首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major nucleoside triphosphatase (NTPase) of rat liver nuclear scaffold (NS) or envelope, which is thought to participate in nucleocytoplasmic transport, has been identified via photoaffinity labeling as a 46-kDa polypeptide. This 46-kDa protein was purified by SDS-polyacrylamide gel electrophoresis and cleaved with trypsin. The resulting peptides were purified by HPLC and five were microsequenced. All five peptides appear to be derived from the N-terminal region of lamins A/C. Subsequent experiments with photolabeled NS showed that the 46-kDa polypeptide was selectively immunoprecipitated by antiserum specific to lamins A/C and by affinity-purified anti-lamin antibodies. Photolabeling of nuclei prepared in the presence of protease inhibitors showed predominant labeling of the 46-kDa polypeptide, suggesting that it is an integral nuclear constituent and not an artifact produced during NS preparation. Use of protease inhibitors throughout purification of NS increased the specificity of photolabeling of the 46-kDa band by significantly reducing photolabeling of smaller molecular weight components, which arise by proteolysis. Anti-lamin antibodies also produced a significant inhibition of NTPase activity in NS. These results suggest that the N-terminal portion of lamins A/C represents the 46-kDa NTPase, which, according to previous reports, may participate in RNA transport.  相似文献   

2.
cGMP-stimulated phosphodiesterase (PDE) has been directly photolabeled with [32P]cGMP using UV light. Sequence analysis of peptide fragments obtained from partial proteolysis or cyanogen bromide cleavage indicate that two different domains are labeled. One site, on a Mr = 36,000 chymotryptic fragment located near the COOH terminus, has characteristics consistent with it being close to or part of the catalytic site of the enzyme. This peptide contains a region of sequence that is highly conserved in all mammalian cyclic nucleotide PDEs and has been postulated to contain the catalytic domain of the enzyme. The other site, on a Mr = 28,000 cyanogen bromide cleavage fragment located near the middle of the molecule, probably makes up part of the allosteric site of the molecule. Labeling of the enzyme is concentration dependent and Scatchard analysis of labeling yields a biphasic plot with apparent half labeling concentrations of about 1 and 30 microM consistent with two types of sites being labeled. Limited proteolysis of the PDE by chymotrypsin yields five prominent fragments that separate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at Mr = 60,000, 57,000, 36,000, 21,000, and 17,000. Both the Mr = 60,000 and 57,000 apparently have blocked NH2 termini suggesting that the Mr = 57,000 fragment is a subfragment of the Mr = 60,000 fragment. Primary sequence analysis indicates that both the Mr = 21,000 and 17,000 fragments are subfragments of the Mr = 36,000 fragment. Autoradiographs of photolabeled then partially proteolyzed enzyme show labeled bands at Mr = 60,000, 57,000, and 36,000. Addition of 5 microM cAMP prior to photolabeling eliminates photolabeling of the Mr = 36,000 fragment but not the Mr = 60,000 or 57,000 fragments. The labeled site not blocked by cAMP is also contained in a Mr = 28,000 cyanogen bromide fragment of the enzyme that does not overlap with the Mr = 36,000 proteolytic fragment. Limited chymotryptic proteolysis also increases basal activity and eliminates cGMP stimulation of cAMP hydrolysis. The chymotryptic fragments can be separated by either ion exchange high performance liquid chromatography (HPLC) or solid-phase monoclonal antibody treatment. A solid-phase monoclonal antibody against the cGMP-stimulated PDE removes the Mr = 60,000 and 57,000 labeled fragments and any intact, unproteolyzed protein but does not remove the Mr = 36,000 fragment or the majority of activity. Ion exchange HPLC separates the fragments into three peaks (I, II, and III). Peaks I and II contain activity of approximately 40 and 100 units/mg, respectively. Peak II is the undigested or slightly nicked native enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Purified human C9 was treated separately with three proteolytic enzymes: trypsin, plasmin, and alpha-thrombin, and the digestion products were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Trypsin initially cleaved the Mr = 71,000 C9 to produce a Mr = 47,000 fragment plus numerous smaller fragments and prolonged digestion reduced the molecule to small polypeptides. Plasmin produced a Mr = 37,000 fragment which was stable to further digestion, plus fragments smaller than Mr = 10,000. Human alpha-thrombin cleaved C9 (7.8% carbohydrate) at a single internal site to produce a Mr = 37,000 fragment (11.3% carbohydrate) and a Mr = 34,000 fragment (3.9% carbohydrate). Statistical analysis of the amino acid compositions of the fragments and alkaline polyacrylamide gel electrophoresis showed that C9 is highly amphiphilic; the Mr = 34,000 fragment contains a majority of the acidic amino acids and migrates rapidly on alkaline gels; the Mr = 37,000 fragment is hydrophobic with a slow electrophoretic mobility. The two fragments remain noncovalently associated, but were separated by sodium dodecyl sulfate-hydroxylapatite chromatography. The NH2-terminal sequence analysis of native C9, of alpha-thrombin-cleaved C9, and for the isolated fragments showed that the acidic Mr = 34,000 fragment is the NH2-terminal C9a domain and the more hydrophobic Mr = 37,000 fragment is the carboxyl-terminal C9b domain. Hemolytic activity of C9 was unaffected by alpha-thrombin cleavage.  相似文献   

