首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Butadiene monoepoxide (BMO) alkylated guanine N7 and adenine N 6 adducts were prepared and enriched by solid phase extraction and HPLC. The purified adducts were analysed by a modified 32P-postlabelling assay, which utilized one dimensional TLC chromatography and a subsequent HPLC analysis with UV and radioactivity detectors. In vitro with Ct-DNA the formation of N7-dGMP and N 6-dAMP adducts were linear at a concentration range of 44 to 870 nmol of BMO per mg DNA at physiological pH. N7- dGMP and N 6-dAMP adducts were formed in a ratio of 200:1. In dGMP and in dAMP 48 % and 86 % of adducts were covalently bound to the C-2 carbon of BMO. CD-1 mice were inhalation exposed to butadiene for 5 days and 6 h per day. The N7-dGMP adduct level in lung samples of animals exposed to 200, 500 and 1300 ppm was 2.8 +/- 0.9 fmol, 11 +/- 2.0 fmol and 30 +/- 6.7 fmol in 10 mug DNA, respectively. The level of N 6-dAMP adducts in lung samples after 500 ppm and 1300 ppm exposure was 0.09 +/- 0.06 fmol and 0.11 +/- 0.05 fmol in 10 mug DNA. At 200 ppm the adduct level was below the detection limit. A sub-group of animals exposed to 1300 ppm was killed 3 weeks after the last exposure. N7-dGMP adducts were not detected but the level of N 6-dAMP adducts was not affected. N7-dGMP adducts were formed in a clear stereospecific manner in vivo . S -BMO adducts were the main product and represented 77 % ( n = 4, SD = 2%) of total BMO adducts. No clear conclusion can be drawn about the enantiospecific DNA binding at the N 6 position of dAMP, because of the poor separation of the enantiomers. However, we could separate regioisomeric adducts which indicated that C-2 adducts represented 69 +/- 3 % of the total N 6 adducts formed in mice lung DNA. This observation is supported by the data derived from in vitro DNA experiments but is different to our previously published data, which indicates the 2:1 (C-1:C-2) ratio in regioisomer formation in nucleotides or nucleosides. We suggest that the data presented in this communication indicate a different mechanism between nucleotides and DNA in BMO-derived adduct formation- Dimroth rearrangement dominates in nucleotides, but in double stranded DNA a direct alkylation is probably the major mechanism of adduct formation.  相似文献   

2.
Male Sprague-Dawley rats and B6C3F1 mice were exposed to either a single 6h or a multiple (5) daily (6h) nose-only dose of 1,3-[2,3-(14)C]-butadiene at exposure concentrations of nominally 1, 5 or 20 ppm. The aim was to compare the results with those from a similar previous study at 200 ppm. DNA isolated from liver, lung and testis of exposed rats and mice was analysed for the presence of butadiene related adducts, especially the N7-guanine adducts. Total radioactivity present in the DNA from liver, lung and testis was quantified and indicated more covalent binding of radioactivity for mouse tissue DNA than rat tissue DNA. Following release of the depurinating DNA adducts by neutral thermal hydrolysis, the liberated depurinated DNA adducts were measured by reverse phase HPLC coupled with liquid scintillation counting. The guanine adduct G4, assigned as N7-(2,3,4-trihydroxybutyl)- guanine, was the major adduct measured in liver, lung and testis DNA in both rats and mice. Higher levels of G4 were detected in all mouse tissues compared with rat tissue. The dose-response relationship for the formation of adduct G4 was approximately linear for all tissues studied for both rats and mice exposed in the 1-20 ppm range. The formation of G4 in liver tissue was about three times more effective for mouse than rat in this exposure range. Average levels of adduct G4 measured in liver DNA of rats and mice exposed to 5 x 6 h 1, 5 and 20 ppm 1,3-[2,3-(14)C]-butadiene were, respectively, for rats: 0.79 +/- 0.30, 2.90 +/- 1.19, 16.35 +/- 4.8 adducts/10(8) nucleotides and for mice: 2.23 +/- 0.71, 12.24 +/- 2.15, 48.63 +/- 12.61 adducts/10(8) nucleotides. For lung DNA the corresponding values were for rats: 1.02 +/- 0.44, 3.12 +/- 1.06, 17.02 +/- 4.07 adducts/10(8) nucleotides, and for mice: 3.28 +/- 0.32, 14.04 +/- 1.55, 42.47 +/- 13.12 adducts/10(8) nucleotides. Limited comparative data showed that the levels of adduct G4 formed in liver and lung DNA of mice exposed to a single exposure to butadiene in the present 20 ppm study and earlier 200 ppm study were approximately directly proportional across dose, but this was not observed in the case of rats. From the available evidence it is most likely that adduct G4 was formed from a specific isomer of the diol-epoxide metabolite, 3,4-epoxy-1,2-butanediol rather than the diepoxide, 1,2,3,4-diepoxybutane. Another adduct G3, possibly a diastereomer of N7-(2,3,4-trihydroxybutyl)-guanine or most likely the regioisomer N7-(1-hydroxymethyl-2,3-dihydroxypropyl)-guanine, was also detected in DNA of mouse tissues but was essentially absent in DNA from rat tissue. Qualitatively similar profiles of adducts were observed following exposures to butadiene in the present 20 ppm study and the previous 200 ppm study. Overall the DNA adduct levels measured in tissues of both rats and mice were very low. The differences in the profiles and quantity of adducts seen between mice and rats were considered insufficient to explain the large difference in carcinogenic potency of butadiene to mice compared with rats.  相似文献   

