首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Termites are world champions at digesting lignocellulosic compounds, thanks to cooperation between their own enzymes and exogenous enzymes from microorganisms. Prokaryotic cells are responsible for a large part of this lignocellulolytic activity. Bacterial enzyme activities have been demonstrated in the higher and the lower termite gut. From five clones of Gram-positive bacteria isolated and identified in a previous work, we constructed a genomic DNA library and performed functional screening for alpha-amylase, beta-glucosidase, and xylanase activities. One candidate, Xyl8B8, showed xylanase activity. Sequence analysis of the genomic insert revealed five complete ORFs on the cloned DNA (5746bp). Among the encoded proteins were a putative endo-1,4-beta-xylanase (XylB8) belonging to glycoside hydrolase family 11 (GH11). On the basis of sequence analyses, genomic DNA organization, and phylogenetic analysis, the insert was shown to come from an actinobacterium. The mature xylanase (mXylB8) was expressed in Escherichia coli and purified by affinity chromatography and detected by zymogram analysis after renaturing. It showed maximal xylanase activity in sodium acetate buffer, pH 5.0 at 55 °C. Its activity was increased by reducing agents and decreased by Cu(2+), some detergents, and chelating agents. Its substrate specificity appeared limited to xylan.  相似文献   

2.
To metabolize both dietary fiber constituent carbohydrates and host glycans lining the intestinal epithelium, gut bacteria produce a wide range of carbohydrate-active enzymes, of which glycoside hydrolases are the main components. In this study, we describe the ability of phosphorylases to participate in the breakdown of human N-glycans, from an analysis of the substrate specificity of UhgbMP, a mannoside phosphorylase of the GH130 protein family discovered by functional metagenomics. UhgbMP is found to phosphorolyze β-d-Manp-1,4-β-d-GlcpNAc-1,4-d-GlcpNAc and is also a highly efficient enzyme to catalyze the synthesis of this precious N-glycan core oligosaccharide by reverse phosphorolysis. Analysis of sequence conservation within family GH130, mapped on a three-dimensional model of UhgbMP and supported by site-directed mutagenesis results, revealed two GH130 subfamilies and allowed the identification of key residues responsible for catalysis and substrate specificity. The analysis of the genomic context of 65 known GH130 sequences belonging to human gut bacteria indicates that the enzymes of the GH130_1 subfamily would be involved in mannan catabolism, whereas the enzymes belonging to the GH130_2 subfamily would rather work in synergy with glycoside hydrolases of the GH92 and GH18 families in the breakdown of N-glycans. The use of GH130 inhibitors as therapeutic agents or functional foods could thus be considered as an innovative strategy to inhibit N-glycan degradation, with the ultimate goal of protecting, or restoring, the epithelial barrier.  相似文献   

3.
4.
Fungus-growing termites, their symbiotic fungi, and microbiota inhibiting their intestinal tract comprise a highly efficient cellulose-hydrolyzing system; however, little is known about the role of gut microbiota in this system. Twelve fosmid clones with β-glucosidase activity were previously obtained by functionally screening a metagenomic library of a fungus-growing termite, Macrotermes annandalei. Ten contigs containing putative β-glucosidase genes (bgl110) were assembled by sequencing data of these fosmid clones. All these contigs were binned to Bacteroidetes, and all these β-glucosidase genes were phylogenetically closed to those from Bacteroides or Dysgonomonas. Six out of 10 β-glucosidase genes had predicted signal peptides, indicating a transmembrane capability of these enzymes to mediate cellulose hydrolysis within the gut of the termites. To confirm the activities of these β-glucosidase genes, three genes (bgl5, bgl7, and bgl9) were successfully expressed and purified. The optimal temperature and pH of these enzymes largely resembled the environment of the host’s gut. The gut microbiota composition of the fungus-growing termite was also determined by 454 pyrosequencing, showing that Bacteroidetes was the most dominant phylum. The diversity and the enzyme properties of β-glucosidases revealed in this study suggested that Bacteroidetes as the major member in fungus-growing termites contributed to cello-oligomer degradation in cellulose-hydrolyzing process and represented a rich source for β-glucosidase genes.  相似文献   

