首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This project aimed to measure biochemical and cytogenetic biomarkers in marine fish (Aldrichetta forsteri and Sillago schomburgkii) associated with industrial and urban centres in South Australia. These sites were Port Pirie (affected by metal-contaminated outflows), Barker Inlet (adjacent to Metropolitan Adelaide), and Wills Creek (reference site). The biochemical biomarkers included sorbitol dehydrogenase (SDH) and alanine aminotransferase (ALAT) in serum, adenylate levels (ATP, ADP and AMP) and adenylate energy charge (AEC) in gill and liver, and sodium/potassium ATPase (Na+, K+-ATPase) in gill. Erythrocyte micronucleus frequency was a marker of cytogenetic effect. Serum enzyme levels were generally higher in fish from Port Pirie and Barker Inlet than in those from Wills Creek, with SDH demonstrating the clearest site-associated differences. Tissue adenylates were consistently lower at Port Pirie than elsewhere, suggesting a greater metabolic strain in fish at this site. AEC in gill and liver were consistently lower at Port Pirie than at Wills Creek, with Barker Inlet generally between these two. The reversed rank order was observed with erythrocyte micronucleus frequencies. Seasonal variations in the biomarkers may be attributed either to seasonal physiological changes in fish or changes in pollutant input levels or compositions. Na+, K+-ATPase did not differ between sites nor seasons in this study. This work shows that biochemical and cytogenetic differences occur in marine fish at specific locations in South Australia. It also shows that of these tests, serum SDH and erythrocyte micronuclei are potentially the most sensitive and reliable biomarkers of pollutants effects on marine fish. The results also suggest that these data may be used as a baseline against which future changes in marine water quality, and their consequent biological effects, can be compared.  相似文献   

2.
The present study was to investigate the interactive effect of ammonia and crowding stress on ion-regulation and expression of immune-related genes in juvenile turbot (Scophthalmus maximus). The fish were exposed to four total ammonia nitrogen (0, 5, 20, 40 mg/L TAN) and two stocking density. After 96 h of exposure, blood, gill, and liver samples were collected to measure biochemical parameters and mRNA levels of immune-related genes. The results showed that co-exposure to high TAN (20 and 40 mg/L) and high density significantly increased plasma sodium (Na+), gill Na+/K+-ATPase activity and mRNA levels. Following individual and combined exposure to high TAN and high density, the heat shock protein 70 (HSP 70), HSP 90, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) genes expression were obviously higher than their control. Conversely, the lysozyme (LZM) and hepcidin mRNA levels were down-regulated in liver of fish exposed to high TAN alone and combination of high TAN-density. Moreover, glutathione S-transferase (GST) mRNA levels significantly increased in treatments with individual high TAN and high density, but decreased in high TAN-density co-exposed fish. Overall, ion homeostasis and immune status were adversely influenced in high exposed turbot under high density.  相似文献   

3.
Summary The levels of Na+, K+ ATPase were measured in gills fromPlatichthys flesus adapted to seawater and freshwater using a variety of experimental techniques. Na+, K+ ATPase was assayed directly in crude gill homogenates,3H-ouabain binding was determined in isolated, perfused gills and ouabainsensitive oxygen consumption measured in sliced gill filaments. These experimental approaches all failed to show any difference in Na+, K+ ATPase activity or in enzyme turnover rate in gills from seawateradapted and freshwater-adaptedPlatichthys. The results are discussed in terms of the marine origin of the flounder and the energetic demands of ion regulation in euryhaline fish.  相似文献   

4.
Summary
  • 1 About 25 % of juvenile Atlantic salmon (Salmo salar) migrating downstream in the River Frome in southern England do so in the autumn rather than in the spring. Here, we examine the physiological status of these fish with regard to those features that adapt them to sea water during the parr–smolt transformation (i.e. gill Na+K+ ATPase activity; the number, size and type of chloride cells on the gill lamellae; salinity tolerance and relative plasma thyroid levels).
  • 2 Autumn migrants, and those fish which subsequently reside in the tidal reaches during the winter, are not sufficiently physiologically adapted to permit permanent or early, entry into the marine environment.
  • 3 It is not known what proportion of autumn migrating fish survive and return to spawn as adults. If significant numbers do return, however, the production from tidal reach habitats must be taken into account in the development of salmon stock management strategies, especially monitoring and assessment programmes, and in the evaluation of factors affecting stocks.
  相似文献   

