首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This work aimed at investigating the potential modulatory effects and mechanisms of crocin against CCl4‐induced nephrotoxicity. Forty male rats were allocated for three weeks treatment with corn oil, CCl4, crocin, or crocin plus CCl4. Crocin effectively mitigated CCl4‐induced kidney injury as evidenced by amelioration of alterations in kidney histopathology, renal weight/100 g body weight ratio and kidney functions. Crocin modulated CCl4‐induced disturbance of kidney cytochrom‐P450 subfamily 2E1 and glutathione‐S‐transferase. The attenuation of crocin to kidney injury was also associated with suppression of oxidative stress via reduction of lipid peroxides along with induction of renal glutathione content and enhancement of superoxide dismutase, glutathione peroxidase, and catalase activities. Crocin mitigated CCl4‐induced elevation of the renal levels of tumor necrosis factor‐alpha, interleukin‐6, prostaglandin E2, and active caspases‐3. Collectively, crocin alleviated CCl4‐induced renal damage via modulation of kidney metabolizing enzymes, suppression of oxidative stress, inhibition of inflammatory cytokines, PGE2, and active caspase3 in kidney.  相似文献   

2.
A rapid perfusion of oxygen in infants at birth may cause an increase of oxidative stress. To assess this possibility, we measured levels of blood plasma antioxidants and free fatty acids in 20 normal infants at 0, 1, 3, and 5 days after birth. Plasma levels of the most reactive antioxidant, ascorbic acid, decreased daily to equilibrium values at days 3 and 5. Percentages of oxidized form of coenzyme Q-10 (%CoQ-10) in total coenzyme Q, another good marker of oxidative stress, in infants (25-31%) were significantly higher than those in healthy young adults (4.5%). Plasma levels of total free fatty acids (FFA) in normal infants were highest at day 1 and decreased rapidly thereafter. The content of polyunsaturated fatty acids (PUFA) in total FFA was lowest at day 1 and then increased. Since PUFA are susceptible to oxidation, these changes in FFA composition suggest that oxidative stress is most evident at the initial day of neonatal life. Furthermore, it appears that mono-unsaturated fatty acids such as oleic and palmitoleic acids increase in response to the oxidative loss of PUFA. Similar changes in plasma antioxidants, FFA levels, and FFA compositions were observed in 9 infants with asphyxia. Values of %CoQ-10 in infants with asphyxia were significantly greater than those in normal infants, suggesting that infants with asphyxia have elevated oxidative stress.  相似文献   

3.
Biochemical assessment of liver damage during ethanol-induced stress was done by measuring the activities of serum enzymes, viz., aspartate transaminase (AST) and alkaline phosphatase (ALP), which were significantly elevated in rats fed ethanol. Ethanol administration for a period of 60 days modifies the fatty acid composition, and the analysis of fatty acids showed that there was a significant increase in the concentrations of palmitic acid (16:0), stearic acid (18:0), and oleic acid (18:1) in liver, kidney, and brain, whereas the concentrations of palmitoleic (16:1) and arachidonic acid (20:4) were significantly decreased. The breakdown products of arachidonic acids (20:4), prostaglandins, were elevated. The antioxidants curcumin and N-acetylcysteine (NAC) decreased the activities of serum AST and ALP. Curcumin and NAC decreased the concentrations of fatty acids, viz., palmitic, stearic, and oleic acid, whereas arachidonic acid and palmitoleic acid were elevated. The prostaglandin concentrations were also decreased after curcumin and N-acetylcysteine treatment. Thus the present investigation shows that curcumin and N-acetylcysteine prevent the fatty acid changes produced by ethanol and also reduce the inflammatory response of ethanol by reducing the level of prostaglandins. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
5.
BackgroundDietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations.ObjectiveTo evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache.DesignSecondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3–L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet.ResultsCompared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3–L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations.ConclusionDietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA.  相似文献   