5.
The Gram-positive bacterium Cellulomonas fimi produces a large array of carbohydrate-active enzymes. Analysis of the collection of carbohydrate-active enzymes from the recent genome sequence of C. fimi ATCC 484 shows a large number of uncharacterized genes for glycoside hydrolase (GH) enzymes potentially involved in biomass utilization. To investigate the enzymatic activity of potential β-glucosidases in C. fimi, genes encoding several GH3 enzymes and one GH1 enzyme were cloned and recombinant proteins were expressed in Escherichia coli. Biochemical analysis of these proteins revealed that the enzymes exhibited different substrate specificities for para-nitrophenol-linked substrates (pNP), disaccharides, and oligosaccharides. Celf_2726 encoded a bifunctional enzyme with β-d-xylopyranosidase and α-l-arabinofuranosidase activities, based on pNP-linked substrates (CfXyl3A). Celf_0140 encoded a β-d-glucosidase with activity on β-1,3- and β-1,6-linked glucosyl disaccharides as well as pNP-β-Glc (CfBgl3A). Celf_0468 encoded a β-d-glucosidase with hydrolysis of pNP-β-Glc and hydrolysis/transglycosylation activities only on β-1,6-linked glucosyl disaccharide (CfBgl3B). Celf_3372 encoded a GH3 family member with broad aryl-β-d-glycosidase substrate specificity. Celf_2783 encoded the GH1 family member (CfBgl1), which was found to hydrolyze pNP-β-Glc/Fuc/Gal, as well as cellotetraose and cellopentaose. CfBgl1 also had good activity on β-1,2- and β-1,3-linked disaccharides but had only very weak activity on β-1,4/6-linked glucose.  相似文献   

6.
《Journal of molecular biology》2019,431(6):1217-1233
Some glycoside hydrolases have broad specificity for hydrolysis of glycosidic bonds, potentially increasing their functional utility and flexibility in physiological and industrial applications. To deepen the understanding of the structural and evolutionary driving forces underlying specificity patterns in glycoside hydrolase family 5, we quantitatively screened the activity of the catalytic core domains from subfamily 4 (GH5_4) and closely related enzymes on four substrates: lichenan, xylan, mannan, and xyloglucan. Phylogenetic analysis revealed that GH5_4 consists of three major clades, and one of these clades, referred to here as clade 3, displayed average specific activities of 4.2 and 1.2 U/mg on lichenan and xylan, approximately 1 order of magnitude larger than the average for active enzymes in clades 1 and 2. Enzymes in clade 3 also more consistently met assay detection thresholds for reaction with all four substrates. We also identified a subfamily-wide positive correlation between lichenase and xylanase activities, as well as a weaker relationship between lichenase and xyloglucanase. To connect these results to structural features, we used the structure of CelE from Hungateiclostridium thermocellum (PDB 4IM4) as an example clade 3 enzyme with activities on all four substrates. Comparison of the sequence and structure of this enzyme with others throughout GH5_4 and neighboring subfamilies reveals at least two residues (H149 and W203) that are linked to strong activity across the substrates. Placing GH5_4 in context with other related subfamilies, we highlight several possibilities for the ongoing evolutionary specialization of GH5_4 enzymes.  相似文献   

7.
Xylan is an abundant plant cell wall polysaccharide and is a dominant component of dietary fiber. Bacteria in the distal human gastrointestinal tract produce xylanase enzymes to initiate the degradation of this complex heteropolymer. These xylanases typically derive from glycoside hydrolase (GH) families 10 and 11; however, analysis of the genome sequence of the xylan-degrading human gut bacterium Bacteroides intestinalis DSM 17393 revealed the presence of two putative GH8 xylanases. In the current study, we demonstrate that the two genes encode enzymes that differ in activity. The xyn8A gene encodes an endoxylanase (Xyn8A), and rex8A encodes a reducing-end xylose-releasing exo-oligoxylanase (Rex8A). Xyn8A hydrolyzed both xylopentaose (X5) and xylohexaose (X6) to a mixture of xylobiose (X2) and xylotriose (X3), while Rex8A hydrolyzed X3 through X6 to a mixture of xylose (X1) and X2. Moreover, rex8A is located downstream of a GH3 gene (xyl3A) that was demonstrated to exhibit β-xylosidase activity and would be able to further hydrolyze X2 to X1. Mutational analyses of putative active site residues of both Xyn8A and Rex8A confirm their importance in catalysis by these enzymes. Recent genome sequences of gut bacteria reveal an increase in GH8 Rex enzymes, especially among the Bacteroidetes, indicating that these genes contribute to xylan utilization in the human gut.  相似文献   

