首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study identified two potential novel biomarkers of peroxisome proliferation in the rat. Three peroxisome proliferator-activated receptor (PPAR) ligands, chosen for their high selectivity towards the PPARalpha, -delta and -gamma subtypes, were given to rats twice daily for 7 days at doses known to cause a pharmacological effect or peroxisome proliferation. Fenofibrate was used as a positive control. Daily treatment with the PPARalpha and -delta agonists produced peroxisome proliferation and liver hypertrophy. 1H nuclear magnetic resonance spectroscopy and multivariate statistical data analysis of urinary spectra from animals given the PPARalpha and -delta agonists identified two new potential biomarkers of peroxisome proliferation--N-methylnicotinamide (NMN) and N-methyl-4-pyridone-3-carboxamide (4PY)--both endproducts of the tryptophan-nicotinamide adenine dinucleotide (NAD+) pathway. After 7 days, excretion of NMN and 4PY increased 24- and three-fold, respectively, following high doses of fenofibrate. The correlation between total NMN excretion over 7 days and the peroxisome count was r=0.87 (r2=0.76). Plasma NMN, measured using a sensitive high performance liquid chromatography method, was increased up to 61-fold after 7 days' treatment with high doses of fenofibrate. Hepatic gene expression of aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) was downregulated following treatment with the PPARalpha and -delta agonists. The decrease was up to 11-fold compared with controls in the groups treated with high doses of fenofibrate. This supports the link between increased NMN and 4PY excretion and regulation of the tryptophan-NAD+ pathway in the liver. In conclusion, NMN, and possibly other metabolites in the pathway, are potential non-invasive surrogate biomarkers of peroxisome proliferation in the rat.  相似文献   

2.
A previous report of this work (Ringeissen et al. 2003) described the use of nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistical data analysis (MVDA) to identify novel biomarkers of peroxisome proliferation (PP) in Wistar Han rats. Two potential biomarkers of peroxisome proliferation in the rat were described, N-methylnicotinamide (NMN) and N-methyl-4-pyridone-3-carboxamide (4PY). The inference from these results was that the tryptophan-nicotinamide adenine dinucleotide (NAD+) pathway was altered in correlation with peroxisome proliferation, a hypothesis subsequently confirmed by TaqMan® analysis of the relevant genes encoding two key enzymes in the pathway, aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) and quinolinate phosphoribosyltransferase (EC 2.4.2.19). The objective of the present study was to investigate these data further and identify other metabolites in the NMR spectrum correlating equally with PP. MVDA Partial Least Squares (PLS) models were constructed that provided a better prediction of PP in Wistar Han rats than levels of 4PY and NMN alone. The resulting Wistar Han rat predictive models were then used to predict PP in a test group of Sprague Dawley rats following administration of fenofibrate. The models predicted the presence or absence of PP (above on arbitrary threshold of >2-fold mean control) in all Sprague Dawley rats in the test group.  相似文献   

3.
4.
Activation of peroxisome proliferator-activated receptor γ (PPARγ) by ligands is associated with beneficial health effects, including anti-inflammatory and insulin-sensitizing effects. The aim of the current study was to develop luciferase reporter gene assays to enable fast and low-cost measurement of PPARγ agonist and antagonist activity. Two reporter gene assays, PPARγ1 CALUX and PPARγ2 CALUX, were developed by stable transfection of U2OS cells with an expression vector for PPARγ1 or PPARγ2 and a pGL3–3xPPRE–tata-luc or pGL4–3xPPRE–tata-luc reporter construct, respectively. PPARγ1 CALUX and PPARγ2 CALUX cells showed similar concentration-dependent luciferase induction upon exposure to the PPARγ agonists rosiglitazone, troglitazone, pioglitazone, ciglitazone, netoglitazone, and 15-deoxy-Δ12,14-prostaglandin J2. The potency to induce luciferase decreased in the following order: rosiglitazone > troglitazone = pioglitazone > netoglitazone > ciglitazone. A concentration-dependent decrease in the response to 50 nM rosiglitazone was observed on the addition of PPARγ antagonist GW9662 or T0070907 in both PPARγ1 CALUX and PPARγ2 CALUX cells. The PPARα agonists WY14643 and fenofibrate failed to induce luciferase activity, confirming the specificity of these cell lines for PPARγ agonists. In conclusion, PPARγ1 CALUX and PPARγ2 CALUX cells provide a reliable and useful tool to screen (bio)chemicals for PPARγ agonist or antagonist activity.  相似文献   