6.
Using chemical mutagenesis, mutants of Hansenula polymorpha that were defective in fatty acid synthesis were selected based on their growth requirements on saturated fatty acid mixtures. One mutant (S7) was incapable of synthesizing polyunsaturated fatty acids (PUFA), linoleic and α-linolenic acids. A genetic analysis demonstrated that the S7 strain had a double lesion affecting fatty acid synthesis and Δ12-desaturation. A segregant with a defect in PUFA synthesis (H69-2C) displayed normal growth characteristics in the temperature range of 20–42 °C through a modulation of the cellular fatty acid composition. Compared with the parental strain, this yeast mutant had increased sensitivity at low and high temperatures (15 and 48 °C, respectively) with an increased tolerance to oxidative stress. The responses to ethanol stress were similar for the parental and PUFA-defective strains. Myristic acid was also determined to play an essential role in the cell growth of H. polymorpha. These findings suggest that both the type of cellular fatty acids and the composition of fatty acids might be involved in the stress responsive mechanisms in this industrially important yeast.  相似文献   

7.
《Biochimie》2013,95(11):2177-2181
In septic shock patients, alterations of plasma phospholipid fatty acid profile have never been described. The purpose of this monocentric, non-interventional, observational prospective study was to describe this fatty acid profile in the early phase of septic shock in intensive care unit. Thirty-seven adult patients with septic shock were included after the first day of stay in intensive care unit, before any form of artificial nutritional support. Plasma phospholipid fatty acid composition was determined by gas chromatography. All biological data from patients with septic shock were compared with laboratory reference values. Patients presented hypocholesterolemia and hypertriglyceridemia. They had low concentrations of phospholipid fatty acids specifically n-6 and n-3 polyunsaturated fatty acids (PUFAs) with a high n-6/n-3 ratio. Plasma phospholipid PUFA concentrations were strongly correlated with cholesterolemia. PUFAs/SFAs (saturated fatty acids) and PUFAs/MUFAs (monounsaturated fatty acids) ratios were low because of low percentage of n-6 and n-3 PUFAs and high percentage of SFAs and MUFAs. Low levels of plasma long chain PUFAs (≥20 carbons) were significantly associated with mortality at 28th day. In conclusion, plasma phospholipid FA profile of septic patients is very characteristic, close to that of acute respiratory distress syndrome and mortality is associated with long chain PUFA decrease. This profile could be explained by numerous non-exclusive physio-pathological processes 1) an activation of hepatic de novo lipogenesis that could contribute to hepatic steatosis, 2) an elevated adipose tissue lipolysis, 3) an increased free radical attack of FA by oxidative stress, 4) an over-production of inflammatory lipid mediators.  相似文献   

8.
Acetyl-l-carnitine (ALCAR) has been shown to prevent experimental selenite cataractogenesis, a manifestation of oxidative stress, but little is known about its potential in other settings of oxidative stress. The present study was based on the hypothesis that ALCAR prevents carbon tetrachloride (CCl4)-induced oxidative stress in vital tissues. Male albino Wistar rats were divided into three groups, each of six rats. Group I (control) rats received only vehicle (1 ml/kg b.w.) for 4 days; Group II (CCl4-exposed, untreated) rats received CCl4 (2 ml/kg b.w.) on the second and third days and vehicle on the first and fourth days; Group III (CCl4-exposed, ALCAR-treated) rats received ALCAR (200 mg/kg b.w.) for 4 days and CCl4 on the second and third days. All administrations were made intraperitoneally. After the experimental period, significantly (P < 0.05) elevated mean serum levels of aspartate transaminase, alanine transaminase, alkaline phosphatase, and lactate dehydrogenase were observed in Group II rats when compared to Group I and Group III rats. The mean levels of vitamin C, vitamin E, and reduced glutathione and the mean activities of superoxide dismutase, catalase, and glutathione peroxidase were significantly (P < 0.05) lower in samples of hemolysate and of liver, kidney, and brain tissues of Group II rats than those in Group I and Group III rats. The mean level of lipid peroxidation was significantly (P < 0.05) higher in Group II rats than that in Group I and Group III rats. Moreover, the CCl4-induced upregulation of inducible nitric oxide synthase expression was prevented by ALCAR in the liver and brain tissues. These results suggest that ALCAR is able to prevent the CCl4-induced oxidative stress.  相似文献   

