首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Summary

Several environmental stresses elicit specific plant genomic responses. These include temperature extremes, oxidative stress, water stress, anaerobiosis as well as pathogen attack. Molecular biological approaches are now yielding insights into the mechanisms whereby plant cells perceive the stress of temperature extremes and activate their defences in response at the gene level. These responses appear to be interconnected with responses to oxidative stress in plants and an outcome is a greater appreciation of the role, and the genetic regulation, of two important groups of ‘stress proteins’, namely the heat shock proteins and the antioxidant enzymes.  相似文献   

2.
Context: Nanoparticles may cause adverse environmental effects but there is limited information on their interactions with marine organisms.

Objective: Our aim was to examine the effects of triangular gold nanoparticles (Tr-Au NPs) on the clam, Ruditapes decussatus.

Materials and methods: Clams were exposed to Tr-Au1?=?5?µg/L and Tr-Au2?=?10?µg/L for 2 and 7?days. Effects on shell structure were investigated. Superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST) activities, protein carbonyl levels and malondialdehyde content were used to assess biochemical status.

Results: Transmission electron microscopy (TEM) and electron dispersive X-ray microanalysis (EDX) showed that Tr-Au NPs modified shell structure and morphology. Tr-Au NPs size increased forming aggregate particles. Tr-Au NPs increased SOD, CAT and GST activities in gill and digestive gland in a concentration- and time-dependent manner indicating defence against oxidative stress. Enhanced lipid peroxidation and protein carbonyl levels confirmed oxidative stress.

Conclusion: Tr-Au NPs cause oxidative stress and affect shell structure of clams. These findings may have relevance to other marine species.  相似文献   

3.
Abstract

Salt stress is a major abiotic stress limiting the productivity and the geographical distribution of many plant species. Arabidopsis thaliana is an excellent model with rich genetic resources for modern plant biology research. To comprehensively and representatively understand salt-response mechanisms in A. thaliana, we applied the first attempt to use the most data (252 of 10,469 reviewed A. thaliana protein) from public protein database for displaying the enriched protein domains, Kyoto Encyclopedia of Genes and Genomes pathways, molecular functions, and cell localizations involved in salt-response. The data were analyzed by Database for Annotation Visualization and Integrated Discovery. Our results indicated salt-response proteins cross-talked not only with drought and temperature stress as previously reported but also with further stresses such as bacterium, light, metal ion, radiation, and wounding stress. Multiple cellular localizations under salt stress indicated proteins were versatile. In addition, 27 proteins have the characteristics with response to multiple stresses and localization in multiple places. We called it the ‘space-stress’ double cross-talk effects, which indicated that A. thaliana proteins dealt with salt stress and other stresses in a reciprocal economical way. An enriched bioinformatics analysis of the large data could provide clues and basis for the development of salt-response potential biomarkers for plant growth and crop productivity.  相似文献   

4.
Objectives: The occurrence of oxidative stress and endoplasmic reticulum (ER) stress in hepatitis C virus (HCV) infection has been demonstrated and play an important role in liver injury. During viral infection, hepatocytes must handle not only the replication of the virus, but also inflammatory signals generating oxidative stress and damage. Although several mechanisms exist to overcome cellular stress, little attention has been given to the adaptive response of hepatocytes during exposure to multiple noxious triggers.

Methods: In the present study, Huh-7 cells and hepatocytes expressing HCV Core or NS3/4A proteins, both inducers of oxidative and ER stress, were additionally challenged with the superoxide anion generator menadione to mimic external oxidative stress. The production of reactive oxygen species (ROS) as well as the response to oxidative stress and ER stress were investigated.

Results: We demonstrate that hepatocytes diminish oxidative stress through a reduction in ROS production, ER-stress markers (HSPA5 [GRP78], sXBP1) and apoptosis (caspase-3 activity) despite external oxidative stress. Interestingly, the level of the autophagy substrate protein p62 was downregulated together with HCV Core degradation, suggesting that hepatocytes can overcome excess oxidative stress through autophagic degradation of one of the stressors, thereby increasing cell survival.