3.
Butadiene monoepoxide (BMO), epoxybutanediol (EBD) and diepoxybutane (DEB) are reactive metabolites of 1,3-butadiene (BD), an important industrial chemical classified as a probable human carcinogen. The covalent interactions of these metabolites with DNA lead to the formation of DNA adducts which may induce mutations or other types of DNA damage, resulting in tumour formation. In the present study, two pairs of diastereomeric N-1-BMO-adenine adducts were identified in the reaction of BMO with 2´-deoxyadenosine-5´-monophosphate (5´-dAMP). The major products formed by reacting EBD with 2´-deoxyguanosine-5´-monophosphate (5´-dGMP) were characterized as diastereomeric N-7-(2´,3´,4´-trihydroxybut-1´-yl)-5´-dGMP by UV and electrospray mass spectrometry. The formation of N-7-BMO-guanine adducts (1´-carbon, 60; 2´carbon, 54/104 nucleotides) in BMO-treated DNA was about four times higher than that of N-1-BMO-adenine adducts (1´-carbon, 20; 2´-carbon, 8.7/104 nucleotides). However, the recovery of N-1-BMO-adenine adducts in DNA (45 ± 5%) was two times higher than that of N-7-guanine adducts (20 ± 4%) by 32P-postlabelling analysis. Using the 32P-postlabelling/ HPLC assay, N-1-BMO-adenine, N-7-BMO-guanine and N-7-EBDguanine adducts were detected in BMO- or DEB-treated DNA and in liver DNA of rats exposed to BD by inhalation. The amount of N-7-EBD-guanine adducts (11/108 nucleotides) in rat liver was about three-fold higher than N-7-BMO-guanine adducts (4.0/108 nucleotides). The novel finding of N-1-BMO-adenine adducts formed in vivo may contribute to the understanding of the mechanisms of BD carcinogenic action.  相似文献   

4.
Zhao C  Tyndyk M  Eide I  Hemminki K 《Mutation research》1999,424(1-2):117-125
Detection of 7-alkylguanine DNA adducts is useful to assess human exposure to and the resulting DNA damage caused by simple alkylating agents. The background 7-methylguanine (7-MG) and 7-hydroxyethylguanine (7-HEG) adduct levels were determined in human and rat tissues, using thin-layer chromatography (TLC) combined with high pressure liquid chromatography (HPLC). In addition, these two adduct levels were also compared in various tissues between smokers and non-smokers. The results demonstrated that the background level of 7-alkylguanine adducts in WBC and lung tissues of non-smokers was 2.9 and 4.0 adducts/107 nucleotides, respectively. In smokers with lung cancers 7-MG adduct level in lung samples (6.3+/-1.9 adducts/107 nucleotides) and in bronchus samples (6.1+/-1.5 adducts/107 nucleotides) was significantly higher than that in WBC samples (3.3+/-0.9 adducts/107 nucleotides). 7-HEG adduct levels obtained from the same individuals were 0.8+/-0.3 in lung, 1.0+/-0.8 in bronchus and 0.6+/-0.2 adducts/107 nucleotides in WBC, respectively. Animal studies showed that background levels of 7-MG (2.1-2.5 adducts/107 nucleotides) in control rats were approximately 2-4-fold higher than 7-HEG levels (0.6-0.9 adducts/107 nucleotides). After a 3-day exposure to 300 ppm ethene, 7-HEG adducts accumulated to a similar extent in different tissues of rats, with the mean adduct level of 5.6-7.0 in liver, 7.4 in lymphocytes and 5.5 adducts/107 nucleotides in kidney.  相似文献   