9.
Diet and postnatal age effect the fatty acid composition of plasma and tissue lipids. This work was designed as a transversal study to evaluate the changes in the fatty acid composition of plasma phospholipids, cholesteryl esters, triglycerides and free fatty acids in preterm infants (28-35 weeks gestational age), fed human milk (HM) and milk formula (MF) from birth to 1 month of life. Sixteen blood samples were obtained from cord, and 19 at 6-8 h after birth, 14 at 1 week and 9 at 4 weeks from HM-fed infants and 18 at 1 week and 14 at 4 weeks from MF-fed ones. Groups had similar mean birth weight, gestational age and sex ratio. The MF provided 69 kcal/dl and contained 16% of linoleic acid and 1.3% of alpha-linolenic acid on the total fat. Plasma lipid fractions were extracted and separated by thin-layer chromatography and fatty acid methyl esters were quantitated by gas liquid chromatography. In plasma phospholipids, linoleic acid (18:2 omega 6) continuously increased from birth to 1 month of age, but no changes were seen as related to type of diet; polyunsaturated fatty acids greater than 18 carbon atoms of both the omega 6 and omega 3 series (PUFA omega 6 greater than 18 C and omega 3 greater than 18 C) dropped from birth to 1 week and continued to decrease in MF-fed infants until 1 month; eicosatrienoic (20:3 omega 6), arachidonic (20:4 omega 6) and docosahexaenoic (22:6 omega 3) were the fatty acids implicated. In cholesteryl esters palmitoleic (16:1 omega 7) and oleic (18:1 omega 9) acids decreased from birth to 1 month and linoleic acid increased and arachidonic acid dropped, especially in MF fed infants. In triglycerides, palmitic, palmitoleic and stearic acid (18:0) decreased during the first month of life; oleic acid remained constant and linoleic acid increased in all infants, but arachidonic acid decreased only in those fed formula. Free fatty acids showed a similar behavior in fatty acids and in plasma triglycerides. Preterm neonates seem to have special requirements of long-chain PUFA and adapted MF should contain these fatty acids in similar amounts to those of HM to allow the maintenance of an adequate tissue structure and physiology.  相似文献   

10.
This article describes a procedure for the quantitation of the isoprostane 15-F2t-IsoP (9a,11a,15S-trihydroxy-(8b)-prosta-5Z,13E-dien-1-oic acid [CAS#27415-26-5] formerly known as 8-epi-PGF2a or 8-iso-PGF2a, and also as iPF2a-III). We have combined features from several earlier methods for 15-F2t-IsoP and prostaglandins, and identified and modified those steps that may lead to poor recoveries. The resulting protocol is precise and reliable, and was validated by a blind time-course study of plasma levels in rats treated with 120 and 1200 mg CCl4/kg body weight. Plasma levels of 15-F2t-IsoP, as measured according to the procedure described above, are good indicators of acute oxidative stress as induced by CCl4. The precision of the measurements allows detection of elevated plasma 15-F2t-IsoP levels as long as 16 h after an acute exposure of 120 mg CCl4/kg body weight, and 2 h after an exposure of 1 mg CCl4/kg body weight. The results of this low-dose, pilot study suggest that this method has sufficient analytical precision to allow the detection of the small changes in plasma isoprostane levels, which result from chronic and/or lower-level exposures to agents causing oxidative stress.  相似文献   

11.
Menopause is associated with endothelial dysfunction and oxidative stress. In this condition, reduced n-3 polyunsaturated fatty acids (n-3 PUFAs) contribute to cardiovascular disease. We investigated whether treatment with n-3 PUFA reverses endothelial dysfunction and oxidative stress in experimental menopause. Thirty female rats underwent either sham-surgery or bilateral ovariectomy or bilateral ovariectomy+oral n-3 PUFA (0.8 g kg-1 day-1 for 2 months).Ovariectomy caused endothelial dysfunction to acetylcholine, which was reversed by superoxide scavenger Tiron. Erythrocyte membrane lipid composition was characterized by reduced n-3 PUFA total content and omega-3 index, and by concomitant increase in n-6:n-3 PUFA ratio. Ovariectomy-related oxidative stress, demonstrated by both enhanced superoxide production and 3-nitrotyrosine expression in aorta, was associated with increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit NOX-4 protein expression. Endothelial nitric oxide synthase (eNOS) functional inhibition by l-NG-nitroarginine methyl ester, protein expression and activity did not change.In ovariectomized rats, treatment with n-3 PUFA increased n-3 PUFA total content and omega-3 index and decreased n-6:n-3 PUFA ratio in erythrocyte membrane, reversed vascular oxidative stress, endothelial dysfunction, aortic 3-nitrotyrosine and markedly lowered NOX-4 protein expression; eNOS protein expression also increased, paralleled by reversal of inhibitory binding to Caveolin-1, while ex-vivo functional inhibition and NOS synthesis were unchanged.These findings demonstrate in vivo a therapeutic benefit of n-3 PUFA on menopause-associated endothelial dysfunction by reversal of alterations in membrane lipid composition induced by ovariectomy and by reduction of vascular oxidative stress. In this setting they also identify NOX-4 as a potential target to reduce oxidative stress-mediated vascular complications.  相似文献   