8.
Fifteen unique cDNA clones encoding trypsin- or chymotrypsin-like proteins were cloned and characterized from a gut cDNA library derived from Hessian fly [Mayetiola destructor (Say)] larvae. Based on sequence similarities, the cDNAs were sorted into five gene groups, which were named MDP1 to MDP5. Two of the gene groups, MDP1 and MDP2, encoded chymotrypsin-like proteins; the other three encoded putative trypsins. All deduced proteins have conserved His(87), Asp(136), and Ser(241) residues for the catalytic triad and three pairs of cysteine residues for disulfide bridge configurations. The substrate specificity determination residue at position 235 was also conserved in the putative trypsins and chymotrypsins. In addition, all the deduced protein precursors had a typical secretion signal peptide and activation peptide. Northern blot analysis revealed that all these gene groups were exclusively expressed in the larval stage. The expression profiles for each gene group differed significantly in different ages of the larva, as well as in different tissues. Protease activity analysis of gut extract, using specific inhibitors, demonstrated that serine proteases were the major digestive enzymes in the gut of M. destructor larvae. Serine protease inhibitors inhibited as much as 90% proteolytic activities of gut extract, whereas inhibitors specific to other proteases, including cysteine proteases, aspartic proteases, and metallo-proteases, inhibited only 10-24% of gut protease activity.  相似文献   

9.
The TIGR4 and SP3-BS71 strains of Streptococcus pneumoniae each produce family 98 glycoside hydrolases, called Sp4GH98 and Sp3GH98, respectively, which have different modular architectures and substrate specificities. Sp4GH98 degrades the LewisY antigen and possesses three C-terminal family 47 carbohydrate-binding modules (CBMs) that bind to this substrate. Sp3GH98 degrades the blood group A/B antigens and has two N-terminal family 51 CBMs that are of unknown function. Here, we examine the complex carbohydrate-binding specificity of the family 51 CBMs from Sp3GH98 (referred to as CBM51-1 and CBM51-2), the structural basis of this interaction, and the overall solution conformations of both Sp3GH98 and Sp4GH98, which are shown to be fully secreted proteins. Through glycan microarray binding analysis and isothermal titration calorimetry, CBM51-1 is found to bind specifically to the blood group A/B antigens. However, due to a series of relatively small structural rearrangements that were revealed in structures determined by X-ray crystallography, CBM51-2 appears to be incapable of binding carbohydrates. Analysis of small-angle X-ray scattering data in combination with the available high-resolution X-ray crystal structures of the Sp3GH98 and Sp4GH98 catalytic modules and their CBMs yielded models of the biological solution structures of the full-length enzymes. These studies reveal the complex architectures of the two enzymes and suggest that carbohydrate recognition by the CBMs and the activity of the catalytic modules are not directly coupled.  相似文献   

10.

Background

The filamentous fungus Aspergillus fumigatus (AF) can cause devastating infections in immunocompromised individuals. Early diagnosis improves patient outcomes but remains challenging because of the limitations of current methods. To augment the clinician''s toolkit for rapid diagnosis of AF infections, we are investigating AF secreted proteases as novel diagnostic targets. The AF genome encodes up to 100 secreted proteases, but fewer than 15 of these enzymes have been characterized thus far. Given the large number of proteases in the genome, studies focused on individual enzymes may overlook potential diagnostic biomarkers.

Methodology and Principal Findings

As an alternative, we employed a combinatorial library of internally quenched fluorogenic probes (IQFPs) to profile the global proteolytic secretome of an AF clinical isolate in vitro. Comparative protease activity profiling revealed 212 substrate sequences that were cleaved by AF secreted proteases but not by normal human serum. A central finding was that isoleucine, leucine, phenylalanine, and tyrosine predominated at each of the three variable positions of the library (44.1%, 59.1%, and 57.0%, respectively) among substrate sequences cleaved by AF secreted proteases. In contrast, fewer than 10% of the residues at each position of cleaved sequences were cationic or anionic. Consensus substrate motifs were cleaved by thermostable serine proteases that retained activity up to 50°C. Precise proteolytic cleavage sites were reliably determined by a simple, rapid mass spectrometry-based method, revealing predominantly non-prime side specificity. A comparison of the secreted protease activities of three AF clinical isolates revealed consistent protease substrate specificity fingerprints. However, secreted proteases of A. flavus, A. nidulans, and A. terreus strains exhibited striking differences in their proteolytic signatures.