Duscussion: In conclusion, hepatocytes exposed to direct and indirect oxidative stress inducers are able to cope with cellular stress associated with viral hepatitis and thus promote cell survival.  相似文献   


5.
Objectives: Liver is considered a target organ affected by lead toxicity. Oxidative stress is among the mechanisms involved in liver damage. Here we investigated the effects of the natural alkaloid berberine on oxidative stress and hepatotoxicity induced by lead in rats.

Methods: Animals received an aqueous solution of lead acetate (500?mg Pb/l in the drinking water) and/or daily oral gavage of berberine (50?mg/kg) for 8 weeks. Rats were then weighed and used for the biochemical, molecular, and histological evaluations.

Results: Lead-induced oxidative stress, shown by increasing lipid peroxidation along with a concomitant decrease in hepatic levels of thiol groups, total antioxidant capacity, the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase, and reduced versus oxidized glutathione ratio. Berberine corrected all the disturbances in oxidative stress markers induced by lead administration. Berberine also prevented the elevated levels of enzymes (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase) and the decrease in body weight and albumin. The protective effects of berberine were comparable with silymarin. Furthermore, berberine attenuated liver damage, shown by decreased necrosis and inflammatory cell infiltration.

Discussion: Berberine represents a potential therapeutic option against lead-induced hepatotoxicity through inhibiting lipid peroxidation and enhancing antioxidant defenses.

Conclusion: Berberine exerted protective effects on lead-induced oxidative stress and hepatotoxicity in rats.  相似文献   

6.
Introduction: The increasing prevalence of hyperglycaemia implicates a state of oxidative stress and inflammation. Traditional and emerging biomarkers associated with increasing hyperglycaemia were assessed to clarify their role they play in hyperglycaemia.

Results: 309 participants attending a rural diabetic screening program were categorised into control and quintile groups based upon glucose levels: 1st quintile - <4.5?mmol/L and 4th, 5th quintile - >6.1?mmol/L. Significant results were obtained for anthropometric data and biochemical markers - glucose, HbA1c and total cholesterol (P?P?P?P?Conclusion: This study provided further evidence that inflammatory and oxidative stress biomarkers may contribute to diagnostic information associated with preclinical increases in BGL. Further we have provided a unique study in the analysis of ratios of inflammatory biomarkers and correlations with increasing BGL.  相似文献   

7.
Background: Pancreatico-biliary malignancies exhibit similar characteristics, including obesity-related features and poor prognosis, and require new treatment strategies. Oxidative stress is known to induce DNA damage and carcinogenesis, and its reduction is viewed as being favorable. However, it also has anti-infection and anti-cancer functions that need to be maintained. To reveal the effect of oxidative stress on cancer progression, we evaluated oxidative stress and anti-oxidative balance in pancreatic cancer (PC) and cholangiocarcinoma (CC) patients, as well as the effect of add-on antioxidant treatment to chemotherapy in a mouse cholangiocarcinoma model.

Methods: We recruited 84?CC and 80?PC patients who were admitted to our hospital. Serum levels of reactive oxygen metabolites (ROM) and the anti-oxidative OXY-adsorbent test were determined and the balance of these tests was defined as an oxidative index. A diabetic mouse-based cholangiocarcinoma model was utilized to evaluate the effects of add-on antioxidant therapy on cholangiocarcinoma chemotherapy.

Results: Serum ROM was higher and anti-oxidant OXY was lower in CC patients with poor outcomes. These parameters were not significantly different in PC patients. In mice, vitamin E administration induced antioxidant hemeoxygenase (HO)-1 protein expression in cancer tissue, while the number of stem-like cells increased. l-carnitine administration improved intestinal microbiome and biliary acid balance, upregulated the hepatic mitochondrial membrane uptake related gene Cpt1 in non-cancerous tissue, and did not alter stem-like cell numbers.

Conclusion: Oxidative stress balance was dysregulated in cholangiocarcinoma with poor outcome. The mitochondrial function-supporting agent l-carnitine is a good candidate to control oxidative stress conditions.  相似文献   

8.
Purpose: Since oxidative stress involves a variety of cellular changes, no single biomarker can serve as a complete measure of this complex biological process. The analytic technique of structural equation modeling (SEM) provides a possible solution to this problem by modelling a latent (unobserved) variable constructed from the covariance of multiple biomarkers.