5.
Goldfish, Carassius auratus, adaptively remodel their gills in response to changes in ambient oxygen and temperature, altering the functional lamellar surface area to balance the opposing requirements for respiration and osmoregulation. In this study, the effects of thermal- and hypoxia-mediated gill remodeling on branchial Na+ fluxes and the distribution of putative Na+-transporting ionocytes in goldfish were assessed. When assessed either in vitro (isolated gill arches) or in vivo at a common water temperature, the presence of an interlamellar cell mass (ILCM) in fish acclimated to 7°C clearly decreased Na+ efflux across the gill relative to fish maintained at 25°C and lacking an ILCM. However, loss of the ILCM in 7°C-acclimated fish exposed to hypoxia led to a decrease in Na+ efflux (assessed under hypoxic conditions) despite the apparent large increases in functional lamellar surface area. Goldfish possessing an ILCM were able to sustain Na+ uptake, albeit at a lower rate matched to efflux, owing to the re-distribution of ionocytes expressing genes thought to be involved in Na+ uptake [Na+/H+ exchanger isoform 3 (NHE3) and V- type H+-ATPase] to the edge of the ILCM where they can establish contact with the surrounding environment. NHE-expressing cells co-localized with Na+/K+-ATPase expression, suggesting a role for NHE in Na+-uptake in the goldfish. Implications of the ILCM on ion fluxes in the goldfish are discussed.  相似文献   

6.
We investigated the effect of salinity on the relationship between Na+-K+-ATPase and sulfogalactosyl ceramide (SGC) in the basolateral membrane of rainbow trout (Oncorhynchus mykiss) gill epithelium. SGC has been implicated as a cofactor in Na+-K+-ATPase activity, especially in Na+-K+-ATPase rich tissues. However, whole-tissue studies have questioned this role in the fish gill. We re-examined SGC cofactor function from a gill basolateral membrane perspective. Nine SGC fatty acid species were quantified by tandem mass spectrometry (MS/MS) and related to Na+-K+-ATPase activity in trout acclimated to freshwater or brackish water (20 ppt). While Na+-K+-ATPase activity increased, the total concentration and relative proportion of SGC isoforms remained constant between salinities. However, we noted a negative correlation between SGC concentration and Na+-K+-ATPase activity in fish exposed to brackish water, whereas no correlation existed in fish acclimated to freshwater. Differential Na+-K+-ATPase/SGC sensitivity is discussed in relation to enzyme isoform switching, the SGC cofactor site model and saltwater adaptation.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

7.
The aim of this study is to investigate the toxic effect of PCZ, a triazole fungicide commonly present in surface and ground water, on the ROS defense system and Na+-K+-ATPase in gills of rainbow trout exposed to sublethal concentrations (0.2, 50 and 500 μg L−1) for 7, 20 and 30 days. After prolonged exposure of PCZ at higher test concentrations (50 and 500 μg L−1), oxidative stress was apparent as reflected by the significant higher ROS levels in fish gill, as well as the significant inhibition of SOD and CAT activities. In addition, Na+-K+-ATPase activities were significantly lower than those of the control with increasing PCZ concentration and prolonged exposure period. The results of this study indicate that chronic exposure to PCZ has altered multiple physiological indices in fish gill; however, before these parameters are used as unique biomarkers for monitoring residual pharmaceuticals in aquatic environments, more detailed laboratory experiments need to be performed.  相似文献   