12.
Ononitol monohydrate, structurally similar to glycoside was isolated from Cassia tora L. leaves. Fifty Male rats were divided into five groups. Group I served as normal control. Group II, III and IV rats were induced hepatotoxicity by CCl4 administering single dose of CCl4 on 8th day only. Group III was treated with ononitol monohydrate (20 mg/kg body weight) and group IV was treated with reference drug silymarin (20 mg/kg body weight) both dissolved in corn oil and administering for 8 days. Ononitol monohydrate with corn oil alone was given for 8 days (group V). At the end of the experimental period all the animals were sacrificed and analyzed for biochemical parameters to assess the effect of ononitol monohydrate treatment in CCl4 induced hepatotoxicity. In in vivo study, ononitol monohydrate decreased the levels of serum transaminase, lipid peroxidation and TNF-α but increased the levels of antioxidant and hepatic glutathione enzyme activities. Compared with reference drug silymarin ononitol monohydrate possessesed high hepatoprotective activity. Histopathological results also suggested the hepatoprotective activity of ononitol monohydrate with no adverse effect. Hence we conclude that ononitol monohydrate is a potent hepatoprotective agent.  相似文献   

13.
This study was performed to elucidate the effects of Undaria pinnatifida fucoidan extract (UPFE) in preventing CCl4-induced oxidative stress. UPFE (100 mg/kg) was intraperitoneally administered to rats for 14 days. On day 15, CCl4 dissolved in olive oil (50% CCl4) was injected 12 h before they were anesthetized and dissected. To measure UPFE-mediated antioxidation, we examined the levels of glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in serum, as well as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in liver homogenates. CCl4 treatment markedly increased the levels of GOT, GPT, ALP, LDH, and MDA and significantly decreased levels of SOD, CAT, and GPx. UPFE pretreatment decreased levels of GOT, GPT, ALP, LDH, and MDA, by 62.8, 68.5, 41.9, 72.7, and 122%, respectively and increased those of SOD, CAT, and GPx by 111.1, 15.9, and 52.6%, respectively. These results showed that UPFE has antioxidant effects against CCl4-induced oxidative stress.  相似文献   

14.
In Streptomyces coelicolor A3(2), as the content of palmitoleic acid increased with decreasing growth temperature, H2O2 resistance decreased. Production of thiobarbituric acid-reactive substances upon H2O2 treatment was increased by supplementing unsaturated fatty acids. Therefore, the content of palmitoleic acid is a determining factor for the survival of Streptomyces coelicolor A3(2) subjected to H2O2 stress.  相似文献   

15.
《Free radical research》2013,47(7):821-829
Abstract

Oxidative stress contributes to lipid peroxidation and decreases nitric oxide (NO) bioavailability in atherosclerosis. While long-chain (n-3) polyunsaturated fatty acids (PUFA) are easily oxidized in vitro, they improve endothelial function. Hence, this study postulates that long-chain (n-3) PUFA decrease atherogenic oxidative stress in vivo. To test this, apoE–/– mice were fed a corn oil- or a fish oil (FO)-rich diet for 8, 14 or 20 weeks and parameters related to NO and superoxide (O2.–) plus markers of lipid peroxidation and protein oxidative damage in the aortic root were evaluated. The FO-rich diet increased NO production and endothelial NO synthase (NOS) expression and lowered inducible NOS, p22phox expression and O2.–production after 14 and 20 weeks of diet. Protein lipoxidative damage (including 4-hydroxynonenal) was decreased after a long-term FO-diet. This supports the hypothesis that a FO-rich diet could counteract atherogenic oxidative stress, showing beneficial effects of long-chain (n-3) PUFA.  相似文献   