Conclusions

This report provides proof-of-principle for the use of protease substrate specificity profiling to define the proteolytic secretome of Aspergillus fumigatus. Expansion of this technique to protease secretion during infection could lead to development of novel approaches to fungal diagnosis.  相似文献   

11.
12.
In this study, 341, 246, and 386 positive clones with endo-β-1,4-glucanase, β-glucosidase, and endo-β-1,4-xylanase activities, respectively, were identified by screening from a metagenomic fosmid library constructed from a biogas digester. Subsequently, pools of 4, 10, and 16 positive clones were subjected to 454 pyrosequencing in different subruns. In total, 21 unique glycosyl hydrolase (GH) genes were predicted by bioinformatic analysis, which showed similarities to their nearest neighbors from 39 % to 72 %. In addition to bioinformatics prediction, nine GH genes were expressed and purified to identify their activity with four kinds of substrates. The activities of the most expressed proteins were consistent with their annotation based on bioinformatics prediction; however, three GH genes belonging to the GH5 family showed different activities from their annotation. An efficient acidic cellulase En1 had an optimal condition at 55 °C, pH 5.5, with a specific activity toward carboxymethylcellulose at 118 U/mg and K m at 12.8 g/L. This study demonstrated that there are diverse GHs in the biogas digester system with potential industrial application in lignocellulose hydrolysis, and their activities should be investigated with different substrates before their application. Additionally, pool sequencing of positive fosmid clones might be a cost-effective approach to obtain functional genes from metagenomic libraries.  相似文献   

13.
CpMan5B is a glycoside hydrolase (GH) family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196) in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity.  相似文献   

14.
Sulfatases hydrolyze sulfated metabolites to their corresponding alcohols and are present in all domains of life. These enzymes have found major application in metabolic investigation of drugs, doping control analysis and recently in metabolomics. Interest in sulfatases has increased due to a link between metabolic processes involving sulfated metabolites and pathophysiological conditions in humans. Herein, we present the first comprehensive substrate specificity and kinetic analysis of the most commonly used arylsulfatase extracted from the snail Helix pomatia. In the past, this enzyme has been used in the form of a crude mixture of enzymes, however, recently we have purified this sulfatase for a new application in metabolomics-driven discovery of sulfated metabolites. To evaluate the substrate specificity of this promiscuous sulfatase, we have synthesized a series of new sulfated metabolites of diverse structure and employed a mass spectrometric assay for kinetic substrate hydrolysis evaluation. Our analysis of the purified enzyme revealed that the sulfatase has a strong preference for metabolites with a bi- or tricyclic aromatic scaffold and to a lesser extent for monocyclic aromatic phenols. This metabolite library and mass spectrometric method can be applied for the characterization of other sulfatases from humans and gut microbiota to investigate their involvement in disease development.  相似文献   

15.
16.
The gut of the termite Reticulitermes santonensis contains an interesting diversity of prokaryotic and eukaryotic microorganisms not found elsewhere. These microorganisms produce many enzyme-digesting lignocellulosic compounds, probably in cooperation with endogenous enzymes. Regarding cellulose and hemicellulose digestion in the termite gut, much remains to be learned about the relative contributions of termite enzymes and enzymes produced by different microorganisms. Here we grew bacterial colonies from termite gut suspensions, identifying 11 of them after PCR amplification of their 16S rRNA genes. After constructing in Escherichia coli a genomic DNA library corresponding to all of the colonies obtained, we performed functional screening for α-amylase, xylanase, β-glucosidase, and endoglucanase activities. This screen revealed a clone producing β-glucosidase activity. Sequence analysis showed that the cloned genomic DNA fragment contained three complete ORFs (bglG, bglF, and bglB) organized in a putative bgl operon. The new β-glucosidase (BglB), identified with its regulators BglG and BglF, belongs to glycoside hydrolase family 1. The new β-glucosidase was expressed in E. coli and purified by affinity chromatography. The purified enzyme shows maximal activity at pH 6.0 and 40?°C. It also displays β-xylosidase activity.  相似文献   

17.
Cysteine proteinases are the major class of enzymes responsible for digestive proteolysis in western corn rootworm (Diabrotica virgifera), a serious pest of maize. A larval gut extract hydrolysed typical cathepsin substrates, such as Z-phe-arg-AMC and Z-arg-arg-AMC, and hydrolysis was inhibited by Z-phe-tyr-DMK, specific for cathepsin L. A cDNA library representing larval gut tissue mRNA contained cysteine proteinase-encoding clones at high frequency. Sequence analysis of 11 cysteine proteinase cDNAs showed that 9 encoded cathepsin L-like enzymes, and 2 encoded cathepsin B-like enzymes. Three enzymes (two cathepsin L-like, DvRS5 and DvRS30, and one cathepsin B-like, DvRS40) were expressed as recombinant proteins in culture supernatants of the yeast Pichia pastoris. The cathepsin L-like enzymes were active proteinases, whereas the cathepsin B-like enzyme was inactive until treated with bovine trypsin. The amino acid residue in the S2 binding pocket, the major determinant of substrate specificity in cathepsin cysteine proteinases, predicted that the two cathepsin L-like enzymes, DvRS5 and DvRS30, should differ in substrate specificity, with the latter resembling cathepsin B in hydrolysing substrates with a positively charged residue at P2. This prediction was confirmed; DvRS5 only hydrolysed Z-phe-arg-AMC and not Z-arg-arg-AMC, whereas DvRS30 hydrolysed both substrates. The enzymes showed similar proteolytic activity towards peptide substrates.  相似文献   