8.
Juvenile American shad Alosa sapidissima were subjected to isothermal transfers into sea water (salinity 24)‘early’(1 September; 24° C) and ‘late’(10 November; 10° C) in the autumn migratory season. Early acclimation resulted in a modest osmotic perturbation that recovered rapidly. Haematocrit declined by 14% at 24 h, recovering within 48 h. Plasma osmolality increased by 6% at 4 h, recovering within 8 h. Early acclimation caused a two‐fold increase in gill Na+, K+‐ATPase activity by 24 h and a four‐fold increase by 4 days. The number of chloride cells on the primary gill filament increased two‐fold by 4 days. Chloride cells on the secondary lamellae rapidly decreased from 22 cells mm?1 to <2 cells mm?1 within 4 days. Late acclimation resulted in a severe and protracted osmotic perturbation. Haematocrit levels declined by 23% at 4 days, recovering by 14 days. Plasma osmolality increased by 36% by 48 h, recovering by 4 days. Initial gill Na+, K+‐ATPase activity was two‐fold greater than in ‘early’ fish and did not change during acclimation. Initial numbers of chloride cells on the primary filament were two‐fold greater than ‘early’ fish and did not increase during acclimation. Initial number of chloride cells on the secondary lamellae was five‐fold greater than ‘early’ fish (116 v. 22 cells mm?1) and declined to negligible numbers over 14 days. Differences between initial measures for ‘early’ and ‘late’ fish reflect previously described physiological changes associated with migration. These data indicate that late migrants face a greater physiological challenge during seawater acclimation than early migrants. Physiological performance apparently limits the observed duration of autumnal migration.  相似文献   

9.
Salinity is one of the key factors that affects metabolism, survival and distribution of fish species, as all fish osmoregulate and euryhaline fish maintain osmotic differences between their extracellular fluid and either freshwater or seawater. The threespine stickleback (Gasterosteus aculeatus) is a euryhaline species with populations in both marine and freshwater environments, where the physiological and genomic basis for salinity tolerance adaptation is not fully understood. Therefore, our main objective in this study was to investigate gene expression of three targeted osmoregulatory genes (Na+/K+-ATPase (ATPA13), cystic fibrosis transmembrane regulator (CFTR) and a voltage gated potassium channel gene (KCNH4) and one stress related heat shock protein gene (HSP70)) in gill tissue from marine and freshwater populations when exposed to non-native salinity for periods ranging from five minutes to three weeks. Overall, the targeted genes showed highly plastic expression profiles, in addition the expression of ATP1A3 was slightly higher in saltwater adapted fish and KCNH4 and HSP70 had slightly higher expression in freshwater. As no pronounced changes were observed in the expression profiles of the targeted genes, this indicates that the osmoregulatory apparatuses of both the marine and landlocked freshwater stickleback population have not been environmentally canalized, but are able to respond plastically to abrupt salinity challenges.  相似文献   

10.
Brook charr, Salvelinus fontinalis, often display alternate life history styles in coastal areas. In the Laval River, some brook charr remain freshwater residents, while others undergo seasonal migrations between freshwater and saltwater environments. In the present paper, we examined physiological (electrolyte concentrations, gill Na+, K+-ATPase activity, and thyroid hormone levels) as well as genetic differences (neutral genetic markers) between anadromous and river-resident fish from the Laval River. We also examined how artificial rearing conditions affected seasonal variations in the osmoregulatory physiology of a domestic strain derived from wild anadromous fish. Sympatric anadromous and resident forms of brook charr of the Laval River exhibited differences in gill Na+, K+-ATPase activity, plasma thyroxine (T4), and triidothyronine (T3) concentrations. In domestic anadromous charr, rearing conditions during development had no negative impact on osmoregulatory ability or on gill Na+, K+-ATPase activity. These results argued for an important hereditary component of gill Na+, K+-ATPase activity. However, the spring increase in T4 was present only in wild fish. Significant differences observed at microsatellite loci further suggested that at least some level of reproductive isolation may have occurred between anadromous and resident charr in the Laval River.  相似文献   