16.
Feeding adult rats a 17% corn-oil diet for 8 weeks did not change brain polyunsaturated fatty acids (PUFA) compared to rats fed 2.2% corn oil (with 2.2% lard added). When the corn-oil diet was supplemented with 14.5% cod liver oil or 12.5% salmon oil, the fatty acid composition of brain PUFA was significantly altered, even if alpha-tocopherol was added to the salmon-oil diet. Comparing salmon-oil- and cod-liver-oil-fed animals with corn-oil-fed animals, arachidonic acid 22:4(n-6) and 22:5(n-6) were reduced, and 20:5(n-3), 22:5(n-3) and 22:6(n-3) were increased. Liver fatty acids were also significantly altered. Thus, the brain is not protected against a large excess of very-long-chain n-3 PUFA, which increase n-3/n-6 ratio and could lead to abnormal function, and which might be difficult to reverse.  相似文献   

17.
Polyunsaturated fatty acids of n-3 series (n-3 PUFA) were shown to increase basal fat oxidation in humans. The aim of the study was to compare the effect of n-3 PUFA added to a very low calorie diet (VLCD), with VLCD only during three-week inpatient weight reduction. Twenty severely obese women were randomly assigned to VLCD with n-3 PUFA or with placebo. Fatty acids in serum lipid fractions were quantified by gas chromatography. Differences between the groups were determined using ANOVA. Higher weight (7.55+/-1.77 vs. 6.07+/-2.16 kg, NS), BMI (2.82+/-0.62 vs. 2.22+/-0.74, p<0.05) and hip circumference losses (4.8+/-1.81 vs. 2.5+/-2.51 cm, p<0.05) were found in the n-3 group as compared to the control group. Significantly higher increase in beta-hydroxybutyrate was found in the n-3 group showing higher ketogenesis and possible higher fatty acid oxidation. The increase in beta-hydroxybutyrate significantly correlated with the increase in serum phospholipid arachidonic acid (20:4n-6; r = 0.91, p<0.001). In the n-3 group significantly higher increase was found in n-3 PUFA (eicosapentaenoic acid, 20:5n-3, docosahexaenoic acid, 22:6n-3) in triglycerides and phospholipids. The significant decrease of palmitoleic acid (16:1n-7) and vaccenic acid (18:1n-7) in triglycerides probably reflected lower lipogenesis. A significant negative correlation between BMI change and phospholipid docosahexaenoic acid change was found (r = -0.595, p<0.008). The results suggest that long chain n-3 PUFA enhance weight loss in obese females treated by VLCD. Docosahexaenoate (22:6n-3) seems to be the active component.  相似文献   

18.
1. While the balance of light and nutrients is known to influence the food quality of herbivores by altering algal phosphorus and nitrogen content, the combined effects of light and nutrients on fatty acid synthesis in freshwater periphyton are relatively unknown. In this study, we manipulated light and phosphorus concentration in large, flow‐through experimental streams to examine their effects on both elemental stoichiometry and fatty acid content in periphyton. 2. Two levels of phosphorus (4 and 80 μg L?1) and three of light (17, 40, 110 μmol photons m?2 s?1) were applied in a factorial design in two separate experiments. Diatoms dominated periphyton communities in both experiments, comprising >95% of algal biovolume. Periphyton growth in the streams was simultaneously affected by both resources, even at low rates of supply. 3. Periphyton C/P and C/N ratios increased with light augmentation and decreased with phosphorus enrichment, and consistent with the light : nutrient hypothesis (LNH). Light effects were strongest in streams with low phosphorus concentrations. 4. Periphyton fatty acids reflected the dominance of diatoms : palmitic (16 : 0), palmitoleic (16 : 1ω7) and eicosapentanoic (20 : 5ω3) were the principal saturated (SAFA), monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA), respectively. Linoleic (18 : 2ω6) and linolenic (18 : 3ω3) acids, characteristic of chlorophytes and cyanophytes, were rare, comprising <2% of total fatty acids. 5. Periphyton fatty acid profiles were highly sensitive to light and phosphorus. The proportion of fatty acids comprised by SAFA and MUFA increased with light augmentation and decreased with phosphorus enrichment, whereas PUFA decreased with light and increased with phosphorus. Light effects on fatty acid composition were strongest in phosphorus‐poor streams. PUFA declined with increasing light/phosphorus ratios in the streams, whereas ‘energy’ fatty acids (16 : 0 and 16 : 1) increased. The ratio of SAFA/PUFA was strongly and positively correlated with C/P and C/N ratios. SAFA and MUFA, normalised to dry mass, increased two‐ to threefold with increasing light, while PUFA normalised to dry mass was not significantly affected by light. 6. Similarities in the responses of fatty acids and elemental stoichiometry to light and phosphorus treatments suggested that they were influenced by a common mechanism. Both components of food quality appeared to be sensitive to light‐regulated rates of carbon fixation which, when coupled with insufficient supplies of phosphorus, caused diatom cells to store surplus carbon in SAFA, MUFA and other carbon‐rich compounds that diluted both essential fatty acids and mineral nutrients.  相似文献   