5.
Ochratoxin A (OTA), a nephrotoxic and nephrocarcinogenic mycotoxin, leads to the formation of DNA adducts after administration to animals. This could be due to an epigenetic effect. In vitro assays can exclude an indirect effect, where the xenobiotic can generate, in vivo, endogenous reactive compounds which give adducts on DNA. Microsomes prepared from mice or rabbit kidney and liver, used as metabolic activators, were incubated in the presence of commercial salmon testes DNA and OTA, with NADPH or arachidonic acid used as cofactors. Upto 126 DNA adducts for 10(9) nucleotides were detected using the 32P postlabeling method after incubation with the mouse kidney system. Similar results were obtained with rabbit kidney microsomes. Using liver microsomes, the number of DNA adducts detected was much lower. When NADPH was used as a cosubstrate (to explore the cytochrome P450 metabolic pathways), with mice kidney microsomes, the adduct level was only 44% of the one obtained with arachidonic acid. These results lend support to the hypothesis of the preferential activation of OTA by the peroxidase activity of prostaglandin synthases and/or lipoxygenases to direct genotoxic metabolites, and are in agreement with the previously obtained results after in vivo treatment of mice. In order to identify the nucleotides of DNA modified by the OTA metabolites, dAMP, dGMP, dTMP and dCMP were used as substrates under the same conditions as with DNA. The adducts were found only on dGMP. The total adduct level was of 344 adducts per 10(9) nucleotides with the appearance of three major adducts in the presence of arachidonic acid. With NADPH, 271 adducts were obtained per 10(9) nucleotides, with again three major adducts, but only two of them were similar to two adducts obtained in the presence of arachidonic acid. Desferal (desferrioxamine B methanesulphonate), at a 50 microM concentration, did not reduce the adduct level. Adducts were also obtained when polydG, polydC and dG-p-dG were used as alternative substrates, whereas no adducts were obtained with polydA, polydT and polydC. The major adduct obtained after incubation of DNA with OTA, comigrated with the major adduct obtained with dGMP, in two chromatographic solvents. These results show that OTA is metabolized to genotoxic metabolite(s) which interact with the guanine residues of DNA.  相似文献   

6.
The carcinogenicity of many alkylating agents is derived from their ability to form persistent DNA adducts that induce mutations. This paper presents and validates methodology, based on LC with tandem mass spectrometry, for the separate or concurrent quantification by isotope dilution of O(6)-methyl-2'-deoxyguanosine (O(6)Me-dG) and O(6)-ethyl-2'-deoxyguanosine (O(6)Et-dG) DNA adducts. The limits of quantification were estimated to be < or =0.2 adducts/10(8) nucleotides for either adduct. This sensitivity permitted evaluation of adduct levels in livers from separate groups of untreated adult C57BL/6N/Tk(+/-) and C57BL/6N X Sv129 mice (undetectable to 5.5+/-6.7 O(6)Me-dG/10(8) nucleotides; undetectable to 0.04 O(6)Et-dG/10(8) nucleotides). Treatment of adult C57BL/6N/Tk(+/-) mice with equimolar doses (342micromol/kg body weight) of N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea produced adduct levels in liver of 1700+/-80 O(6)Me-dG/10(8) nucleotides and 260+/-60 O(6)Et-dG/10(8) nucleotides, respectively, when assessed 4h after dosing. These methods should be useful for evaluations of DNA adducts in relation to cellular processes that modify carcinogenic and toxicological responses in experimental animals and humans.  相似文献   

7.
Adducts were prepared by reacting styrene oxide with 2-deoxyguanosine 3'-monophosphate (dGMP). Four isomeric N-7-, two diastereomeric N2- and three isomeric O6-adduct were isolated and characterized. The adducts were used as substrates in the 32P-postlabeling reaction. No phosphorylation products were seen with the N-7-alkylation products. One diastereomeric N2-adduct was labeled with 20% efficiency and the second with a markedly lower efficiency. Two of the three O6-adducts were labeled with 5% and the third with 10% labeling efficiency. The results suggest that large N-7-dGMP adducts are very poor substrates of T4 polynucleotide kinase. The diastereomeric products are labeled at different efficiencies indicating stereoselectivity in the kinase reaction.  相似文献   

