measured in urine of the mother and the first urine of her newborn infant by liquid chromatography tandem mass spectrometry (LC/MS/MS). The mean concentration of cotinine was 439.2 ng/mg creatinine and NNAL concentration in urine of smoking women was 74.0 pg/mg creatinine, and for her newborn 78.6 pg/mg creatinine. Among mothers exposed to SHS, cotinine and NNAL mean concentration were 23.1 ng/mg creatinine, and 26.4 pg/mg creatinine. In newborns of SHS exposed mothers during pregnancy the mean concentration of NNAL was 34.1 pg/mg creatinine, respectively. Active tobacco smoking as well as passive exposure to smoking during pregnancy is an important source of tobacco specific N-nitrosamines to the fetuses as evidenced by increased concentrations of this carcinogen. Determination of NNAL in maternal urine samples can be a useful biomarker of prenatal exposure of newborn to carcinogenic nitrosamines.  相似文献   

10.
BACKGROUND: The risk of human diseases and abnormal development under the relatively reduced toxic environmental exposure conditions of passive cigarette smoke and urban pollution is emerging as significant. To assess the genotoxic potential of such exposure, we analyzed the DNA adducts of polynuclear aromatic hydrocarbons (PAH), a proven marker of genotoxicity, in human placental DNA samples of pregnancies monitored for passive cigarette smoke exposure. METHODS: Maternal exposure to active and passive cigarette smoke was evaluated by verbal disclosure and urinary nicotine and cotinine measurements. PAH-DNA adducts were assayed by ELISA using a polyclonal antibody against benzo[alpha]pyrene-diol-epoxide-DNA in placental DNA. Birth weights of infants were recorded in these monitored pregnancies. RESULTS: Urinary nicotine and cotinine values were reduced in the passive smoke-exposed group compared to smokers and similar to those in the nonsmoker ambient exposure group. PAH-DNA and nicotine/cotinine values were not correlated with birth weight of the infant. PAH-DNA adducts were present in approximately 25% of samples exposed to passive cigarette smoke and ambient environment. CONCLUSIONS: The study has revealed that a subpopulation of humans is predisposed to accumulating PAH adducts independent of high levels of PAH sources (e.g., maternal cigarette smoke exposure). Because DNA adducts promote genomic changes, it is likely that this subpopulation is susceptible to diverse changes in the genome that may influence human development.  相似文献   

11.
Nicotine is a major addictive compound in cigarette. Its smoke is rapidly and extensively metabolized to several metabolites in human. Cotinine as a major metabolite of nicotine is commonly used as a biomarker to determine active and passive smokers. Cotinine has a longer half-life ( approximately 20 h) compared to nicotine ( approximately 2h). A simple, sensitive, rapid and high throughput GC-MS method was developed for simultaneous quantification of urinary nicotine and cotinine in passive and active smokers. In the sample preparation method, the analytes and internal standard were first basified and followed by liquid-liquid extraction. Upon completion, anhydrous sodium sulphate was added to the solvent mixture to trap moistures. The clear extract obtained was directly injected into GC-MS, operating under selective ion monitoring (SIM) mode. Calibration curves in the range of 0.5-5000 ng/mL of the analytes in urine matrix were established with linear correlation coefficients (r(2)) greater than 0.997. The limit of detection for both nicotine and cotinine were 0.20 ng/mL. The mean recoveries for nicotine and cotinine were 93.0 and 100.4%, respectively. The within- and between-assay accuracies were between 2.1 and 7.9% for nicotine and between 0.7 and 11.1% for cotinine. Within- and between-assay precisions of 3.3-9.5% for nicotine and 3.4-9.8% for cotinine were also achieved. The method can be used in routine assessment and monitoring of active smoking and exposure to environmental tobacco smoke. The applicability of the assay was demonstrated in a small-scale comparison study between smokers and non-smokers.  相似文献   