11.
Evidence of smolting was studied in Danish hatchery-reared brown trout Salmo trutta L. Twenty-four hour seawater (SW) challenge tests (28‰, 10°C) at regular intervals showed that maximal hypo-osmoregulatory ability developed within a 3–4-week period in March and April. The improved ability to regulate plasma osmolality, muscle water content and plasma total [Mg] developed asynchronously, indicating that developmental changes in the gill, the gastrointestinal system and the kidney may not necessarily concur during smolting. Gill Na+, K+-ATPase activity peaked in April at the time of optimal hypo-osmoregulatory ability. Na+, K+-ATPase a -subunit mRNA level in gills was unchanged from January until April, but decreased in May in parallel with a decrease in the activity of the enzyme. In the middle region of the intestine, Na+, K+-ATPase activity increased in February and remained high until April. In the posterior region of the intestine, the activity was stable from January until April after which it decreased. In vitro fluid transport capacitity, Jv, in the middle intestine fluctuated throughout the spring. In the posterior intestine, Jv was low until late March, when it increased fivefold until early May. Drinking rate in fish transferred to SW for 24 h surged during spring. Na+, K+-ATPase activity in the pyloric caeca was elevated from March until May, and increased in response to SW transfer in June, suggesting a hypo-osmoregulatory function of the pyloric caeca. Plasma GH levels surged in FW trout during spring, concurring with the increase in gill Na+, K+-ATPase activity and SW tolerance, but peaked in May when gill Na+, K+-ATPase activity and SW tolerance were regressing. GH levels were generally low in SW-challenged fish, and there was no consistent effect of 24-h SW exposure on GH levels. In wild anadromous trout, gill Na+, K+-ATPase activity varied seasonally as in hatchery-reared fish, but peaked at higher levels suggesting a more intense smolting in fish living in their natural environment.  相似文献   

12.
The increase in concentration of ammonia in lake water during the degradation of algal blooms may last for several weeks and thus cause chronic toxicity to aquatic organisms. The purpose of this study was to assess the chronic toxicity of ammonia on the selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. Juvenile crucian carp were exposed in different ammonia solutions for 45 days and then immediately transferred to pristine freshwater to initiate a 15-day recovery period. Results showed sub-lethal ammonia significantly deters growth and a 15-day recovery period was not sufficient for the fish to compensate for the loss of growth. The fish exhibited a continuous decrease in red blood cell (RBC), the total hemoglobin (Hb), and gill Na+/K+ ATPase activity as the concentration of NH3-N increased. After the 15-day recovery period, RBC, Hb, and gill Na+/K+ ATPase activity had recovered to similar levels as the controls.  相似文献   

13.
Summary Potentials measured in isolated, perfused gills fromPlatichthys suggest that the electrogenic ion-pump(s) contribute significantly to the potential measured in seawater. Copper added to the perfusate causes a significant reduction in the potential measured in the isolated gill and it is suggested that this is due to a direct inhibition of the branchial ion pump(s). Vascular resistance was unaffected by the presence of copper. Ouabain-sensitive oxygen consumption was reduced in tissue exposed to copper whereas residual oxygen consumption was unaffected, which suggests that the in vitro action of copper is confined to the Na+, K+ ATPase dependent portion of branchial metabolism.In vitro application of copper to gill homogenates fromPlatichthys flesus adapted to seawater caused a marked reduction in Na+, K+ ATPase activity. In vivo a combination of ouabain binding (to determine the number of enzyme sites), together with measurements of Na+, K+ ATPase activity showed that exposure of the fish to ambient copper in seawater also inhibited enzyme activity. However this response was modulated by a reduction in the sensitivity of the enzyme to copper in copper-treated fish and also responses, possibly of an endocrine nature, modifying Na+, K+ ATPase activity and returning overall enzyme levels to values not significantly different from those in control fish.In addition, this study indicates the importance of obtaining information on both the number of enzyme sites as well as their overall activity in assessing the effects of agents modifying enzymes involved in ion transport.  相似文献   

14.
The possible effects of the chlorpyrifos (CPF) on the fish Cyprinus carpio L. exposed to sub-lethal concentrations (52, 79, and 158 µg/L) of CPF for 6 weeks were evaluated, and an analysis was made of their hematological parameters, biochemical parameters, and histology of various organs such as liver, gill, and muscle. At three concentrations, packed cell volume (PCV), mean corpuscular hemoglobin, Red blood cells (RBC) Hb, T3, T4, and total protein were significantly decreased in fish treated with CPF, whereas the parameters White blood cells (WBC), creatinine, Glutamic Oxaloacetic Transaminase (GOT) and Glutamic Pyruvic Transaminase (GPT) presented a significant increase at the two higher concentrations. However, the sub-chronic exposure to CPF resulted in histological lesions and caused clear damage to liver, muscles, and gill tissues of the fish Cyprinus carpio. Thus, we may conclude that the altered biochemical and hematological parameters can be used as efficient biomarkers in monitoring the toxicity of CPF in aquatic organisms. At the same time, histopathology proves as a reliable and easy tool for toxicological studies.  相似文献   