19.
The n-3 polyunsaturated fatty acids (PUFAs), EPA and DHA, as well as estrogen have been shown to decrease circulating levels of triglyceride (TG), but their underlying mode of action is unclear. The purpose of this study was to determine the effects of n-3 PUFA consumption and estrogen injection on TG metabolism. Rats (n = 48) were fed a modified AIN-93G diet with 0, 1, or 2 % EPA + DHA relative to the total energy intake during 12 weeks. At 8 weeks, rats were ovariectomized (OVX), and after a 1-week recovery, rats were injected with either 17β-estradiol-3-benzoate (E2) or corn oil for the last 3 weeks. The n-3 PUFA consumption and E2 injection independently decreased the hepatic expressions of sterol regulatory element-binding protein 1, acetyl-CoA carboxylase 1, fatty acid synthase (FAS), and diacylglycerol acyltransferase 2 (DGAT2) (P < 0.05). There were interactions between n-3 PUFA consumption and E2 injection on hepatic expression of FAS and DGAT2. In addition, n-3 PUFA consumption and E2 injection up-regulated the expression of AMP-activated protein kinase (AMPK), phosphorylated AMPK, peroxisomal proliferator-activated receptor α, and carnitine palmitoyltransferase 1 in liver and skeletal muscle. E2 injection increased the expression of estrogen receptor α and β in skeletal muscle and liver, but n-3 PUFA consumption increased the expression of both receptors only in skeletal muscle. The present study suggests that the hypotriglyceridemic effects of n-3 PUFA consumption and E2 injection could be due to the down-regulation of hepatic TG synthesis and up-regulation of TG oxidation in liver and skeletal muscle in OVX rats.  相似文献   

20.
This study was planned to investigate the protective effect of l (+)‐ascorbic acid (Vit C) on CCl4‐induced hepatotoxicity and oxidative stress in the liver of Wistar rats (Rattus Norvegicus, strain Wistar). Twenty‐four adult male Wistar rats were fed with standard rat chow diet for 10 days and randomly were divided into four groups of six each as follows: (1) control, (2) CCl4, (3) “CCl4 + Vit C”, (4) Vit C groups. CCl4 was applied to rats belonging to CCl4 and “CCl4 + Vit C” groups subcutaneously at 1 mg kg?1 dose CCl4 for 3 days. Vit C applied to “CCl4 + Vit C” and “Vit C” group rats intraperitoneally at 300 mg kg?1 dose for 3 days. All rats were sacrificed and livers were quickly removed on the fourth day of the experiment. MDA, total glutathione (T.GSH) levels and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH‐PX) activities were measured in the liver of all groups of rats and also serum alanine amino transferase (ALT) and aspartate amino transferase (AST) activities were detected to determine liver functions in all groups of rats. Histopathological changes were evaluated by light and transmission electron microscopes. In “CCl4 + Vit C” group, MDA level was significantly decreased (p < 0.05) and SOD, CAT, GSH‐PX activities were significantly increased (p < 0.005, 0.01, 0.05) respectively, T.GSH level was significantly increased (p < 0.005) and serum ALT and AST activities were significantly decreased (p < 0.01, 0.05), respectively, when compared with CCl4 group. These results show that Vit C has a highly protective effect on hepatotoxicity and oxidative stress caused by CCl4. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号