8.
The reactions of free and DNA-bound 2,2,5,5-tetramethylpyrrolidine-N-oxyl (PROXYL) probes with radicals generated during radiolysis of dilute aqueous solutions of DNA were examined. For the free PROXYL probe in deaerated solution with each of the four nucleotides (dAMP, dCMP, dGMP, and TMP) it was found that the pyrimidine radicals were more reactive toward the probe than were the purine radicals. Reactions of the electron adduct of TMP and the hydroxyl radical adducts of dAMP, dGMP, and TMP with the probe resulted in little or no reduction of the probe. For TMP these results are consistent with the fact that both the protonated electron and hydroxyl radical adducts of TMP will covalently bind to the nitroxide function of the probe. Reduction of the PROXYL probe was observed in reactions with the hydroxyl radical adduct of dCMP and with the electron adducts of dAMP, dCMP, and dGMP. Results of the radiolysis of the free PROXYL probe in deaerated dilute solution of DNA suggest that the PROXYL probe protects the DNA from water radical attack as the ratio of DNA bases to PROXYL probe increases above 50:1. Reactions of DNA-bound probes are dependent on the depth of the nitroxide function in relation to the major groove of the DNA helix. Two probes with tether lengths which are less than the depth of the major groove show an expected increase in reactions with DNA base radicals as compared to a probe with a tether that extends beyond the groove. The longer probe is involved largely in reactions with sugar and water radicals along the periphery of the DNA helix. In the presence of oxygen, there is a dramatic decrease in the loss of both the free and DNA-bound probes due to the lack of reaction of these probes with peroxyl radicals formed by the addition of molecular oxygen to DNA radicals.  相似文献   

9.
1,3-Butadiene (BD) is a major industrial chemical and a rodent carcinogen, with mice being much more susceptible than rats. Oxidative metabolism of BD, leading to the DNA-reactive epoxides 1,2-epoxy-3-butene (BMO), 1,2-epoxy-3,4-butanediol (EBD) and 1,2:3,4-diepoxybutane (DEB), is greater in mice than rats. In the present study the DNA adduct profiles in liver and lungs of rats and mice were determined following exposure to BMO and to BD since these profiles may provide qualitative and quantitative information on the DNA-reactive metabolites in target tissues. Adducts detected in vivo were identified by comparison with the products formed from the reaction of the individual epoxides with 2'-deoxyguanosine (dG). In rats and mice exposed to [4-14C]-BMO (1-50 mg/kg, i.p.), DNA adduct profiles were similar in liver and lung with N7-(2-hydroxy-3-butenyl)guanine (G1) and N7-(1-(hydroxymethyl)-2-propenyl)guanine (G2) as major adducts and N7-2,3,4-trihydroxybutylguanine (G4) as minor adduct. In rats and mice exposed to 200 ppm [2,3-14C]-BD by nose-only inhalation for 6 h, G4 was the major adduct in liver, lung and testes while G1 and G2 were only minor adducts. Another N7-trihydroxybutylguanine adduct (G3), which could not unambiguously be identified but is either another isomer of N7-2,3,4-trihydroxybutylguanine or, more likely, N7-(1-hydroxymethyl-2,3-dihydroxypropyl)guanine, was present at low concentrations in liver and lung DNA of mice, but absent in rats. The evidence indicates that the major DNA adduct formed in liver, lung and testes following in vivo exposure to BD is G4, which is formed from EBD, and not from DEB.  相似文献   

10.
Shi Y  Lin W  Fan B  Jia Z  Yao S  Kang J  Wang W  Zheng R 《Biochimica et biophysica acta》1999,1472(1-2):115-127
DNA damaged by oxygen radicals has been implicated as a causative event in a number of degenerative diseases, including cancer and aging. So it is very significant to look for ways in which either oxygen radicals are scavenged prior to DNA damage or damaged DNA is repaired to supplement the cells' inadequate repair capacity. The repair activities and reaction mechanism of phenylpropanoid glycosides (PPGs) and their derivatives, isolated from Chinese folk medicinal herbs, towards both dGMP-OH* adducts and dAMP-OH* adducts were studied with the pulse radiolytic technique. On pulse irradiation of nitrous oxide saturated 2 mM dGMP or dAMP aqueous solution containing one of the PPGs or their derivatives, the transient absorption spectra of the hydroxyl adduct of dGMP or dAMP decayed with the formation of that of phenoxyl radicals of PPGs or their derivatives within several decades of microseconds after electron pulse irradiation. The result indicated that dGMP or dAMP hydroxyl adducts can be repaired by PPGs or their derivatives. The rate constants of the repair reactions were deduced to be 0.641-1.28 x 10(9) M(-1) s(-1) for dGMP-OH* and 0.2-0.491 x 10(9) M(-1) s(-1) for dAMP-OH*, which positively correlated to the number of phenolic hydroxyl groups in the glycoside structure. A deeper understanding of this new repair mechanism may help researchers to design strategies to prevent and/or intervene more effectively in free radical related diseases.  相似文献   