4.
The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.  相似文献   

5.
A monoclonal IgM has been characterised which recognises the nuclear lamins in all mammalian cells tested. In immunoblotting experiments using both one- and two-dimensional gels it recognises lamins A, B and C. The common antigenic determinant lies on a proteolytic fragment of 46,000 daltons which can be generated from each lamin polypeptide by treatment with chymotrypsin. In immunofluorescence experiments on whole cells and thin frozen sections, the antibody labelled only the nuclear envelope and not the nuclear interior. During mitosis, labelling was found dispersed throughout the cell cytoplasm. By immunoelectron microscopy using the antibody and protein A-gold, only the nucleoplasmic side of the nuclear envelope (the nuclear lamina) was labelled, but there was no labelling of the nuclear pores.  相似文献   

6.
Y Raymond  G Gagnon 《Biochemistry》1988,27(7):2590-2597
Four monoclonal antibodies raised against rat liver nuclear lamins and an anti-intermediate filament antibody [Pruss, R. M., Mirsky, R., & Raff, M. C. (1981) Cell (Cambridge, Mass.) 27, 419-428] have been used to identify epitopes shared by lamin B with lamins A and C, and with intermediate filament proteins. The antibodies defined two major antigenic regions on the three lamins which were both homologous with mouse epidermal keratins as well as hamster vimentin and desmin. Three distinguishable epitopes shared by lamin B with lamins A and C were identified by competition studies between pairs of antibodies and by reaction against N-chlorosuccinimide and cyanogen bromide cleavage fragments. These results support the hypothesis that lamin B, despite important biochemical differences with lamins A and C, shares with them some of the structural characteristics typical of intermediate filament proteins.  相似文献   

7.
The nuclear lamins, proteins that reside on the inner face of the nuclear envelope, are thought to provide attachment sites for anchoring the chromatin to the nuclear envelope, thus facilitating the overall organization of the nucleus. The composition of the nuclear lamin proteins changes during differentiation and development in a variety of mammalian and nonmammalian tissues. Bovine and porcine oocytes and early embryos were prepared for immunocytochemical detection of nuclear lamins using three different antibodies (recognizing lamin B, lamins A/B/C, or lamins A/C). In both species, germinal vesicle nuclei and early cleavage stage nuclei react positively with the antibodies. However, on nuclei of bovine embryos, the A/C epitope was not detectable at the 16-cell stage, compact morula, spherical blastocyst, or the chorionic cell nuclei of a Day 35 conceptus, but was detectable on both amniotic and embryonic ectodermal cell nuclei of a Day 35 conceptus. All three antibodies reacted with nuclei from two bovine tissue culture cell lines (bovine embryonic cells and Madin-Darby bovine kidney cells) and one porcine kidney cell line. Nuclei in porcine embryos followed a similar pattern, except the loss of the A/C epitope occurred at the 8-cell stage and the epitope was absent from compact morula and spherical blastocyst stage nuclei. All interphase nuclei in both species reacted with both anti-lamin A/B/C and anti-lamin B antibodies, whereas metaphase chromosomes did not react with any of the lamin antibodies tested. The change in recognizing the lamin epitope occurred one cell cycle after the expected transition from maternal control to zygotic control of development. Nuclear transplantation showed that 16-cell stage porcine nuclei, which are lamin A/C negative, acquired the A/C epitope after transfer to an enucleated metaphase II oocyte. These results suggest that the A/C epitope is developmentally regulated.  相似文献   