15.
The gills of euryhaline fish are the ultimate ionoregulatory tissue, achieving ion homeostasis despite rapid and significant changes in external salinity. Cellular handling of sodium is not only critical for salt and water balance but is also directly linked to other essential functions such as acid–base homeostasis and nitrogen excretion. However, although measurement of intracellular sodium ([Na+]i) is important for an understanding of gill transport function, it is challenging and subject to methodological artifacts. Using gill filaments from a model euryhaline fish, inanga (Galaxias maculatus), the suitability of the fluorescent dye CoroNa Green as a probe for measuring [Na+]i in intact ionocytes was confirmed via confocal microscopy. Cell viability was verified, optimal dye loading parameters were determined, and the dye–ion dissociation constant was measured. Application of the technique to freshwater- and 100% seawater-acclimated inanga showed salinity-dependent changes in branchial [Na+]i, whereas no significant differences in branchial [Na+]i were determined in 50% seawater-acclimated fish. This technique facilitates the examination of real-time changes in gill [Na+]i in response to environmental factors and may offer significant insight into key homeostatic functions associated with the fish gill and the principles of sodium ion transport in other tissues and organisms.  相似文献   

16.
Because the ghrelinergic system in teleost fishes is broadly expressed in organs that regulate appetite as well as those that contribute to the regulation of salt and water balance, we hypothesized that manipulating salt and water balance in goldfish (Carassius auratus) would modulate the ghrelinergic system. Goldfish were acclimated to either freshwater (FW) or ion-poor FW (IPW) and were fed either a control diet containing 1% NaCl or low-salt diet containing 0.1% NaCl. Endpoints of salt and water balance, i.e., serum Na+ and Cl levels, muscle moisture content and organ-specific Na+-K+-ATPase (NKA) activity, were examined in conjunction with brain, gill and gut mRNA abundance of preproghrelin and its receptor, growth hormone secretagogue receptor (ghs-r). Acclimation of fish to IPW reduced serum osmolality and Cl levels and elevated kidney NKA activity, while FW fish fed a low NaCl diet exhibited a modest reduction in muscle moisture content but otherwise no apparent osmoregulatory disturbance. In contrast, a combined treatment of IPW acclimation and low dietary NaCl content reduced serum osmolality and Cl levels, elevated muscle moisture content and increased gill, kidney and intestinal NKA activity. This intensified response to the combined effects of water and dietary ion deprivation is consistent with an increased effort to enhance ion acquisition. In association with these latter observations, a significant upregulation of preproghrelin mRNA expression in brain and gut was observed. A significant increase in ghs-r mRNAs was also observed in the gill of goldfish acclimated to IPW alone but a reduction in dietary NaCl content did not impact the ghrelinergic system of goldfish in FW. The results support the hypothesis that the ghrelinergic system is modulated in response to manipulated salt and water balance. Whether the central and peripheral ghrelinergic system contributes to ionic homeostasis in goldfish currently remains unclear and warrants further research.  相似文献   

17.
It is concluded that Ca2+ transport across the basolateral membranes of the ionocytes in killifish skin is mediated for the major part by a Na+/Ca2+-exchange mechanism that is driven by the (transmembrane) Na+ gradient established by Na+/K+-ATPase. The conclusion is based, firstly, on the biochemical evidence for the presence of a Na+/Ca2+-exchanger next to the Ca2+-ATPase in the basolateral membranes of killifish gill cells. Secondly, the transcellular Ca2+ uptake measured in an Ussing chamber setup was 85% and 80% reduced in freshwater (FW) and SW (SW) opercular membranes, respectively, as the Na+ gradient across the basolateral membrane was directly or indirectly (by ouabain) reduced. Thapsigargin or dibutyryl-cAMP/IBMX in SW opercular membranes reduced Ca2+ influx to 46%, comparable to the effects seen in FW membranes [reduction to 56%; Marshall et al. 1995a]. Basal Ca2+ influx across the opercular membrane was 48% lower in membranes from fish adapted to SW than in membranes from fish adaptated to FW. Branchial Na+/K+-ATPase activity was two times higher in SW adapted fish. Accepted: 29 October 1996  相似文献   

