首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Chandra V  Jasti J  Kaur P  Srinivasan A  Betzel Ch  Singh TP 《Biochemistry》2002,41(36):10914-10919
This is the first structural observation of a plant product showing high affinity for phospholipase A(2) and regulating the synthesis of arachidonic acid, an intermediate in the production of prostaglandins. The crystal structure of a complex formed between Vipera russelli phospholipase A(2) and a plant alkaloid aristolochic acid has been determined and refined to 1.7 A resolution. The structure contains two crystallographically independent molecules of phospholipase A(2) in the form of an asymmetric dimer with one molecule of aristolochic acid bound to one of them specifically. The most significant differences introduced by asymmetric molecular association in the structures of two molecules pertain to the conformations of their calcium binding loops, beta-wings, and the C-terminal regions. These differences are associated with a unique conformational behavior of Trp(31). Trp(31) is located at the entrance of the characteristic hydrophobic channel which works as a passage to the active site residues in the enzyme. In the case of molecule A, Trp(31) is found at the interface of two molecules and it forms a number of hydrophobic interactions with the residues of molecule B. Consequently, it is pulled outwardly, leaving the mouth of the hydrophobic channel wide open. On the other hand, Trp(31) in molecule B is exposed to the surface and moves inwardly due to the polar environment on the molecular surface, thus narrowing the opening of the hydrophobic channel. As a result, the aristolochic acid is bound to molecule A only while the binding site of molecule B is empty. It is noteworthy that the most critical interactions in the binding of aristolochic acid are provided by its OH group which forms two hydrogen bonds, one each with His(48) and Asp(49).  相似文献   

2.
Phospholipase A(2) is an important enzyme involved in the production of prostaglandins and their related compounds causing inflammatory disorders. Among the several peptides tested, the peptide Phe-Leu-Ser-Tyr-Lys (FLSYK) showed the highest inhibition. The dissociation constant (K(d)) for this peptide was calculated to be 3.57 +/- 0.05 x 10(-9) m. In order to further improve the degree of inhibition of phospholipase A(2), a complex between Russells viper snake venom phospholipase A(2) and a peptide inhibitor FLSYK was crystallized, and its structure was determined by crystallographic methods and refined to an R-factor of 0.205 at 1.8 A resolution. The structure contains two crystallographically independent molecules of phospholipase A(2) (molecules A and B) and a peptide molecule specifically bound to molecule A only. The two molecules formed an asymmetric dimer. The dimerization caused a modification in the binding site of molecule A. The overall conformations of molecules A and B were found to be generally similar except three regions i.e. the Trp-31-containing loop (residues 25-34), the beta-wing consisting of two antiparallel beta-strands (residues 74-85) and the C-terminal region (residues 119-133). Out of the above three, the most striking difference pertains to the conformation of Trp-31 in the two molecules. The orientation of Trp-31 in molecule A was suitable for the binding of FLSYK, while it disallowed the binding of peptide to molecule B. The structure of the complex clearly shows that the peptide is so placed in the binding site of molecule A that the side chain of its lysine residue interacted extensively with the enzyme and formed several hydrogen bonds in addition to a strong electrostatic interaction with critical Asp-49. The C-terminal carboxylic group of the peptide interacted with the catalytic residue His-48.  相似文献   

3.
The inhibition of phospholipase A(2)s (PLA(2)s) is of pharmacological and therapeutic interest because these enzymes are involved in several inflammatory diseases. Elaidoylamide is a powerful inhibitor of a neurotoxic PLA(2) from the Vipera ammodytes meridionalis venom. The X-ray structure of the enzyme-inhibitor complex reveals a new mode of Asp49 PLA(2) inhibition by a fatty acid hydrocarbon chain. The structure contains two identical homodimers in the asymmetric unit. In each dimer one subunit is rotated by 180 degrees with respect to the other and the two molecules are oriented head-to-tail. One molecule of elaidoylamide is bound simultaneously to the substrate binding sites of two associated neurotoxic phospholipase A(2) molecules. The inhibitor binds symmetrically to the hydrophobic channels of the two monomers. The structure can be used to design anti-inflammatory drugs.  相似文献   