5.
6.
A previous report of this work (Ringeissen et al. 2003) described the use of nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistical data analysis (MVDA) to identify novel biomarkers of peroxisome proliferation (PP) in Wistar Han rats. Two potential biomarkers of peroxisome proliferation in the rat were described, N-methylnicotinamide (NMN) and N-methyl-4-pyridone-3-carboxamide (4PY). The inference from these results was that the tryptophan-nicotinamide adenine dinucleotide (NAD(+)) pathway was altered in correlation with peroxisome proliferation, a hypothesis subsequently confirmed by TaqMan analysis of the relevant genes encoding two key enzymes in the pathway, aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) and quinolinate phosphoribosyltransferase (EC 2.4.2.19). The objective of the present study was to investigate these data further and identify other metabolites in the NMR spectrum correlating equally with PP. MVDA Partial Least Squares (PLS) models were constructed that provided a better prediction of PP in Wistar Han rats than levels of 4PY and NMN alone. The resulting Wistar Han rat predictive models were then used to predict PP in a test group of Sprague Dawley rats following administration of fenofibrate. The models predicted the presence or absence of PP (above on arbitrary threshold of >2-fold mean control) in all Sprague Dawley rats in the test group.  相似文献   

7.
The free fatty acid receptor 1 (FFA1) and peroxisome proliferator-activated receptor δ (PPARδ) were considered as potential anti-diabetic targets, and the dual FFA1/PPARδ agonists might provide synergistic effect in insulin secretion and sensibility. Herein, we further develop dual agonists by screening 7 series of heterocycles, resulting in the discovery of compound 19 with considerable oral pharmacokinetic profile. Compound 19 exhibited a balanced potency between FFA1 and PPARδ, and high selectivity over PPARα and PPARγ. Moreover, compound 19 exerted improved glucose-lowering effects and insulin sensitivity in a dose-dependent manner, which might be attributed to its dual effects to simultaneously regulate insulin secretion and resistance. Our results extended the existing chemical space, and provided a potent tool compound 19.  相似文献   

8.
In the presence of low density lipoprotein (LDL), Chlamydia pneumoniae induces macrophage-derived foam cell formation, a typical pathological feature of early atherosclerosis. However, its mechanism has not been fully understood. Peroxisome proliferator-activated receptors (PPARs) are key regulators of macrophage lipid metabolism. This study therefore investigated the role that PPAR α and PPAR γ may play a role in C. pneumoniae-induced foam cell formation. Oil Red O staining and Lipid mass quantification showed that LDL-treated THP-1 macrophages infected with high doses of C. pneumoniae (5 × 105 and 1 × 106 IFU) resulted in the large accumulation of lipid droplets and markedly increased the ratio of intracellular cholesteryl ester (CE) to total cholesterol (TC) (>50%). The results of RT-PCR and Western blot indicated that C. pneumoniae infection dose-dependently suppressed the expression of PPAR α and PPAR γ at mRNA and protein levels in LDL-treated THP-1 macrophages. PPAR α (fenofibrate) and PPAR γ (rosiglitazone) agonists, inhibited the accumulation of intracellular CE by C. pneumoniae in a dose-dependent manner. Furthermore, C. pneumoniae-induced foam cell formation was significantly suppressed by higher doses of fenofibrate (20 and 50 μM) and rosiglitazone (10 and 20 μM). These results first reveal that C. pneumoniae induces foam cell formation via PPAR α and PPAR γ-dependent pathway, which may contribute to its pro-atherogenic properties.  相似文献   