18.
Summary The effects of temperature and pressure on Na+/K+-adenosine triphosphatases (Na+/K+-ATPases) from gills of marine teleost fishes were examined over a range of temperatures (10–25°C) and pressures (1–680 atm). The relationship between gill membrane fluidity and Na+/K+-ATPase activity was studied using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The increase in temperature required to offset the membrane ordering effects of high pressure was 0.015–0.025°C·atm-1, the same coefficient that applied to Na+/K+-ATPase activities. Thus, temperature-pressure combinations yielding the same Na+/K+-ATPase activity also gave similar estimates of membrane fluidity. Substituion of endogenous lipids with lipids of different composition altered the pressure responses of Na+/K+-ATPase. Na+/K+-adenosine triphosphatase became more sensitive to pressure in the presence of chicken egg phosphatidylcholine, but phospholipids isolated from fish gills reduced the inhibition by pressure of Na+/K+-ATPase. Cholesterol increased enzyme pressure sensitivity. Membrane fluidity and pressure sensitivity of Na+/K+-ATPase were correlated, but the effects of pressure also dependent on the source of the enzyme. Our results suggest that pressure adaptation of Na+/K+-ATPase is the result of both changes in the primary structure of the protein and homeoviscous adaptation of the lipid environment.Abbreviations EDTA; DPH 1,6-diphenyl-1,3,5-hexatriene - PC phosphatidylcholine - PL phospholipid - SDH succinate dehydrogenase  相似文献   

19.
The Upper Cretaceous Coon Creek Lagerstätte of Tennessee, USA, is known for its extremely well‐preserved mollusks and decapod crustaceans. However, the depositional environment of this unit, particularly its distance to the shoreline, has long been equivocal. To better constrain the coastal proximity of the Coon Creek Formation, we carried out a multiproxy geochemical analysis of fossil decapod (crab, mud shrimp) cuticle and associated sediment from the type section. Elemental analysis and Raman spectroscopy confirmed the presence of kerogenized carbon in the crabs and mud shrimp; carbon isotope (δ13C) analysis of bulk decapod cuticle yielded similar mean δ13C values for both taxa (?25.1‰ and ?26‰, respectively). Sedimentary biomarkers were composed of n‐alkanes from C16 to C36, with the short‐chain n‐alkanes dominating, as well as other biomarkers (pristane, phytane, hopanes). Raman spectra and biomarker thermal maturity indices suggest that the Coon Creek Formation sediments are immature, which supports retention of unaltered, biogenic isotopic signals in the fossil organic carbon remains. Using our isotopic results and published calcium carbonate δ13C values, we modeled carbon isotope values of carbon sources in the Coon Creek Formation, including potential marine (phytoplankton) and terrestrial (plant) dietary sources. Coon Creek Formation decapod δ13C values fall closer to those estimated for terrigenous plants than marine phytoplankton, indicating that these organisms were feeding primarily on terrigenous organic matter. From this model, we infer that the Coon Creek Formation experienced significant terrigenous organic matter input via a freshwater source and thus was deposited in a shallow, nearshore marine environment proximal to the shoreline. This study helps refine the paleoecology of nearshore settings in the Mississippi Embayment during the global climatic shift in the late Campanian–early Maastrichtian and demonstrates for the first time that organic δ13C signatures in exceptionally preserved fossil marine arthropods are a viable proxy for use in paleoenvironmental reconstructions.  相似文献   

20.
Sodium extrusion (JoutNa) was measured across the gills of rainbow trout, Salmo gairdneri, adapted to sea water (SW) using a gill-irrigation system of small volume. The potential difference (TEP) was also measured under similar conditions. JoutNa was usually between 100–250 µeq (100 g)–1 h–1, about an order of magnitude faster than in fresh water (FW)-adapted trout, but slower than has been reported for any other marine teleost. The TEP was between 10–11 mV, body fluids positive to SW. When the external medium was changed from SW to FW JoutNa was reduced to about 25 % of the initial value, and the TEP was reduced by 40–50 mV (i.e. body fluids negative by 30–40 mV). Addition of either Na+ or K+ in SW concentrations reversed the changes; JoutNa increased and the gill repolarized. The electrical behavior and sodium efflux in irrigated trout gill is qualitatively the same as has been reported for unanaesthetized, free-swimming fish of other species. Thus, the irrigated gill provides an adequate model for studying the mechanism of sodium extrusion in marine teleosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号