18.
Galactooligosaccharides (GOS) are prebiotic compounds synthesized from lactose using bacterial enzymes and are known to stimulate growth of beneficial bifidobacteria in the human colon. Bacteroides thetaiotaomicron is a prominent human colon commensal bacterial species that hydrolyzes GOS using an extracellular Glycosyl Hydrolase (GH) family GH53 endo-galactanase enzyme (BTGH53), releasing galactose-based products for growth. Here we dissect the molecular basis for GOS activity of this B. thetaiotaomicron GH53 endo-galactanase. Elucidation of its X-ray crystal structure revealed that BTGH53 has a relatively open active site cleft which was not observed with the bacterial enzyme from Bacillus licheniformis (BLGAL). BTGH53 acted on GOS with degree of polymerization ≤3 and therefore more closely resembles activity of fungal GH53 enzymes (e.g. Aspergillus aculeatus AAGAL and Meripileus giganteus MGGAL). Probiotic lactobacilli that lack galactan utilization systems constitute a group of bacteria with relevance for a healthy (infant) gut. The strains tested were unable to use GOS?≥?DP3. However, they completely consumed GOS in the presence of BTGH53, resulting in clear stimulation of their extent of growth. The extracellular BTGH53 enzyme thus may play an important role in carbohydrate metabolism in complex microbial environments such as the human colon. It also may find application for the development of synergistic synbiotics.  相似文献   

19.
Glycoside phosphorylases (GPs) with specificity for β-(1 → 3)-gluco-oligosaccharides are potential candidate biocatalysts for oligosaccharide synthesis. GPs with this linkage specificity are found in two families thus far—glycoside hydrolase family 94 (GH94) and the recently discovered glycoside hydrolase family 149 (GH149). Previously, we reported a crystallographic study of a GH94 laminaribiose phosphorylase with specificity for disaccharides, providing insight into the enzyme's ability to recognize its' sugar substrate/product. In contrast to GH94, characterized GH149 enzymes were shown to have more flexible chain length specificity, with preference for substrate/product with higher degree of polymerization. In order to advance understanding of the specificity of GH149 enzymes, we herein solved X-ray crystallographic structures of GH149 enzyme Pro_7066 in the absence of substrate and in complex with laminarihexaose (G6). The overall domain organization of Pro_7066 is very similar to that of GH94 family enzymes. However, two additional domains flanking its catalytic domain were found only in the GH149 enzyme. Unexpectedly, the G6 complex structure revealed an oligosaccharide surface binding site remote from the catalytic site, which, we suggest, may be associated with substrate targeting. As such, this study reports the first structure of a GH149 phosphorylase enzyme acting on β-(1 → 3)-gluco-oligosaccharides and identifies structural elements that may be involved in defining the specificity of the GH149 enzymes.  相似文献   

20.
A metagenomic fosmid library was constructed from genomic DNA isolated from the microbial community residing in hindguts of a wood-feeding higher termite (Microcerotermes sp.) collected in Thailand. The library was screened for clones expressing lignocellulolytic activities. Fourteen independent active clones (2 cellulases and 12 xylanases) were obtained by functional screening at pH 10.0. Analysis of shotgun-cloning and pyrosequencing data revealed six ORFs, which shared less than 59% identity and 73% similarity of their amino acid sequences with known cellulases and xylanases. Conserved domain analysis of these ORFs revealed a cellulase belonging to the glycoside hydrolase family 5, whereas the other five xylanases showed significant identity to diverse families including families 8, 10, and 11. Interestingly, one fosmid clone was isolated carrying three contiguous xylanase genes that may comprise a xylanosome operon. The enzymes with the highest activities at alkaline pH from the initial activity screening were characterized biochemically. These enzymes showed a broad range of enzyme activities from pH 5.0 to 10.0, with pH optimal of 8.0 retaining more than 70% of their respective activities at pH 9.0. The optimal temperatures of these enzymes ranged from 50 degrees C to 55 degrees C. This study provides evidence for the diversity and function of lignocellulose-degrading enzymes in the termite gut microbial community, which could be of potential use for industrial processes such as pulp biobleaching and denim biostoning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号