12.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) is a rodent carcinogen that is metabolically derived from carbonyl reduction of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). NNAL can be pyridine N-oxidized to form NNAL-N-oxide, or conjugated to form NNAL-glucuronide - non-genotoxic metabolites that can be excreted in urine. Alternatively, NNAL can be alpha-hydroxylated at the methyl and methylene carbons adjacent to the nitroso group to generate electrophiles that can react with biological macromolecules, such as DNA and proteins. Our laboratory has previously demonstrated that the mutagenicity of NNK was significantly inhibited by the aqueous extract of tobacco smoke, as well as pyridine alkaloids in cigarette smoke, such as nicotine, cotinine and nornicotine. Given the structural similarity between NNK and NNAL, and the metabolic activation of both by cytochromes P450, we hypothesized that there may be a similar inhibition of NNAL metabolism, and consequently, inhibition of the mutagenic activity of NNAL by tobacco smoke and its pyridine alkaloid constituents. In the present study, we evaluated the ability of two pyridine alkaloids (nicotine and cotinine) and aqueous cigarette smoke condensate extract (ACTE) to inhibit the mutagenicity of NNAL in Salmonella typhimurium strain TA1535 in the presence of a metabolic activation system (S9). Both pyridine alkaloids tested, as well as ACTE, inhibited the mutagenicity of NNAL in a concentration-dependent manner. The observed reductions in mutagenicity were not the result of cell killing due to cytotoxicity. These results demonstrate that tobacco smoke contains pyridine alkaloids, as well as other unidentified constituents that inhibit the mutagenicity of NNAL, a major metabolite of NNK.  相似文献   

13.
《Biomarkers》2013,18(1):89-96
Acrylonitrile is an IARC class 2B carcinogen present in cigarette smoke. Urinary 2-cyanoethylmercapturic acid (CEMA) is an acrylonitrile metabolite and a potential biomarker for acrylonitrile exposure. The objective of this work was to study the dose response of CEMA in urine of non-smokers and smokers of different ISO tar yield cigarettes. We observed that smokers excreted >100-fold higher amounts of urinary CEMA than non-smokers. The CEMA levels in smokers were significantly correlated with ISO tar yield, daily cigarette consumption, and urinary biomarkers of smoke exposure. In conclusion, urinary CEMA is a suitable biomarker for assessing smoking-related exposure to acrylonitrile.  相似文献   

14.
IntroductionHigh levels of cotinine in non-smokers indicate passive exposure to tobacco smoke. This study aims to evaluate variations in salivary cotinine cut-offs to discriminate smokers and non-smokers before and after the implementation of smoke-free legislation (Law 28/2005 and Law 42/2010) in a sample of the adult population of Barcelona, Spain.MethodsThis longitudinal study analyzes salivary cotinine samples and self-reported information from a representative sample (n = 676) of the adult population from Barcelona before and after the approval of smoke-free legislation. We calculated the receiver operating characteristic (ROC) curves, to obtain optimal cotinine cut-off points to discriminate between smokers and non-smokers overall, by sex and age, and their corresponding sensitivity, specificity, and area under the curve. We used linear mixed-effects models, with individuals as random effects, to model the percentage change of cotinine concentration before and after the implementation of both laws.ResultsThe mean salivary cotinine concentration was significantly lower post-2010 law (−85.8%, p < 0.001). The ROC curves determined that the optimal cotinine cut-off points for discriminating non-smokers and smokers were 10.8 ng/mL (pre-2005 law) and 5.6 ng/mL (post-2010 law), with a post-2010 law sensitivity of 92.6%, specificity of 98.4%, and an area under the curve of 97.0%. The post-2010 law cotinine cut-off points were 5.6 ng/mL for males and 1.9 ng/mL for females.ConclusionThe implementation of Spanish smoke-free legislation was effective in reducing secondhand smoke exposure and, therefore, also in reducing the cut-off point for salivary cotinine concentration. This value should be used to better assess tobacco smoke exposure in this population.  相似文献   