4.
Lathrop B  Gadd M  Biltonen RL  Rule GS 《Biochemistry》2001,40(11):3264-3272
Changes in the affinity of calcium for phospholipase A2 from Agkistrodon piscivorus piscivorus during activation of the enzyme on the surface of phosphatidylcholine vesicles have been investigated by site-directed mutagenesis and fluorescence spectroscopy. Changes in fluorescence that occur during lipid binding and subsequent activation have been ascribed to each of the three individual Trp residues in the protein. This was accomplished by generating a panel of mutant proteins, each of which lacks one or more Trp residues. Both Trp21, which is found in the interfacial binding region, and Trp119 show changes in fluorescence upon protein binding to small unilamellar zwitterionic vesicles or large unilamellar vesicles containing sufficient anionic lipid. Trp31, which is near the Ca2+ binding loop, exhibits little change in fluorescence upon lipid bilayer binding. A change in the fluorescence of the protein also occurs during activation of the enzyme. These changes arise from residue Trp31 as well as residues Trp21 and Trp119. The calcium dependence of the fluorescence change of Trp31 indicates that the affinity of the enzyme for calcium increases at least 3 orders of magnitude upon activation. These studies suggest either that a change in conformation of the enzyme occurs upon activation or that the increase in calcium affinity reflects formation of a ternary complex of calcium, enzyme, and substrate.  相似文献   

5.
Changes in potential-dependent fluorescence were studied, using fluorescent probe di-S-C3-(5), in synaptosome suspensions exposed to phospholipase A2, alpha-tocopherol and its derivatives. Phospholipase A2 increased potential-dependent fluorescence, i.e. depolarization of synaptosome membranes. The damaging phospholipase A2 effect was prevented and/or abolished by alpha-tocopherol added to synaptosome suspensions before and after phospholipase A2. Alpha-tocopherol derivatives (2,2,5,7,8-pentamethyl-6-hydroxychromane and alpha-tocopheryl-acetate as well as 4-methyl-2,6-di-tert-butylphenol) failed to exert a protective effect on synaptosome membranes modified by phospholipase A2. It is suggested that alpha-tocopherol effect is determined by its interaction with fatty acids, with 6-hydroxy groups of chromanol nucleus and phytol chain being essential for the complex formation.  相似文献   

6.
The calcium-induced formation of a complex between two isoforms of cobra venom phospholipase A2 reveals a novel interplay between the monomer-dimer and activity-inactivity transitions. The monodispersed isoforms lack activity in the absence of calcium ions while both molecules gain activity in the presence of calcium ions. At concentrations higher than 10 mg/ml, in the presence of calcium ions, they dimerize and lose activity again. The present study reports the crystal structure of a calcium-induced dimer between two isoforms of cobra phospholipase A2. In the complex, one molecule contains a calcium ion in the calcium binding loop while the second molecule does not possess an intramolecular calcium ion. However, there are two calcium ions per dimer in the structure. The second calcium ion is present at an intermolecular site and that is presumably responsible for the dimerization. The calcium binding loops of the two molecules adopt strikingly different conformations. The so-called calcium binding loop in the calcium-containing molecule adopts a normal conformation as generally observed in other calcium containing phospholipase A(2) enzymes while the conformation of the corresponding loop in the calcium free monomer deviates considerably with the formation of a unique intraloop Gly33 (N)-Cys27 (O) = 2.74 A backbone hydrogen bond. The interactions of Arg31 (B) with Asp49 (A) and absence of calcium ion are responsible for the loss of catalytic activity in molecule A while interactions of Arg2 (B) with Tyr52 (B) inactivate molecule B.  相似文献   

7.
Residue 31 of porcine pancreatic phospholipase A2 (PLA2) is located at the entrance to the active site. To study the role of residue 31 in PLA2, six mutant enzymes were produced by site-directed mutagenesis, replacing Leu by either Trp, Arg, Ala, Thr, Ser or Gly. Direct binding studies indicated a three to six times greater affinity of the Trp31 PLA2 for both monomeric and micellar substrate analogs, relative to the wild-type enzyme. The other five mutants possess an unchanged affinity for monomers of the product analog n-decylphosphocholine and for micelles of the diacyl substrate analog rac-1,2-dioctanoylamino-dideoxy-glycero-3-phosphocholine. The affinities for micelles of the monoacyl product analog n-hexadecylphosphocholine were decreased 9-20 times for these five mutants. Kinetic studies with monomeric substrates showed that the mutants have Vmax values which range between 15 and 70% relative to the wild-type enzyme. The Vmax values for micelles of the zwitterionic substrate 1,2-dioctanoyl-sn-glycero-3-phosphocholine were lowered 3-50 times. The Km values for the monomeric substrate and the Km values for the micellar substrate were hardly affected in the case of five of the six mutants, but were considerably decreased when Trp was present at position 31. The results of these investigations point to a versatile role for the residue at position 31: involvement in the binding and orientating of monomeric substrate (analogs), involvement in the binding of the enzyme to micellar substrate analogs and possibly involvement in shielding the active site from excess water.  相似文献   