Methods: Using three pooled datasets, we modelled a latent oxidative stress variable from five biomarkers related to oxidative stress: F2-isoprostanes (FIP), fluorescent oxidation products, mitochondrial DNA copy number, γ-tocopherol (Gtoc) and C-reactive protein (CRP, an inflammation marker closely linked to oxidative stress). We validated the latent variable by assessing its relation to pro- and anti-oxidant exposures.

Results: FIP, Gtoc and CRP characterized the latent oxidative stress variable. Obesity, smoking, aspirin use and β-carotene were statistically significantly associated with oxidative stress in the theorized directions; the same exposures were weakly and inconsistently associated with the individual biomarkers.

Conclusions: Our results suggest that using SEM with latent variables decreases the biomarker-specific variability, and may produce a better measure of oxidative stress than do single variables. This methodology can be applied to similar areas of research in which a single biomarker is not sufficient to fully describe a complex biological phenomenon.  相似文献   


9.
《Biomarkers》2013,18(4):225-231
Abstract

Objective: To evaluate the association of uric acid (UA) levels with a panel of markers of oxidative stress and inflammation.

Methods: Plasma UA levels, along with a panel of oxidative stress and inflammatory markers, were measured in 755 Chinese women.

Results: Plasma UA levels were inversely associated with urinary levels of the oxidative stress marker F2-isoprostanes and positively correlated to levels of inflammatory markers, such as C-reactive protein and some proinflammatory cytokines (tumor necrosis factor-α and interleukin-6) in blood as well as prostaglandin E2 metabolites in urine.

Conclusions: Plasma UA levels correlate to oxidation and inflammation biomarkers in opposite directions in women.  相似文献   

10.
Objectives: The purpose of this study was to investigate oxidative stress in children with attention deficit hyperactivity disorder (ADHD).

Methods: Total oxidant status (TOS), total antioxidant status (TAS), paraxonase-1 (PON-1) and arylesterase (ARE) activity were measured in 76 children (44 boys, 32 girls) diagnosed with ADHD according to the DSM-IV and 78 healthy children (46 boys, 32 girls).

Results: Age and sex were similar between the groups (P?>?0.05). TOS and the oxidative stress index (OSI) were higher in the patient group than the control group (P?<?0.001). PON-1 (P?=?0.002), ARE (P?=?0.010) activity and TAS (P?<?0.001) were lower in the patient group than the control group.

Discussion: We found decreased PON-1, ARE activity and TAS, and increased TOS and OSI in children with ADHD. Our study showed that there is significantly increased oxidative stress in children with ADHD.  相似文献   

11.
Context: Magnetic nanomaterials (Fe3O4 NMs) have become novel tools with multiple biological and medical applications because of their biocompatibility. However, adverse health effects of these NMs are of great interest to learn.

Objective: This study was designed to assess the size and dose-dependent effects of Fe3O4 NMs and its bulk on oxidative stress biomarkers after post–subacute treatment in female Wistar rats.

Methods: Rats were daily administered with 30, 300 and 1000?mg/kg b.w. doses for 28?d of Fe3O4 NMs and its bulk for biodistribution and histopathological studies.

Results: Fe3O4 NMs treatment caused significant increase in lipid peroxidation levels of treated rats. It was also observed that the NM treatment elicited significant changes in enzyme activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase in treated rat organs with major reduction in glutathione content. Metal content analysis revealed that tissue deposition of NM in the organs was higher when compared to bulk and caused histological changes in liver.

Conclusion: This study demonstrated that for same dose, NM showed higher bioaccumulation, oxidative stress and tissue damage than its bulk. The difference in toxic effect of Fe3O4 nano and bulk could be related to their altered physicochemical properties.  相似文献   

12.
Objectives: The aim of this study was to determine whether non-lethal sepsis induced by cecal ligation and puncture (CLP) modulates oxidative damage and enzymatic antioxidant defenses in diaphragm and hindlimb skeletal muscles (soleus and Extensor Digitorus Longus (EDL)).

Methods: Female Wistar rats were divided into four experimental groups: (1) control animals, (2) animals sacrificed 2?hours or (3) 7 days after CLP, and (4) sham-operated animals. At the end of the experimental procedure, EDL, soleus, and diaphragm muscles were harvested and 4-hydroxynonenal (HNE)-protein adducts and protein carbonyl contents were examined in relation to superoxide dismutase and catalase expression and activities.