15.
《Epigenetics》2013,8(11):1473-1484
In utero smoke exposure has been shown to have detrimental effects on lung function and to be associated with persistent wheezing and asthma in children. One potential mechanism of IUS effects could be alterations in DNA methylation, which may have life-long implications. The goal of this study was to examine the association between DNA methylation and nicotine exposure in fetal lung and placental tissue in early development; nicotine exposure in this analysis represents a likely surrogate for in-utero smoke. We performed an epigenome-wide analysis of DNA methylation in fetal lung tissue (n = 85, 41 smoke exposed (48%), 44 controls) and the corresponding placental tissue samples (n = 80, 39 smoke exposed (49%), 41 controls) using the Illumina HumanMethylation450 BeadChip array. Differential methylation analyses were conducted to evaluate the variation associated with nicotine exposure. The most significant CpG sites in the fetal lung analysis mapped to the PKP3 (P = 2.94 × 10?03), ANKRD33B (P = 3.12 × 10?03), CNTD2 (P = 4.9 × 10?03) and DPP10 (P = 5.43 × 10?03) genes. In the placental methylome, the most significant CpG sites mapped to the GTF2H2C and GTF2H2D genes (P = 2.87 × 10?06 ? 3.48 × 10?05). One hundred and one unique CpG sites with P-values < 0.05 were concordant between lung and placental tissue analyses. Gene Set Enrichment Analysis demonstrated enrichment of specific disorders, such as asthma and immune disorders. Our findings demonstrate an association between in utero nicotine exposure and variable DNA methylation in fetal lung and placental tissues, suggesting a role for DNA methylation variation in the fetal origins of chronic diseases.  相似文献   

16.
《Biomarkers》2013,18(4):345-352
Intraindividual variability of measurements of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), nicotine, cotinine, and r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene (PheT) over time is uncertain. From 70 habitual smokers’ plasma and urine sampled bimonthly for a year we analysed plasma for NNAL, cotinine and PheT, and urine for NNAL, cotinine and nicotine. We estimated the intraclass correlation coefficients (ρI) for each measurement. Plasma and creatinine-corrected urinary NNAL were stable (ρI ≥70%); plasma PheT and plasma and urinary total cotinine were fairly stable (ρI ≥50%), but urinary nicotine ρI ≈ 40% was not. Except for nicotine, single measurements from plasma or urine adequately represent individual mean exposure over time.  相似文献   

17.
Non-invasive biomonitoring of exposure to environmental tobacco smoke (ETS) by means of hair is attractive in children, although systematic evaluation is required in infants. The objective was to compare nicotine and cotinine concentrations in hair and plasma and parentally reported exposure to ETS in a birth cohort of 411 infants. Plasma was collected from 356 six-month-old infants and hair samples were collected from 368 one-year-old infants. Concentrations of nicotine and cotinine were measured by an optimized gas chromatography-mass spectrometry (GC/MS)-based method requiring 4 mg hair or 200 µl plasma. Information was obtained on the number of days with ETS exposure during the first year of life, the smoking habits of the parents, and the number of cigarettes smoked per day in the home. All three parentally reported indices of ETS exposure were significantly associated with the biomarkers, with clear dose–response relationships. There was a significant association between days with ETS exposure and nicotine in hair at relatively low exposure levels (10–99 days per year), whereas the other biomarkers only showed significant increases at higher exposure levels. In conclusion, nicotine in hair appears to be the biomarker most strongly associated with parental reports on exposure to ETS in infants.  相似文献   