8.
Singh N  Jabeen T  Somvanshi RK  Sharma S  Dey S  Singh TP 《Biochemistry》2004,43(46):14577-14583
Phospholipase A(2) (PLA(2); EC 3.1.1.4) is a key enzyme involved in the production of proinflammatory mediators known as eicosanoids. The binding of the substrate to PLA(2) occurs through a well-formed hydrophobic channel. To determine the viability of PLA(2) as a target molecule for the structure-based drug design against inflammation, arthritis, and rheumatism, the crystal structure of the complex of PLA(2) with a known anti-inflammatory compound oxyphenbutazone (OPB), which has been determined at 1.6 A resolution. The structure has been refined to an R factor of 0.209. The structure contains 1 molecule each of PLA(2) and OPB with 2 sulfate ions and 111 water molecules. The binding studies using surface plasmon resonance show that OPB binds to PLA(2) with a dissociation constant of 6.4 x 10(-8) M. The structure determination has revealed the presence of an OPB molecule at the binding site of PLA(2). It fits well in the binding region, thus displaying a high level of complementarity. The structure also indicates that OPB works as a competitive inhibitor. A large number of hydrophobic interactions between the enzyme and the OPB molecule have been observed. The hydrophobic interactions involving residues Tyr(52) and Lys(69) with OPB are particularly noteworthy. Other residues of the hydrophobic channel such as Leu(3), Phe(5), Met(8), Ile(9), and Ala(18) are also interacting extensively with the inhibitor. The crystal structure clearly reveals that the binding of OPB to PLA(2) is specific in nature and possibly suggests that the basis of its anti-inflammatory effects may be due to its binding to PLA(2) as well.  相似文献   

9.
The interaction between porcine pancreatic phospholipase A2 and a homogeneous population of micelles of the subtrate analogue n-hexadecylphosphorylcholine containing 155 lipid monomers was studied by light scattering, equilibrium gel filtration, and isothermal calorimetry. From the detergent/protein molar ratio and the equivalent "molecular weight" of the resulting complex it is concluded that insertion of the enzyme into the detergent micelle results in a protein--detergent complex containing two phospholipase A2 molecules and 80 lipid monomers at 25 degrees C. The affinity constants and complex composition have been determined at different temperatures, allowing calculation of the thermodynamic parameters of the binding process. It is concluded that the interaction of phospholipase A2 with micellar lipids is predominantly hydrophobic.  相似文献   

10.
Guo S  Zhang X  Seaton BA  Roberts MF 《Biochemistry》2008,47(14):4201-4210
The Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC), an interfacial enzyme associated with prokaryotic infectivity, is activated by binding to zwitterionic surfaces, particularly phosphatidycholine (PC). Two tryptophan residues (Trp47 in the two-turn helix B and Trp242 in a disordered loop) at the rim of the barrel structure are critical for this interaction. The helix B region (Ile43 to Gly48) in wild-type PI-PLC orients the side chains of Ile43 and Trp47 so that they pack together and form a hydrophobic protrusion from the protein surface that likely facilitates initial membrane binding. In previous studies we reported that in the crystal structure of the dimeric W47A/W242A mutant, which is unable to bind to PC, the helix B region has been reorganized by the mutation into an extended loop. Here we report the construction and characterization (catalytic activity, fluorescence, and NMR studies) of a series of PI-PLC mutants targeting helix B residues and surrounding regions to explore what is needed to stabilize the "membrane-active" conformation of the helix B region. Results strongly suggest that, while hydrophobic groups and presumably an intact helix B are critical for the initial binding of PI-PLC to membranes, disruption of helix B to allow enzyme dimerization is what leads to the activated PI-PLC conformation.  相似文献   