9.
AimsRosiglitazone and fenofibrate, specific agonists of the peroxisome proliferator activated receptors-γ (PPARγ) and -α (PPARα), respectively, improve insulin sensitivity in diabetic animals and in patients with type 2 diabetes. Here we investigated how pre-diabetic Otsuka Long–Evans Tokushima Fatty (OLETF) rats fed with normal and high-fat diets respond to these PPAR agonists.Main methodsPre-diabetic OLETF rats were subjected to high-fat or standard diets with or without rosiglitazone or fenofibrate for 2 weeks. The metabolism of the rats and the levels of malonyl-CoA and activities of malonyl-CoA decarboxylase (MCD), acetyl-CoA carboxylase (ACC), and AMP-activated protein kinase (AMPK) in metabolic tissues were assessed.Key findingsRosiglitazone and fenofibrate significantly improved insulin sensitivity and reduced the levels of plasma triglycerides and free fatty acids in OLETF rats fed with a high-fat diet. Fenofibrate particularly reduced the body weight, fat, and total cholesterol in high fat diet OLETF rats. The highly elevated malonyl-CoA levels in the skeletal muscle and liver of OLETF rat were significantly reduced by rosiglitazone or fenofibrate due to, in part, the increased MCD activities and expression. On the other hand, ACC activities were unchanged in skeletal muscle and decreased in liver in high fat diet group. AMPK activities were dramatically decreased in OLETF rats and not affected by these agonists.SignificanceThese results demonstrate that treatment of pre-diabetic OLETF rats–particularly those fed a high-fat diet–with rosiglitazone and fenofibrate significantly improves insulin sensitivity and fatty acid metabolism by increasing the activity of MCD and reducing malonyl-CoA levels in the liver and skeletal muscle.  相似文献   

10.
It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11β-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPARα), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPARα activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPARα inhibitor MK886, suggesting that fenofibrate activated through PPARα. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPARα.  相似文献   

11.
Drugs used in the treatment of type 2 diabetes and cardiovascular disease, specifically peroxisome proliferator‐activated receptor (PPAR) agonists, have been reported to affect bone cell function and fracture risk. In this study, we assessed the direct effects of PPAR‐γ agonists (rosiglitazone and troglitazone), used in the treatment of diabetes, and a PPAR‐α agonist (fenofibrate), used to treat hyperlipidaemia, on the function of primary osteoblasts and osteoclasts. Formation of ‘trabecular’ bone structures by rat calvarial osteoblasts was reduced by up to 85% in cultures treated with rosiglitazone and by 45% in troglitazone‐treated or fenofibrate‐treated cultures; at the same time, lipid droplet formation was increased by 40–70%. The expression of key osteogenic markers was similarly downregulated in cultures treated with PPAR agonists, whereas adipogenesis markers were upregulated. Formation of osteoclasts in cultures derived from mouse marrow diminished with fenofibrate treatment, whereas both glitazones reduced resorptive activity without affecting osteoclast number. Metformin, although not a PPAR agonist, is also commonly used in the treatment of type 2 diabetes. Here, metformin was found to have no effect on bone cell function. Taken together, these data suggest that PPAR‐γ agonists may enhance bone loss via increased adipogenesis at the expense of osteoblast formation. In contrast, PPAR‐α agonists may prevent bone loss. Given that the prevalence of diabetes and cardiovascular disease is expected to rise significantly, greater attention may need to be paid to the effects of PPAR agonists on bone homeostasis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Fenofibrate, a peroxisome proliferator-activated receptor (PPAR) α agonist, is a hypolipidemic drug. Although several studies have explored the fenofibrate-induced antiproliferative effect in cultured human cells, it is not clear which role PPARα plays in this antiproliferative effect. Therefore, we investigated the antiproliferative mechanism of fenofibrate in Huh7 (human hepatoma cell line). Cell viability was measured by the WST-8 assay and cell proliferation was assessed using the BrdU incorporation assay. The cell cycle was analyzed by flow cytometry. The cyclins, tumor suppressor proteins and regulators of the AKT signaling pathway were analyzed by immunoblotting. Using flow cytometry, we showed that fenofibrate blocks entry into the S phase of the cell cycle. We certified that this G1 arrest is caused by the reduction of cyclin A and E2F1 and the accumulation of the cyclin-dependent kinase inhibitor p27. Interestingly, the antiproliferative effect of fenofibrate was not affected by the PPARα antagonist (GW6471) or by PPARα-specific siRNA. These results suggest that fenofibrate suppresses Huh7 cell growth through a PPARα independent mechanism. Furthermore, we showed that treatment of Huh7 cells with fenofibrate leads to suppression of AKT phosphorylation. We also found for the first time that fenofibrate increased the C-terminal modulator protein (CTMP), which inhibits AKT phosphorylation. Our data suggest that fenofibrate inhibits the proliferation of Huh7 cells by blocking Akt activation, and that CTMP is one of the key players for this antiproliferative property of fenofibrate in Huh7 cells.  相似文献   