11.
Otteneder M  Lutz U  Lutz WK 《Mutation research》2002,500(1-2):111-116
Styrene by inhalation had been shown to increase the lung tumor incidence in mice at 20 ppm and higher, but was not carcinogenic in rats at up to 1000 ppm. Styrene-7,8-oxide, the major metabolic intermediate, has weak electrophilic reactivity. Therefore, DNA adduct formation was expected at a low level and a 32P-postlabeling method for a determination of the two regioisomeric 2'-deoxyguanosyl-O6-adducts at the alpha(7)- and beta(8)-positions had been established. The first question was whether DNA adducts could be measured in the rat at the end of the 2 years exposure of a bioassay for carcinogenicity, even though tumor incidence was not increased. Liver samples of male and female CD rats were available for DNA adduct analysis. Adducts were above the limit of detection only in the highest dose group (1000 ppm), with median levels of 9 and 8 adducts per 10(7) nucleotides in males and females, respectively (sum of alpha- and beta-adducts). The result indicates that the rat liver tolerated a relatively high steady-state level of styrene-induced DNA adducts without detectable increase in tumor formation. The second question was whether different DNA adduct levels in the lung of rats and mice could account for the species difference in tumor incidence. Groups of female CD-1 mice were exposed for 2 weeks to 0, 40, and 160 ppm styrene (6h per day; 5 days per week), female CD rats were exposed to 0 and 500 ppm. In none of the lung DNA samples were adducts above a limit of detection of 1 adduct per 10(7) DNA nucleotides. The data indicate that species- and organ-specific tumor induction by styrene is not reflected by DNA adduct levels determined in tissue homogenate. The particular susceptibility of the mouse lung might have to be based on other reactive metabolites and DNA adducts, indirect DNA damage and/or cell-type specific toxicity and tumor promotion.  相似文献   

12.
Acetaldehyde, a major metabolite of ethanol, reacts with dG residues in DNA, resulting in the formation of the N(2)-ethyl-2'-deoxyguanosine (N(2)-Et-dG) adduct. This adduct has been detected in lymphocyte DNA of alcohol abusers. To explore the miscoding property of the N(2)-Et-dG DNA adduct, phosphoramidite chemical synthesis was used to prepare site-specifically modified oligodeoxynucleotides containing a single N(2)-Et-dG. These N(2)-Et-dG-modified oligodeoxynucleotides were used as templates for primer extension reactions catalyzed by the 3' --> 5' exonuclease-free (exo(-)) Klenow fragment of Escherichia coli DNA polymerase I. The primer extension was retarded one base prior to the N(2)-Et-dG lesion and opposite the lesion; however, when the enzyme was incubated for a longer time or with increased amounts of this enzyme, full extension occurred. Quantitative analysis of the fully extended products showed the preferential incorporation of dGMP and dCMP opposite the N(2)-Et-dG lesion, accompanied by a small amounts of dAMP and dTMP incorporation and one- and two-base deletions. Steady-state kinetic studies were also performed to determine the frequency of nucleotide insertion opposite the N(2)-Et-dG lesion and chain extension from the 3' terminus from the dN.N(2)-Et-dG (N is C, A, G, or T) pairs. These results indicate that the N(2)-Et-dG DNA adduct may generate G --> C transversions in living cells. Such a mutational spectrum has not been detected with other methylated dG adducts, including 8-methyl-2'-deoxyguanosine, O(6)-methyl-2'-deoxyguanosine, and N(2)-methyl-2'-deoxyguanosine. In addition, N(2)-ethyl-2'-deoxyguanosine triphosphate (N(2)-Et-dGTP) was efficiently incorporated opposite a template dC during DNA synthesis catalyzed by the exo(-) Klenow fragment. The utilization of N(2)-Et-dGTP was also determined by steady-state kinetic studies. N(2)-Et-dG DNA adducts are also formed by the incorporation of N(2)-Et-dGTP into DNA and may cause mutations, leading to the development of alcohol- and acetaldehyde-induced human cancers.  相似文献   