11.
Three phospholipases A2 purified from cobra venoms and two presynaptically acting neurotoxins that exhibit phospholipase A2 activity were subjected to tryptophan modification with 2-hydroxy-5-nitrobenzyl bromide. Associated with the modification of an increasing number of Trp residues were marked decreases in enzymatic activity and lethality, whereas antigenicity remained unchanged. The degree of exposure of tryptophanyl groups as determined by acrylamide quenching was consistent with the relative reactivity toward 2-hydroxy-5-nitrobenzyl bromide, except for Hemachatushaemachatus phospholipase A2, which showed unusually high reactivity due to its characteristic dimeric conformation. Difference spectra of Trp-modified derivatives differed from those of their native enzymes by the presence of a new positive perturbation between 350 and 500 nm, with a maximum at 415 nm. Scatchard plots revealed only one type of binding site for Ca2+, and the binding abilities of the modified enzymes were not impaired. At pH 8.0, all native enzymes enhanced the emission intensity of 8-anilinonaphthalene sulfonate (ANS) dramatically, and the emission intensity of the ANS-enzyme complex increased or decreased in parallel with increasing concentration of Ca2+ for the respective enzyme. The Trp-modified derivatives did not enhance the emission intensity of ANS at all either in the presence or absence of Ca2+. By means of tryptophan modification, we were able to infer that the tryptophan residues are in the vicinity of the Ca2+ binding site and are directly involved in the binding with ANS. This, together with the suggestion that the hydrophobic pocket that interacts with ANS might be the site of binding of the phospholipase A2 enzyme with the substrate, suggests that the Trp residues in phospholipase A2 enzymes and presynaptic toxins are involved in substrate binding.  相似文献   

12.
S Y Mao  A H Maki  G H de Haas 《Biochemistry》1986,25(10):2781-2786
The direct binding of porcine pancreatic phospholipase A2 and its zymogen to 1,2-bis(heptanylcarbamoyl)-rac-glycerol 3-sulfate was studied by optical detection of triplet-state magnetic resonance spectroscopy in zero applied magnetic field. The zero-field splittings of the single Trp3 residue undergo significant changes upon binding of phospholipase A2 to lipid. Shifts in zero-field splittings, characterized mainly by a reduction of the E parameter from 1.215 to 1.144 GHz, point to large changes in the Trp3 local environment which accompany the complexing of phospholipase A2 with lipid. This may be attributed to Stark effects caused by the binding of a charged group near Trp3 in the enzyme-lipid complex. The cofactor, Ca2+, which is strongly bound to the enzyme active site, has an influence on the bonding, as reflected by smaller zero-field splitting shifts. A relatively small change in the Trp environment was observed for the interaction of the zymogen with lipid.  相似文献   

13.
This is the first evidence of a naturally bound fatty acid to a group I Phospholipase A(2) (PLA(2)) and also to a PLA(2) with Asp 49. The fatty acid identified as n-tridecanoic acid is observed at the substrate recognition site of PLA(2) hydrophobic channel. The complex was isolated from the venom of Bungarus caeruleus (Common Indian Krait). The primary sequence of the PLA(2) was determined using the cDNA method. Three-dimensional structure has been solved by the molecular replacement method and refined using the CNS package to a final R factor of 19.8% for the data in the resolution range from 20.0 to 2.7 A. The final refined model is comprised of 912 protein atoms, one sodium ion, one molecule of n-tridecanoic acid, and 60 water molecules. The sodium ion is located in the calcium-binding loop with a sevenfold coordination. A characteristic extra electron density was observed in the hydrophobic channel of the enzyme, into which a molecule of n-tridecanoic acid was clearly fitted. The MALDI-TOF measurements of the crystals had earlier indicated an increase in the molecular mass of PLA(2) by 212 Da over the native PLA(2). A major part of the ligand fits well in the binding pocket and interacts directly with His 48 and Asp 49. Although the overall structure of PLA(2) in the present complex is similar to the native structure reported earlier, it differs significantly in the folding of its calcium-binding loop.  相似文献   