13.
14.
15.
Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) expression and activation is involved in the cell proliferation. However, little is known about the role of PPARβ/δ in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPARβ/δ mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, an EGF receptor (EGFR) special inhibitor, caused attenuation of PPARβ/δ protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPARβ/δ binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPARβ/δ caused selectively inhibition of PPARβ/δ protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPARβ/δ, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPARβ/δ up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPARβ/δ promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPARβ/δ expression in a c-Jun-dependent manner and PPARβ/δ plays a vital role in EGF-stimulated proliferation of HaCaT cells.  相似文献   

16.
The peroxisome proliferator activated receptors (PPARs) are important drug targets in treatment of metabolic and inflammatory disorders. Fibrates, acting as PPARα agonists, have been widely used lipid-lowering agents for decades. However, the currently available PPARα targeting agents show low subtype-specificity and consequently a search for more potent agonists have emerged. In this study, previously isolated oxohexadecenoic acids from the marine algae Chaetoceros karianus were used to design a PPARα-specific analogue. Herein we report the design, synthesis, molecular modelling studies and biological evaluations of the novel 3,5-disubstituted isoxazole analogue 6-(5-heptyl-1,2-oxazol-3-yl)hexanoic acid (1), named ADAM. ADAM shows a clear receptor preference and significant dose-dependent activation of PPARα (EC50 = 47 µM) through its ligand-binding domain (LBD). Moreover, ADAM induces expression of important PPARα target genes, such as CPT1A, in the Huh7 cell line and primary mouse hepatocytes. In addition, ADAM exhibits a moderate ability to regulate PPARγ target genes and drive adipogenesis. Molecular modelling studies indicated that ADAM docks its carboxyl group into opposite ends of the PPARα and -γ LBD. ADAM interacts with the receptor-activating polar network of amino acids (Tyr501, His447 and Ser317) in PPARα, but not in PPARγ LBD. This may explain the lack of PPARγ agonism, and argues for a PPARα-dependent adipogenic function. Such compounds are of interest towards developing new lipid-lowering remedies.  相似文献   