Results: We observed that both non-respiratory oxidative (i.e. soleus) and glycolytic skeletal muscles (i.e. EDL) are more susceptible to sepsis-induced oxidative stress than diaphragm, as attested by an increase in 4-HNE protein adducts and carbonylated proteins after 2?hours of CLP only in soleus and EDL.

Discussion: These differences could be explained by higher basal enzymatic antioxidant activities in diaphragm compared to hindlimb skeletal muscles. Together, these results demonstrate that diaphragm is better protected from oxidative stress than hindlimb skeletal muscles during CLP-induced sepsis.  相似文献   

13.
Abstract

Environmental stressors such as chemicals and physical agents induce various oxidative stresses and affect human health. To elucidate their underlying mechanisms, etiology and risk, analyses of gene expression signatures in environmental stress-induced human diseases, including neuronal disorders, cancer and diabetes, are crucially important. Recent studies have clarified oxidative stress-induced signaling pathways in human and experimental animals. These pathways are classifiable into several categories: reactive oxygen species (ROS) metabolism and antioxidant defenses, p53 pathway signaling, nitric oxide (NO) signaling pathway, hypoxia signaling, transforming growth factor (TGF)-β bone morphogenetic protein (BMP) signaling, tumor necrosis factor (TNF) ligand–receptor signaling, and mitochondrial function. This review describes the gene expression signatures through which environmental stressors induce oxidative stress and regulate signal transduction pathways in rodent and human tissues.  相似文献   

14.
Context: Increased oxidative burden is found in chronic obstructive pulmonary disease (COPD).

Objective: To assess the association of ceruloplasmin, albumin, bilirubin, transferrin, thiols and malondialdehyde (MDA) with stable COPD.

Materials and methods: Oxidative stress markers measured in 106 COPD patients and 45 healthy subjects were evaluated.

Results: Higher ceruloplasmin and MDA, and lower albumin, transferrin and thiols in COPD patients were found. Ceruloplasmin was the strongest single predictor of COPD. The model combining ceruloplasmin, albumin and thiols improved their individual diagnostic performances.

Conclusions: Diagnostic characteristics of ceruloplasmin, albumin, transferrin, thiols and MDA suggest their potential value as additional tools in disease diagnosis.  相似文献   

15.
BackgroundIron is essential for many types of biological processes. However, excessive iron can be cytotoxic and can lead to many diseases. Since ferroptosis, which is an iron-dependent regulated form of necrosis, was recently discovered, iron and iron-catalysed oxidative stress have attracted much interest because of their sophisticated mechanism of cellular signalling leading to cell death and associated with various diseases.Scope of reviewIn this review, we first focus on how iron catalyses reactive oxygen species (ROS). Next, we discuss the roles of iron in cell death and senescence and, in particular, the downstream signalling pathways of ROS. Finally, we discuss the potential regulation mechanism of iron as a therapeutic target for various iron-related diseases.Major conclusionsBoth labile iron released from organelles upon various stresses and iron incorporated in enzymes produce ROS, including lipid ROS. ROS produced by iron activates various signalling pathways, including mitogen-activated protein kinase (MAPK) signalling pathways such as the apoptosis signal-regulating kinase 1 (ASK1)-p38/JNK pathway. These ROS-activated signalling pathways regulate senescence or cell death and are linked to cancer, ischaemia-reperfusion injury during transplantation and ageing-related neurodegenerative diseases.General significanceIron overload damages cells and causes harmful effects on the body through oxidative stress. Thus, understanding the spatiotemporal availability of iron and the role of iron in generating ROS will provide clues for the suppression of ROS and cytotoxic redox-active iron. Moreover, elucidating the molecular mechanisms and signalling pathways of iron-dependent cytotoxicity will enable us to find novel therapeutic targets for various diseases.  相似文献   

16.
17.
Background: There is strong evidence that hypertension and depression are comorbid and oxidative stress is implicated in both pathologies. We aimed to elucidate the relationship between biochemical markers of the antioxidant-pro-oxidant equilibrium and depression in hypertension.