13.
When O-acetyl-4-(hydroxyamino)quinoline 1-oxide (Ac-4HAQO) reacts with double-stranded DNA at 37 degrees C the major products, N2-guanine, C8-guanine, and N6-adenine adducts, are formed in the proportions of 5:3:2, respectively. When the reaction is carried out with single-stranded DNA at 0 degree C, the products are found in the ratio 1:7:2. Unique 174-bp DNA fragments were modified in these ways and used as substrates for the 3'-5' exonuclease activity of T4 DNA polymerase. The results obtained showed that the exonuclease is blocked by the N2-guanine adduct but not the other two adducts. Interpretation of the cleavage patterns suggested that the enzyme stopped 2 nucleotides before the N2-guanine adduct. The N2-guanine adduct lies in the minor groove of the DNA double helix, while the other two adducts are found in the major groove. Apparently, only the former hinders progression of the enzyme.  相似文献   

14.
N7-Methylguanine (N7-MeG) DNA adducts are markers of human exposure to methylating agents including tobacco-specific nitrosamines (TSNAs). Repair of this adduct is poor, so levels in lung tissue should reflect variation in both intensity of exposure and in metabolism. N7-MeG adducts in lung DNA from bronchial lavage samples were measured to determine whether levels were higher in smokers than non-smokers, and if levels were modified by genetic variation in carcinogen-metabolising enzymes. Adducts were detected in 38 out of 44 DNA samples by 32P post-labelling of the N7-methyldeoxyguanosine-3'-monophosphate (N7-MedGp) isolated from DNA digests by two-stage HPLC. N7-MeG adduct levels were higher in smokers than in never smokers ((9.99 +/-20.3)x10(-7) versus (0.58+/-0.50)x10(-7) N7-MedGp/deoxyguanosine-3'-monophosphate (dGp); P=0.02) and intermediate in ex-smokers ((5.59+/-15.6)x10(-7) N7-MedGp/dGp). Adduct levels tended to be higher in individuals with GSTM1 null, GSTT1 null or GSTP1 ile/ile genotypes. When genotypes were combined, N7-MedGp levels among GSTM1 null/GSTT1 null individuals (n=6) were higher than among those having at least one wild-type allele of these two genes ((26.1+/-38.0)x10(-7) versus (2.73+/-4.07)x10(-7) N7-MedGp/dGp), although the results were not statistically significant (P=0.13). Adduct levels were highest in individuals with three unfavourable genotypes (GSTM1 null/GSTT1 null and GSTP1 ile/ile) compared with others ((74.5+/-13.1)x10(-7) versus (2.64+/-3.89)x10(-7) N7-MedGp/dGp, P=0.02). N7-MeG adduct levels in DNA isolated from lung tissue thus reflect exposure to cigarette smoke, and genetic variation in carcinogen-metabolising enzymes may modify these levels.  相似文献   

15.
Aromatic DNA adduct levels and polymorphisms of two phase I enzymes - CYP1A1 and CYP2D6 and two phase II enzymes - GSTM1 and GSTP1 were analyzed in a group of 133 nonsmoking healthy women 35-45 years old and holding jobs not connected with the exposure to the combustion products of organic matter. They were office workers from the south and north-eastern parts of Poland. Blood samples were collected in winter and in summer. Aromatic DNA adduct levels were measured in all winter and summer samples. The frequencies of CYP1A1, CYP2D6, GSTM1 and GSTP1 polymorphisms in samples from the studied women did not show any differences when compared with other Caucasian populations and the Polish male population studied previously. The differences in the levels of DNA adducts among the carriers of different genotypes were statistically non-significant. Analysis of combined genotypes selected the groups of volunteers with the highest and the lowest DNA adduct levels. The highest levels of DNA adducts were observed in the carriers of GSTM1(null)/CYP1A1Ile/Val (8.00+/-13.00 adducts/10(8) nucleotides in summer samples) and GSTP1-AA/CYP1A1Ile/Val genotypes (7.00+/-4.32 in winter and 7.30+/-7. 27/10(8) nucleotides in summer). The lowest levels of DNA adducts (3. 00+/-2.30 in winter and 2.00+/-3.16/10(8) nucleotides in summer) were found in the carriers of the genotype GSTP1-AG+GG/CYP1A1Ile/Val. The levels of DNA adducts in these groups were determined by the polymorphisms of GSTM1 and GSTP1 phase II detoxifying enzymes.  相似文献   