8.
Somatic nuclei typically contain two or three major proteins, the lamins A, B, and C or their antigenically related equivalents, interspersed between the chromatin and its attachment site, the inner nuclear membrane. The late oocyte nuclear envelopes of the previously investigated Xenopus and Spisula germinal vesicles, however, have no chromatin attached and only one lamin-like protein. Since mouse and sea urchin germinal vesicles have chromatin attached, we tested them for the possible presence of more than one lamin. In both species we found two different lamins incorporated in their nuclear envelope structure. One lamin is recognized by anti-lamin B and the other by anti-lamin AC antibodies. Spisula germinal vesicles were found to contain not only the nuclear envelope-bound lamin (clamin), but also a 65-kDa protein cross-reactive with anti-lamin B antibodies. This protein is present unattached to any structure and is apparently soluble. Our findings provide a possible explanation of the early presence of lamin B in pronuclei of mouse and sea urchin contrary to the late appearance of a lamin B equivalent in amphibian embryos. In Spisula, as in Xenopus, the presence of a lamin B equivalent could not be documented in the nuclear envelopes of early embryos, indicating that a separate lamin B equivalent is not essential for chromatin binding to the envelope in these species during early embryogenesis. The results also indicate that the nuclear complement of structural proteins might vary substantially in the same cell type of different species.  相似文献   

9.
Previous studies have shown that nuclear lamin B binds specifically to the C-terminal domains of type III intermediate filament (IF) proteins under in vitro conditions. To further explore such site-specific interactions, we have used a two-step anti-idiotypic antibody approach. First, a monoclonal antibody disrupting the cytoplasmic IF network organization of living cells (mAb7A3) (Matteoni, R., and Kreis, T. E. (1987) J. Cell Biol. 105, 1253-1265) was characterized. Epitope mapping demonstrated that this antibody recognized a site located in the C-terminal domains of vimentin and peripherin (type III IF proteins). mAb7A3 was able to inhibit more than 80% of the in vitro binding of nuclear lamin B to PI, a synthetic peptide modeled after the C-terminal domain of peripherin that comprises a lamin B-binding site (Djabali, K., Portier, M. M., Gros, F., Blobel, G., and Georgatos, S. D. (1991) Cell 64, 109-121). In a second step, animals were immunized with mAb7A3 and the resulting anti-idiotypic sera were screened. Two of these antisera reacted specifically with nuclear lamin B but not with type A lamins or cytoplasmic IF proteins. The anti-lamin B activity of one of the antisera was isolated by affinity chromatography using a lamin B-agarose matrix. The reaction of these affinity-purified antibodies with lamin B was inhibited by mAb7A3. Furthermore, the anti-lamin B antibodies reacted with Fab fragments of mAb7A3 and abolished binding of lamin B to PI. From these data we conclude that anti-idiotypic antibodies against the paratope of mAb7A3 recognize specific epitopes of the lamin B molecule that have shapes complementary to the one of the C-terminal domain of type III IF proteins. We speculate that these (regional) conformations, which we term the "lamin B-fold," may also occur in non-lamin proteins that mediate the anchorage of IFs to various membranous organelles.  相似文献   

10.
Recently omega-conotoxin GVIA was shown to specifically block neuronal and other calcium channels. In this work, an azidonitrobenzoyl derivative of mono-[125I]iodo-omega-conotoxin GVIA was used to identify the components of its receptor site in synaptic plasma membrane by photoaffinity labeling. Components of Mr approximately equal to 310,000, approximately equal to 230,000, and 34,000 were specifically photolabeled. The characteristics of photolabeling of these three components were consistent with those of the specific binding of omega-conotoxin GVIA to synaptic plasma membrane with respect to the effects of metal ions, conventional calcium antagonists, and an agonist (1,4-dihydropyridines, verapamil, and diltiazem, etc.), omega-conotoxins GVIIA and GVIIB. Furthermore, the distribution of these three components in subcellular fractions from rat brain as estimated by photolabeling was in good agreement with that of the specific binding of omega-conotoxin GVIA to its receptor. These findings indicate that the components of Mr approximately equal to 310,000, approximately equal to 240,000, and 34,000 are the receptor for omega-conotoxin GVIA and suggest that these components are constituents of the voltage-sensitive calcium channel in brain. No specific photolabeling was observed in the plasma membrane of human erythrocytes, probably indicating the absence of the receptor for omega-conotoxin GVIA in the membrane.  相似文献   