Methods: Blood was collected from patients diagnosed with depression, hypertension, or comorbid depression and hypertension and healthy age- and sex-matched controls. Whole blood reduced glutathione, erythrocyte superoxide dismutase (SOD-1), glutathione peroxidase (GPx-1), glutathione reductase (GR), malondialdehyde (MDA), and plasma hydrogen peroxide (H2O2) were assayed using spectrophotometry, and heme oxygenase (HO-1) levels were determined immunoenzymatically.

Results: Both hypertension and depression were associated with altered antioxidant-pro-oxidant profiles. Decreased GPx-1 and SOD-1 activities, increased GR activity, increased levels of GSH, and increased concentrations of MDA and H2O2 were observed in patients compared to controls. Inducible HO-1 was specifically decreased in patients with depression and was significantly associated with both the prevalence and severity of depressive symptoms.

Conclusions: Heme oxygenase is a biological factor that might explain the relationship between inflammation, oxidative stress, and the biological and functional changes in brain activity in depression. HO-1 is a candidate depression biomarker and provides an avenue for novel preventative and diagnostic strategies against this disease.  相似文献   

18.
《Free radical research》2013,47(5):587-598
Abstract

Despite the fact that gender dimorphism in diet-induced oxidative stress is associated with steroid sex hormones, there are some contradictory results concerning roles of steroid hormones in gender dimorphism. To evaluate the role of gender dimorphism as well as the effects of sex steroid hormones in response to high-fat diet (HFD)-induced oxidative stress, we measured cellular levels of major antioxidant proteins in the liver, abdominal white adipose tissue, and skeletal muscles of Sprague-Dawley rats following HFD or sex hormone treatment using Western blot analysis. Animal experiments revealed that 17β-estradiol, (E2) and dihydrotestosterone (DHT) negatively and positively affected body weight gain, respectively. Interestingly, plasma levels of malondialdehyde (MDA) increased in both E2- and DHT-treated rats. We also observed that cellular levels of classical antioxidant proteins, including catalase, glutathion peroxidase, peroxiredoxin, superoxide dismutase, and thioredoxin, were differentially regulated hormone- and gender-dependent manner in various metabolic tissues. In addition, tissue-specific expression of DJ-1 protein with respect to HFD-induced oxidative stress in association with sex steroid hormone treatment was observed for the first time. Taken together, our data show that females were more capable at overcoming oxidative stress than males through feasible expression of antioxidant proteins in metabolic tissues. Although the exact regulatory mechanism of sex hormones in diet-induced oxidative stress could not be fully elucidated, the current data will provide clues regarding the tissue-specific roles of antioxidant proteins during HFD-induced oxidative stress in association with sex steroid hormones.  相似文献   

19.
Abstract

Objectives

Knowledge about the role of oxidative stress in human diseases, including cardiovascular system disorders, emphasizes the need for reliable markers of oxidative stress. Here, we evaluated the levels of the novel marker ischemia-modified albumin (IMA), albumin-adjusted IMA (adj-IMA), and the IMA/serum albumin ratio (IMAR) in patients with chronic ischemic heart failure (CIHF).

Methods

A total of 55 patients with CIHF and 40 age- and sex-matched healthy individuals were included in the study. Serum levels of IMA, total antioxidant status, and total oxidant status were analyzed, and the adj-IMA level, IMAR, and oxidative stress index were calculated.

Results

Serum IMA, IMAR, total oxidant status levels, and oxidative stress index were significantly higher in patients with CIHF than in the controls (all P < 0.0001), whereas albumin and total antioxidant status levels were significantly lower in the CIHF patients (P < 0.0001 and P = 0.0004, respectively). However, there was no significant difference in serum adj-IMA levels between the groups (P = 0.8).

Discussion

We observed impaired oxidant/antioxidant status in favor of oxidative stress in CIHF patients. Oxidative stress may be a key factor in the development of hypoalbuminemia in CIHF. Further studies are needed to establish the relationships among IMA, albumin, and redox balance in CIHF.  相似文献   

20.

Background  

In aerobically grown cells, iron homeostasis and oxidative stress are tightly linked processes implicated in a growing number of diseases. The deregulation of iron homeostasis due to gene defects or environmental stresses leads to a wide range of diseases with consequences for cellular metabolism that remain poorly understood. The modelling of iron homeostasis in relation to the main features of metabolism, energy production and oxidative stress may provide new clues to the ways in which changes in biological processes in a normal cell lead to disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号