14.
The role of the alpha-tocopherol molecule isoprenoid chain in synaptosomal membrane protection from lipid peroxidation activation and phospholipase A2 damage was investigated. A comparative study of alpha-tocopherol analogs differing in the length of the isoprenoid chain revealed that the increase in the chain length results in a decrease of the efficiency of inhibition in the course of synaptosomal lipid peroxidation activation. This effect is due to the diminution of mobility of chromanols in the lipid bilayer which is associated with an increase in the length of the isoprenoid fragment. The decreased efficiency of lipid peroxidation inhibition resulting from the lengthening of the chromanol nucleus phytol chain is concomitant with the appearance of new stabilizing properties, e. g., the ability to protect synaptosomal membranes from the damaging action of phospholipase A2. This effect is lost with a decrease in the length of the chromanol isoprenoid chain.  相似文献   

15.
Hepatic fibrosis is a common complication of the infection by the parasite, Clonorchis sinensis. There is a high incidence of this disease in the Asian countries with an increased risk of conversion to cancer. A secretory phospholipase A(2) (PLA(2)) enzyme from the parasite is implicated in the pathology. This is an attractive drug target in the light of extensive structural characterization of this class of enzyme. In this study, the structure of the enzyme was modeled based on its sequence homology to the group III bee venom PLA(2). On analysis, the overall structure essentially is comprised of three helices, two sets of β-wings and an elongated C-terminal extension. The structure is stabilized by four disulfide bonds. The structure is comprised of a calcium binding loop, active site and a substrate binding hydrophobic channel. The active site of the enzyme shows the classical features of PLA(2) with the participation of the three residues: histidine-aspartic acid-tyrosine in hydrogen bond formation. This is an interesting variation from the house keeping group III PLA(2) enzyme of human which has a histidine-aspartic acid and phenylalanine arrangement at the active site. This difference is therefore an important structural parameter that can be exploited to design specific inhibitor molecules against the pathogen PLA(2). Likewise, there are certain unique structural features in the hydrophobic channel and the putative membrane binding surface of the PLA(2) from Clonorchis sinensis that not only help understand the mechanism of action but also provide knowledge for a targeted therapy of liver fibrosis caused by the parasite.  相似文献   

16.
The effect of anions and deuterated water on the kinetics of action of pig pancreatic phospholipase A2 is examined to elaborate the role of ionic interactions in binding of the enzyme to the substrate interface. Anions and deuterated water have no significant effect on the hydrolysis of monomeric substrates. Hydrolysis of vesicles of DMPMe (ester) is completely inhibited in deuterated water. The shape of the reaction progress curve is altered in the presence of anions. The nature and magnitude of the effect of anions depends upon the nature of the substrate as well as of the anion. Substantial effects of anions on the reaction progress curve are observed even at concentrations below 0.1 M and the sequence of effectiveness for DMPMe vesicles is sulfate greater than chloride greater than thiocyanate. Apparently, anions in the aqueous phase bind to the enzyme, and thus compete with the anionic interface for binding to the enzyme. Binding of the enzyme to anionic groups on the interface results in activation and increased accessibility of the catalytic site possibly via hydrogen bonding network involving water molecule. In order to elaborate the role of the N-terminus region in interfacial anchoring, the action of several semisynthetic pancreatic phospholipase A2s is examined on vesicles of anionic and zwitterionic phospholipids. The first-order rate constant for the hydrolysis of DMPMe in the scooting mode by the various semisynthetic enzymes is in a narrow range: 0.7 +/- 0.15 per min for phospholipase A2 derived from pig pancreas and 0.8 +/- 0.4 per min for the enzymes derived from bovine pancreas. In all cases a maximum of about 4300 substrate molecules are hydrolyzed by each phospholipase A2 molecule. If anions are added at the end of the first-order reaction progress curve, a pseudo-zero-order reaction progress curve is observed due to an increased intervesicle exchange of the bound enzyme. These rates are found to be considerably different for different enzymes in which one or more amino acids in the N-terminus region have been substituted. Steady-state and fluorescence life-time data for these enzymes in water, 2H2O and in the presence of lipids is also reported. The kinetic and binding results are interpreted to suggest that the N-terminus region of phospholipase A2 along with some other cationic residues are involved in anchoring of phospholipase A2 to the interface, and the catalytically active enzyme in the interface is monomeric.  相似文献   