11.
Although activated caspase 6 is capable of cleaving both A- and B-type lamins during apoptosis, the higher-order structure of the nuclear lamina may cause a differential breakdown of these two types of lamins. In order to obtain a better understanding of the dynamics and the consequences of the rapid, coordinated breakdown of the lamina complex, we applied the green fluorescent protein (GFP) technology in living cells, in which the fate of individual caspase cleavage fragments of A- and B-type lamins was examined. CHO-K1 cells were stably transfected with cDNA constructs encoding N-terminally GFP-labelled hybrids of lamin A, lamin Adelta10, lamin C or lamin B1. The course of the apoptotic process, induced by the kinase inhibitor staurosporine or by the proteasome inhibitor MG132, was monitored by digital imaging microscopy or confocal microscopy. Time-lapse recordings showed that parallel to DNA condensation N-terminally GFP-tagged A-type lamins became diffusely dispersed throughout the nucleoplasm and rapidly translocated to the cytoplasm. In contrast, the majority of GFP-lamin B1 signal remained localised at the nuclear periphery, even after extensive DNA condensation. Comparison of lamin B1-GFP signal with A-type lamin antibody staining in the same apoptotic cells confirmed the temporal differences between A- and B-type lamina dispersal. Immunoblotting revealed only a partial cleavage of A-type lamins and an almost complete cleavage of lamin B1 during apoptosis. In contrast to lamin B1 in normal cells, this cleaved lamin B1, which is apparently still associated with the nuclear membrane, can be completely extracted by methanol or ethanol. Fluorescence loss of intensity after photobleaching experiments showed that in apoptotic cells A-type lamin-GFP molecules diffuse almost freely in both nucleoplasm and cytoplasm, while the lamin B1-GFP fragments remain more stably associated with the nuclear membrane, which is confirmed by co-localisation immunofluorescence studies with a nucleoporin p62 antibody. Our results therefore clearly show a differential behaviour of A- and B-type lamins during apoptosis, suggesting not only distinct differences in the organisation of the lamina filaments, but also that caspase cleavage of only a small fraction of A-type lamins is needed for its complete disintegration.  相似文献   

12.
We describe a cell-free system in which a postribosomal supernatant from metaphase HeLa cells induces prophase-like changes in permeabilized HeLa cell populations as evidenced by the nuclear lamin disassembly and chromatin condensation. We have attempted to characterize the cell-free system with permeabilized HeLa cells. First, by extracting lamins with agents known to disrupt the noncovalent interactions in the supramolecular lamin aggregate in interphase using polyclonal and a newly established monoclonal anti-lamin Ab 2E3, uniform extraction of lamins was achieved with urea and deoxycholate whereas the cation Mg2+ and 2-mercaptoethanol had little effect on the disassembly of interphase lamins. Second, cytoplasmic extract from mitotic HeLa cells, synchronized by a nitrous oxide metaphase arrest, was tested. It had a differential effect on interphase lamin depolymerization. Nuclei in G1 phase of the cell cycle were more resistant against the mitotic extracts than cells in S and G2 phase. The results are discussed in terms of a possible inactivation of mitotic extracts by factors present in nuclei in early interphase.  相似文献   

13.
The lamins are the major components of the nuclear matrix and are known as lamins A, B, and C with Mr 72,000, 68,000, and 62,000 when analysed by SDS PAGE. These three polypeptides are very similar, as determined by polypeptide mapping and immunological reactivity. Lamins A and C are so homologous that a precursor-product relationship has been proposed. Using an antiserum against nuclear matrix proteins that specifically immunoprecipitates the three lamins, we examined their synthesis in the rabbit reticulocytes lysate. Four bands of Mr 62,000, 68,000, 70,000, and 74,000 were specifically immunoprecipitated when polysomes or polyadenylated RNA were translated in vitro. By two-dimensional gel electrophoresis, the 68,000- and the 62,000-mol-wt proteins were identified as lamins B and C, respectively, and the 74,000-mol-wt polypeptide had properties of a precursor of lamin A. The mRNAs of lamin C and of the putative precursor of lamin A were completely separated by gel electrophoresis under denaturing conditions, and their respective sizes were determined. These results suggest that lamin A is not a precursor of lamin C.  相似文献   

14.
Lamin proteolysis facilitates nuclear events during apoptosis   总被引:16,自引:4,他引:12       下载免费PDF全文
《The Journal of cell biology》1996,135(6):1441-1455
  相似文献   