17.
Peroxisome proliferator-activated receptors (PPARs) are important drug targets for treatment of dyslipidemia, type 2 diabetes, cardiovascular disease, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and great efforts have been made to develop novel PPAR ligands. However, most existing PPAR ligands contain a carboxylic acid (CA) or thiazolidinedione (TZD) structure (acidic head group) that is essential for activity. We recently discovered non-CA/TZD class PPARα/δ partial agonists, which contain an acetamide moiety and adjacent methyl group, linked to a 1,2,4-oxadiazole ring (“fragment a”). We hypothesized that the acetamide structure might interact with the CA/TZD-binding pocket. To test this idea, we firstly replaced fragment a in one of our compounds with the α-alkoxy-CA structure often found in PPAR agonists. Secondly, we replaced the α-alkoxy-CA head group of several reported PPAR agonists with our acetamide-based fragment a. The agonistic activities of the synthesized hybrid compounds toward PPARs (PPARα, PPARγ and PPARδ) were evaluated by means of cell-based reporter gene assays. All the hybrid molecules showed PPAR-agonistic activities, but replacement of the α-alkoxy-CA head group altered the maximum efficacy and the subtype-specificity. The acetamide-based hybrid molecules showed partial agonism toward PPARα and PPARδ, whereas the α-alkoxy-CA-based molecules were generally selective for PPARα and PPARγ, with relatively high activation efficacies. Thus, the fragment replacement strategy appears promising for the development of novel acetamide-based PPARα/δ dual agonists.  相似文献   

18.
Objective: To determine whether the major ovarian factor estrogen modulates peroxisome proliferator‐activated receptor (PPAR) α actions on obesity and to investigate the mechanism by which estrogen regulates PPARα actions. Research Methods and Procedures: Female ovariectomized mice were randomly divided into four groups (n = 8/group). After they were treated with combinations of high fat, fenofibrate (FF), or 17β‐estradiol (E) for 13 weeks, variables and determinants of obesity and lipid metabolism were measured using in vivo and in vitro approaches. Results: When female ovariectomized mice were given a high‐fat diet with either FF or E, body weight gain and white adipose tissue mass were significantly reduced and serum lipid profiles were improved compared with control mice fed a high‐fat diet alone. When mice were concomitantly treated with FF and E, however, E reversed the effects of FF on body weight gain, serum lipid profiles, and hepatic PPARα target gene expression. Consistent with the in vivo data, E not only decreased basal levels of PPARα reporter gene activation but also significantly decreased Wy14,643‐induced luciferase reporter activity. In addition, inhibition of PPARα functions by E did not seem to occur by interfering with the DNA binding of PPARα. Discussion: Our results demonstrate that in vivo and in vitro treatment of estrogen inhibited the actions of FF‐activated PPARα on obesity and lipid metabolism through changes in the expression of PPARα target genes, providing evidence that FF does not regulate obesity in female mice with functioning ovaries.  相似文献   

19.
目的:观察2型糖尿痛大鼠肾组织PPARα/δ/γ蛋白的表达及小檗碱对它们的影响.方法:小剂量注射链脲菌素(35 mg·kg-1,ip)加高糖高脂饲料饲养16周建立2型糖尿病大鼠模型,随后16周每天分别给予低中高剂量小檗碱75、150、300mg·kg-1、非诺贝特100mg·kg1 和罗格列酮4mg·kg-1,处死大鼠后用免疫组化技术检测肾脏组织中PPARα/δ/γ的表达.结果:糖尿病大鼠肾脏中PPARα和PPARδ蛋白表较正常对照大鼠明显降低(P<0.01),PPARγ表达则较正常对照大鼠明显升高(P<0.01).中高剂量小檗碱和非诺贝特都能促进糖尿病大鼠肾组织中PPARα和PPARδ的表达(P<0.01),中高剂量小檗碱和罗格列酮能明显降低PPARγ表达(P<0.01).结论:糖尿病大鼠肾脏组织中PPARα/δ/γ的表达失常,小檗碱能恢复其表达至接近正常大鼠水平.  相似文献   

20.
A series of α-ethylphenylpropanoic acid derivatives was prepared as candidate peroxisome proliferator-activated receptor (PPAR) α-selective agonists, based on our PPARα/δ dual agonist 3 as a lead compound. Structure-activity relationship studies clearly indicated that the steric bulkiness and position of the distal hydrophobic tail part are critical for PPARα agonistic activity and PPARα selectivity, as had been predicted from a molecular-modeling study. A representative compound blocked the progression of nonalcoholic steatohepatitis (NASH) in an animal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号