17.
The localization of the previously postulated interface recognition site (IRS) in porcine pancreatic phospholipase A2, required for a specific interaction between the enzyme and organized lipid-water interfaces, was investigated by ultraviolet difference spectroscopy, by measurements of the intrinsic fluorescence of the unique Trp residue, and by protection experiments against specific tryptic hydrolysis. Using the enzymically nondegradable substrate analogues: CnH(2n+1)(0-)OOCH2CH2N+(CH3)3-(H,OH), it is shown that the rather hydrophobic N-terminal sequence of the enzyme, viz., Ala-Leu-Trp-Gln-Phe-Arg, is directly involved in the interaction with the lipid-water interface. Besides hydrophobic probably also polar interactions contribute to the binding process. At neutral or acidic pH the presence of a salt bridge between the N-terminal alpha-NH3+ group and a negatively charged side chain stablizes the interface recognition site and allows the enzyme to penetrate micellar surfaces, even in the absence of metal ion. At alkaline pH, interaction of the enzyme with micellar interfaces requires the presence of Ca2+ (Ba2+) ions.  相似文献   

18.
An acidic phospholipase A(2) (PLA(2)) isolated from Bothrops jararacussu snake venom was crystallized with two inhibitors: alpha-tocopherol (vitamin E) and p-bromophenacyl bromide (BPB). The crystals diffracted at 1.45- and 1.85-A resolution, respectively, for the complexes with alpha-tocopherol and p-bromophenacyl bromide. The crystals are not isomorphous with those of the native protein, suggesting the inhibitors binding was successful and changes in the quaternary structure may have occurred.  相似文献   

19.
Phospholipase A(2) coordinates Ca(2+) ion through three carbonyl oxygen atoms of residues 28, 30, and 32, two carboxyl oxygen atoms of residue Asp49, and two (or one) water molecules, forming seven (or six) coordinate geometry of Ca(2+) ligands. Two crystal structures of cadmium-binding acidic phospholipase A(2) from the venom of Agkistrodon halys Pallas (i.e., Agkistrodon blomhoffii brevicaudus) at different pH values (5.9 and 7.4) were determined to 1.9A resolution by the isomorphous difference Fourier method. The well-refined structures revealed that a Cd(2+) ion occupied the position expected for a Ca(2+) ion, and that the substitution of Cd(2+) for Ca(2+) resulted in detectable changes in the metal-binding region: one of the carboxyl oxygen atoms from residue Asp49 was farther from the metal ion while the other one was closer and there were no water molecules coordinating to the metal ion. Thus the Cd(2+)-binding region appears to have four coordinating oxygen ligands. The cadmium binding to the enzyme induced no other significant conformational change in the enzyme molecule elsewhere. The mechanism for divalent cadmium cation to support substrate binding but not catalysis is discussed.  相似文献   

20.
Phospholipase A(2) (PLA(2)) (E. C. 3.1.1.4) is a common enzyme in the two-way cascade mechanism leading to the production of proinflammatory compounds known as eicosanoids. The binding of phospholipase A(2) to the membrane surface and hydrolysis of phospholipids are thought to involve the formation of a hydrophobic channel into which a single substrate molecule diffuses before its cleavage. To regulate the production of proinflammatory compounds, a specific peptide inhibitor Val-Ala-Phe-Arg-Ser (VAFRS) for the group I PLA(2) enzymes has been designed and synthesized. PLA(2) was isolated from Indian cobra (Naja naja sagittifera) venom and purified to homogeneity. The binding studies indicated the K(i) value of 1.02 +/- 0.10 x 10(-8) M. The purified PLA(2) samples and the designed inhibitor VAFRS were cocrystallized. The crystal structure of the complex was determined and refined to 1.9 A resolution. The peptide binds to PLA(2) at the active site and fills the hydrophobic channel completely. However, its placement with respect to the channel is in the opposite direction as compared to those observed in group II PLA(2)'s. Furthermore, the predominant intermolecular interactions involve strong electrostatic interactions between the side chains of peptide Arg and Asp 49 of PLA(2) together with a number of van der Waals interactions with other residues. A good number of observed interactions between the peptide and the protein indicate the significance of a structure-based drug design approach. The novel factor in the present sequence of the peptide is related to the introduction of a positively charged residue at the C-terminal part of the peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号