15.
The presence of lamin proteins in mouse spermatogenic cells has been examined by using an anti-lamin AC and an anti-lamin B antisera which recognize somatic lamins A and C, and somatic lamin B, respectively. Anti-lamin B binds to the nuclear periphery of all cell types examined, including Sertoli cells, primitive type A spermatogonia, preleptotene, leptotene, zygotene and pachytene spermatocytes, and round spermatids. In sperm nuclei, the antigenic determinants are localized to a narrow domain of the nucleus. However, after removing the perinuclear theca, anti-lamin B localizes to the entire nuclear periphery in a punctate pattern, suggesting that it is binding to determinants previously covered by the theca constituents. On immunoblots anti-lamin B reacts with a ~ 68 kD polypeptide in all germ cells and, to a lesser extent, with four additional polypeptides present only in meiotic and post-meiotic nuclear matrices. Anti-lamin AC also reacts with the perinuclear region of the somatic cells in the testes, in particular, those of the interstitium and also the Sertoli cells of the seminiferous epithelium. In contrast to anti-lamin B, anti-lamin AC does not bind to the germ cells at any stage of spermatogenesis. In addition, nuclear matrix proteins from isolated spermatogenic cells do not bind anti-lamin AC on immunoblots, suggesting the lack of reactivity is not due to the masking of any antigenic sites. These data demonstrate that germ cells contain lamin B throughout spermatogenesis, even during meiosis and spermiogenesis when the nuclear periphery lacks a distinct fibrous lamina. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Chiara DC  Dangott LJ  Eckenhoff RG  Cohen JB 《Biochemistry》2003,42(46):13457-13467
To identify inhalational anesthetic binding domains in a ligand-gated ion channel, we photolabeled nicotinic acetylcholine receptor (nAChR)-rich membranes from Torpedo electric organ with [(14)C]halothane and determined by Edman degradation some of the photolabeled amino acids in nAChR subunit fragments isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-performance liquid chromatography. Irradiation at 254 nm for 60 s in the presence of 1 mM [(14)C]halothane resulted in incorporation of approximately 0.5 mol of (14)C/mol of subunit, with photolabeling distributed within the nAChR extracellular and transmembrane domains, primarily at tyrosines. GammaTyr-111 in ACh binding site segment E was labeled, while alphaTyr-93 in segment A was not. Within the transmembrane domain, alphaTyr-213 within alphaM1 and deltaTyr-228 within deltaM1 were photolabeled, while no labeled amino acids were identified within the deltaM2 ion channel domain. Although the efficiency of photolabeling at the subunit level was unaffected by agonist, competitive antagonist, or isoflurane, state-dependent photolabeling was seen in a delta subunit fragment beginning at deltaPhe-206. Labeling of deltaTyr-212 in the extracellular domain was inhibited >90% by d-tubocurarine, whereas addition of either carbamylcholine or isoflurane had no effect. Within M1, the level of photolabeling of deltaTyr-228 with [(14)C]halothane was increased by carbamylcholine (90%) or d-tubocurarine (50%), but it was inhibited by isoflurane (40%). Within the structure of the nAChR transmembrane domain, deltaTyr-228 projects into an extracellular, water accessible pocket formed by amino acids from the deltaM1-deltaM3 alpha-helices. Halothane photolabeling of deltaTyr-228 provides initial evidence that halothane and isoflurane bind within this pocket with occupancy or access increased in the nAChR desensitized state compared to the closed channel state. Halothane binding at this site may contribute to the functional inhibition of nAChRs.  相似文献   

17.
Characterization of photoaffinity labeling of benzodiazepine binding sites   总被引:12,自引:0,他引:12  
The specific photoaffinity labeling of membrane-bound and detergent-solubilized benzodiazepine binding sites has been investigated using UV irradiated [3H] flunitrazepam as a photochemical probe. The time course and the regional and pharmacological specificity of the photolabeling reaction has been determined for "brain-specific" benzodiazepine binding sites; "peripheral-type" binding sites treated in an identical manner were not specifically labeled. Comparison of the number of sites labeled and blocked by [3H]flunitrazepam photolabeling of detergent-solubilized preparations indicated that about one site was blocked and unavailable for reversible binding for each site photolabeled. In contrast, when membrane-bound sites were photolabeled, about four sites were inactivated for each site photolabeled. Examination of photolabeled binding sites from various brain regions including cortex, striatum, and hippocampus using sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave only a single labeled band of apparent Mr = 48,000.  相似文献   