18.
An objective assessment of exposure to tobacco smoke may be accomplished by means of examining particular biomarkers in body fluids. The most common biomarker of tobacco smoke exposure is urinary, or serum, cotinine. In order to distinguish non-smokers from passive smokers and passive smokers from active smokers, it is necessary to estimate cotinine cut-off points. The objective of this article was to apply statistical distribution of urinary cotinine concentration to estimate cut-off points distinguishing the three above-mentioned groups. The examined group consisted of 327 volunteers (187 women and 140 men) who were ethnically homogenous inhabitants of the same urban agglomeration (Sosnowiec, Poland). The values which enabled differentiation of the examined population into groups and subgroups were as follows: 50 µg l-1 (differentiation of non-smokers from passive smokers), 170 µg l-1 (to divide the group of passive smokers into two subgroups: minimally and highly exposed to environmental tobacco smoke), 550 µg l-1 (differentiation of passive smokers from active smokers), and 2100 µg l-1 (to divide group of active smokers into two subgroups: minimally and highly exposed to tobacco smoke). The results suggest that statistical distribution of urinary cotinine concentration is useful for estimating urinary cotinine cut-off points and for assessing the smoking status of persons exposed to tobacco smoke.  相似文献   

19.
Smokers are exposed to a number of carcinogenic compounds including aromatic amines such as 4-aminobiphenyl. Antioxidants are thought to be involved in the defence against the damaging effect of such carcinogens. Recently it has been shown that plasma antioxidant status in smokers is diminished compared with non-smokers. In this study we investigated in 40 smokers whether the trolox equivalent antioxidant capacity (TEAC) in plasma could be quantitatively related to exposure to cigarette smoke. The biomarkers 4-aminobiphenylhaemoglobin (4-ABP-Hb) adduct and cotinine were determined as indices of cigarette smoke exposure. A correlation between 4-ABP-Hb adduct levels and plasma cotinine levels was found for the whole population studied, who smoked 4-70 cigarettes per day (n = 40, r2 = 0.12, p = 0.03). A significant inverse relationship was found between TEAC and 4-ABP-Hb levels (n = 40, r2 = 0.17, p = 0.008). Multiple regression analysis showed a strong relationship between 4-ABP-Hb levels and plasma TEAC and cotinine levels (n = 40, r2 =0.29, p = 0.002). These findings provide strong evidence that the 4- ABP-Hb adduct represents a valuable biomarker of (internal) exposure to tobacco smoke, and also that the formation of this marker is dependent on the plasma antioxidant status. The multiple regression analysis results show that the measure of effect (4-ABP-Hb adduct formation) is largely determined by dose (cotinine) and protection (TEAC).  相似文献   

20.
DNA adduct formation from tobacco-specific N-nitrosamines   总被引:22,自引:0,他引:22  
Hecht SS 《Mutation research》1999,424(1-2):127-142
Tobacco-specific N-nitrosamines are a group of carcinogens derived from the tobacco alkaloids. They are likely causative factors for cancers of the lung, esophagus, pancreas, and oral cavity in people who use tobacco products. The most carcinogenic tobacco-specific nitrosamines in laboratory animals are 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and N'-nitrosonornicotine (NNN). DNA adduct formation from NNK and NNN has been studied extensively and is reviewed here. NNK is metabolically activated by cytochromes P450 to intermediates which methylate and pyridyloxobutylate DNA. The resulting adducts have been detected in cells and tissues susceptible to NNK carcinogenesis in rodents. The methylation and pyridyloxobutylation pathways are both important in carcinogenesis by NNK. NNK also induces single strand breaks and increases levels of 8-oxodeoxyguanosine in DNA of treated animals. NNAL, which like NNK is a potent pulmonary carcinogen, is also metabolically activated to methylating and pyridyloxobutylating intermediates. NNN pyridyloxobutylates DNA in its rat target tissues, esophagus and nasal mucosa. Methyl and pyridyloxobutyl DNA adducts are detected in human tissues. The methyl adducts most likely result in part from exposure of smokers to NNK, but these adducts are also detected in non-smokers. Some of the methyl adducts detected in non-smokers may be due to environmental tobacco smoke exposure. There are also potential dietary and endogenous sources of these adducts. Pyridyloxobutyl DNA adducts in human tissues result mainly from exposure to tobacco-specific N-nitrosamines. In laboratory animals, DNA adduct formation and carcinogenicity of tobacco-specific N-nitrosamines are closely correlated in many instances, and it is likely that similar relationships will hold in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号