16.
The nonsteroidal synthetic estrogen hexestrol (HES), which is diethylstilbestrol hydrogenated at the C-3-C-4 double bond, is carcinogenic. Its major metabolite is the catechol, 3'-OH-HES, which can be metabolically converted to the catechol quinone, HES-3',4'-Q. Study of HES was undertaken with the scope to substantiate evidence that natural catechol estrogen-3,4-quinones are endogenous carcinogenic metabolites. HES-3',4'-Q was previously shown to react with deoxyguanosine to form the depurinating adduct 3'-OH-HES-6'-N7Gua by 1,4-Michael addition [Jan S-T, Devanesan PD, Stack DE, Ramanathan R, Byun J, Gross ML, et al. Metabolic activation and formation of DNAadducts of hexestrol,a synthetic nonsteroidal carcinogenic estrogen. Chem Res Toxicol 1998;11:412-9.]. We report here formation of the depurinating adduct 3'-OH-HES-6'-N3Ade by reaction of HES-3',4'-Q with Ade by 1,4-Michael addition. The structure of the N3Ade adduct was established by NMR and MS. We also report here formation of the depurinating 3'-OH-HES-6'-N7Gua and 3'-OH-HES-6'-N3Ade adducts by reaction of HES-3',4'-Q with DNA or by activation of 3'-OH-HES by tyrosinase, lactoperoxidase, prostaglandin H synthase or 3-methylcholanthrene-induced rat liver microsomes in the presence of DNA. The N3Ade adduct was released instantaneously from DNA, whereas the N7Gua adduct was released with a half-life of approximately 3 h. Much lower (<1%) levels of unidentified stable adducts were detected in the DNA from these reactions. These results are similar to those obtained by reaction of endogenous catechol estrogen-3,4-quinones with DNA. The similarities extend to the instantaneously-depurinating N3Ade adducts and relatively slowly-depurinating N7Gua adducts. The endogenous estrogens, estrone and estradiol, their 4-catechol estrogens and HES are carcinogenic in the kidney of Syrian golden hamsters. These results suggest that estrone (estradiol)-3,4-quinones and HES-3',4'-Q are the ultimate carcinogenic metabolites of the natural and synthetic estrogens, respectively. Reaction of the electrophilic quinones by 1,4-Michael addition with DNA at the nucleophilic N-3 of Ade and N-7 of Gua is suggested to be the major critical step in tumor initiation by these compounds.  相似文献   

17.
Antibodies elicited against the haptens cis-Pt(NH3)2dGuodGMP and its ribo-analog, both covalently coupled to bovine serum albumin, recognize adducts of cis-diamminedichloroplatinum(II) (cis-DDP) in DNA. Antibody-binding to cis-DDP-DNA strongly depends on the accessibility of the adducts to the antibodies. In double-stranded cis-DDP-DNA with low Pt: nucleotide ratios (rb's), this accessibility is enhanced by unwinding of the cis-DDP-DNA, e.g. by heat-denaturation. An unwinding effect is also induced by the cis-DDP treatment itself. A260nm readings of cis-DDP-DNA samples indicate an increased denaturation of the DNA at increasing Pt-contents. The data obtained after heat-denaturation of the same samples show a growing capability to renaturation when the rb-values increase from 0 to 0.04; at 0.04 less than rb less than 0.18 the renaturation effect gradually disappears. In the competitive enzyme-linked immunosorbent assay (ELISA), the cis-DDP-adducts in heat-denatured DNA are detected in the pmol range; in DNA-digests, however, they are recognized in fmol amounts. For the individual Pt-containing (oligo)nucleotides the amounts causing 50% inhibition in the ELISA were established for the two anti-sera; they were 13.3 +/- 3.8 (fmol +/- S.D.) and 5.4 +/- 1.8 for cis-Pt(NH3)2d(GMP)2; 15.5 +/- 5.4 and 4.0 +/- 1.5 for cis-Pt(NH3)2d(pGpG); (2.6 +/- 1.1) X 10(3) and (2.0 +/- 1.0) X 10(3) for cis-Pt(NH3)2d(pApG); (5.6 +/- 1.9) X 10(3) and (2.9 +/- 0.4) X 10(3) for Pt(NH3)3dGMP. Pt-adducts in a trans-DDP-DNA digest are recognized in pmol amounts and dGMP in nmol quantitatives. Finally, the usefulness of these antibodies for the detection and quantitation of individual cis-DDP-adducts in cis-DDP-DNA digests was demonstrated.  相似文献   