18.
Functional domains of chicken gizzard myosin light chain kinase   总被引:2,自引:0,他引:2  
The proteolytic susceptibility of chicken gizzard myosin light chain kinase, a calmodulin-dependent enzyme, has been utilized to define the relative location of the catalytic and regulatory domains of the enzyme. Myosin light chain kinase isolated from this source exhibits a Mr of 130,000 and is extremely sensitive to trypsin at 24 degrees C; however, the molecule is divided into susceptible and resistant domains such that proteolysis proceeds rapidly and at multiple sites in the sensitive regions even at 4 degrees C while the rest of the molecule remains relatively resistant to digestion. One of these sensitive areas is the calmodulin-binding domain. On the other hand, Staphylococcus aureus V8 protease digestion generates a calmodulin-binding fragment (Mr = 70,000) that retains Ca2+/calmodulin-dependent enzymatic activity and both of the phosphorylation sites recognized by cAMP-dependent protein kinase. In contrast, treatment with chymotrypsin produces a 95,000 Mr calmodulin-binding fragment that contains only the calmodulin-modulated phosphorylation site. Sequential proteolytic digestion studies demonstrated that the chymotryptic cleavage site responsible for the generation of this 95,000 Mr peptide is within 3,000 Mr of the V8 protease site which produces the 70,000 Mr fragment. Moreover, the non-calmodulin-modulated phosphorylation site must exist in this 3,000 Mr region. A calmodulin-Sepharose affinity adsorption protocol was developed for the digestion and used to isolate both the 70,000 and 95,000 Mr fragments for further study. Taken together, our results are compatible with a model for chicken gizzard myosin light chain kinase in which there is no overlap between the active site, the calmodulin-binding region, and the two sites phosphorylated by cAMP-dependent protein kinase with regard to their relative position in the primary sequence of the molecule.  相似文献   

19.
We examined regions of human lamins A and C involved in binding to surfaces of mitotic chromosomes. An Escherichia coli expression system was used to produce full-length lamin A and lamin C, and truncated lamins retaining the central alpha-helical rod domain (residues 34-388) but lacking various amounts of the amino-terminal 'head' and carboxy-terminal 'tail' domains. We found that lamin A, lamin C and lamin fragments lacking the head domain and tail sequences distal to residue 431 efficiently assembled into paracrystals and strongly associated with mitotic chromosomes. Furthermore, the lamin rod domain also associated with chromosomes, although efficient chromosome coating required the pH 5-6 conditions needed to assemble the rod into higher order structures. Biochemical assays showed that chromosomes substantially reduced the critical concentration for assembly of lamin polypeptides into pelletable structures. Association of the lamin rod with chromosomes was abolished by pretrypsinization of chromosomes, and was not seen for vimentin (which possesses a similar rod domain). These data demonstrate that the alpha-helical rod of lamins A and C contains a specific chromosome binding site. Hence, the central rod domain of intermediate filament proteins can be involved in interactions with other cellular structures as well as in filament assembly.  相似文献   

20.
Two photoactive radiolabeled analogs of colchicine, N-(p-azido[3,5-[3H]benzoyl)aminohexanoyldeacetylcolchicine ([3H]NABC]) and N-(p-azido-[3-125I]salicyl)aminohexanoyldeacetylcolchicine ([125I]NASC) were synthesized and used to identify colchicine-specific acceptor(s) in membrane vesicles from multidrug resistant (MDR) variant DC-3F/VCRd-5L Chinese hamster lung cells. Both [3H]NABC and [125I]NASC specifically photolabeled a prominent 150-180 kDa polypeptide in membrane vesicles from DC-3F/VCRd-5L cells. The photolabeled polypeptide was immunoprecipitated by monoclonal antibody C219 specific for the MDR-related P-glycoprotein (P-gp) indicating the identity of this protein with P-gp. Colchicine at 1000 microM reduced [3H]NABC photolabeling of P-gp by 72%. Furthermore, 100 microM of colchicine, vincristine, vinblastine, doxorubicin and actinomycin D inhibited [125I]NASC photolabeling by 45, 88.8, 91.1, 61.5, and 51% respectively. However, methotrexate did not affect the [125I]NASC photolabeling of P-gp, indicating the multidrug specificity of the P-gp colchicine acceptor for drugs to which these cells are resistant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号