18.
Treatment with estrogen increases the risk of breast, ovary, and endometrial cancers in women. DNA damage induced by estrogen is thought to be involved in estrogen carcinogenesis. In fact, Y-family human DNA polymerases (pol) eta and kappa, which are highly expressed in the reproductive organs, miscode model estrogen-derived DNA adducts during DNA synthesis. Since the estrogen-DNA adducts are a mixture of 6alpha- and 6beta-diastereoisomers of dG-N(2)-6-estrogen or dA-N(6)-6-estrogen, the stereochemistry of each isomeric adduct on translesion synthesis catalyzed by DNA pols has not been investigated. We have recently established a phosphoramidite chemical procedure to insert 6alpha- or 6beta-isomeric N(2)-(estradiol-6-yl)-2'-deoxyguanosine (dG-N(2)-6-E(2)) into oligodeoxynucleotides. Using such site-specific modified oligomer as a template, the specificity and frequency of miscoding by dG-N(2)-6alpha-E(2) or dG-N(2)-6beta-E(2) were explored using pol eta and a truncated form of pol kappa (pol kappaDeltaC). Translesion synthesis catalyzed by pol eta bypassed both the 6alpha- and 6beta-isomers of dG-N(2)-6-E(2), with a weak blockage at the adduct site, while translesion synthesis catalyzed by pol kappaDeltaC readily bypassed both isomeric adducts. Quantitative analysis of base substitutions and deletions occurring at the adduct site showed that pol kappaDeltaC was more efficient than pol eta by incorporating dCMP opposite both 6alpha- and 6beta-isomeric dG-N(2)-6-E(2) adducts. The miscoding events occurred more frequently with pol eta, but not with pol kappaDeltaC. Pol eta promoted incorporation of dAMP and dTMP at both the 6alpha- and 6beta-isomeric adducts, generating G --> T transversions and G --> A transitions. One- and two-base deletions were also formed. The 6alpha-isomeric adduct promoted slightly lower frequency of dCMP incorporation and higher frequency of dTMP incorporation and one-base deletions, compared with the 6beta-isomeric adduct. These observations were supported by steady-state kinetic studies. Taken together, the miscoding property of the 6alpha-isomeric dG-N(2)-6-E(2) is likely to be similar to that of the 6beta-isomeric adduct.  相似文献   

19.
Groups of male Alderley Park rats were dosed concomitantly with 2-acetylaminofluorene (2AAF) by gavage at doses between 0.01 mg/kg and 40 mg/kg, and livers sampled 2-72 h later. The liver of one group of animals was perfused to yield hepatocytes which were assayed in vitro for unscheduled DNA synthesis (UDS) via incorporation of tritiated thymidine and autoradiography. DNA was extracted from the livers of the other group and DNA adduct levels determined using the 32P-postlabelling technique. The major C-8 2-aminofluorene/guanosine adduct and 3 minor adducts were quantitated, enabling the relative sensitivity of the 2 techniques to be compared. A dose- and time-related UDS response was observed, which, at the most sensitive time-point (12 h) enabled DNA repair to be discerned at a dose level of 0.1-1 mg/kg of 2AAF, a response classified as formally positive at 5 mg/kg 2AAF. Only the C-8 adduct, as determined by 32P-postlabelling, was discernible at 0.01 mg/kg of 2AAF, although other adducts were visible on autoradiograms at higher dose levels. It is concluded that as part of a well-defined dose response, UDS can be discerned with confidence for doses of 2AAF between approximately 0.1 and 5 mg/kg, and DNA adducts for doses of 2AAF between approximately 0.01 and 1 mg/kg. Discernible UDS for 2AAF in the rat liver is apparent at approximately 13 DNA (total) adducts/10(8) nucleotides, or approximately 8 DNA (C-8) adducts/10(8) nucleotides. The presumed C-8 2-acetylaminofluorene/guanosine adduct, prepared by reaction of 2-acetoxy-2-acetylaminofluorene (2AAAF) with DNA, was a significant but unreliable marker of 2AAF/DNA adducts in the rat liver in vivo. DNA repair did not appear to remove DNA adducts selectively, and adducts remained in DNA when discernible DNA repair had ceased.  相似文献   

20.
dGMP, dAMP, dCMP and dTMP were incubated with cis PDD in a nucleotide/Pt ratio 1:1 for 72 h. Following hydrolysis, Pt derivatives of the bases were separated on Sephadex G10 columns. dGMP, dAMP and dCMP reacted with cis PDD but only dGMP reacted completely. All the nucleotides mentioned above formed adducts with cis PDD with a metal to ligand ratio 1:1. Moreover an ML2 complex was isolated after the reaction of dGMP with cis PDD. These Pt-base(s) complexes were eluted from the columns in separate peaks. UV spectra of the complexes differed from the standard ones. In some peaks, eluted separately from the standards, no Pt was detected. The samples eluted in these peaks had UV spectra different from the standards. They may represent products of base degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号