首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Initiation of DNA replication involves the ordered assembly of the multi-protein pre-replicative complex (pre-RC) during G1 phase. Previously, DNA topoisomerase II (topo II) was shown to associate with the DNA replication origin located in the lamin B2 gene locus in a cell-cycle-modulated manner. Here we report that activation of both the early-firing lamin B2 and the late-firing hOrs8 human replication origins involves DNA topo II-dependent, transient, site-specific dsDNA-break formation. Topo IIβ in complex with the DNA repair protein Ku associates in vivo and in vitro with the pre-RC region, introducing dsDNA breaks in a biphasic manner, during early and mid-G1 phase. Inhibition of topo II activity interferes with the pre-RC assembly resulting in prolonged G1 phase. The data mechanistically link DNA topo IIβ-dependent dsDNA breaks and the components of the DNA repair machinery with the initiation of DNA replication and suggest an important role for DNA topology in origin activation.  相似文献   

2.
3.
Initiation of DNA replication in eukaryotes requires the assembly of prereplication complexes (pre-Rcs) at the origins of replication. The assembly and function of the pre-Rcs appear to be controlled by phosphorylation events. In this study we report the detailed characterization of the cell cycle phosphorylation of one component of the Xenopus pre-Rcs, the Mcm protein complex. We show that individual Mcm subunits are differentially phosphorylated during the cell cycle. During mitosis, the Mcm4 subunit is hyperphosphorylated, while the other subunits are not actively phosphorylated. The mitotic phosphorylation of Mcm4 requires Cdc2-cyclin B and other unknown kinases. Following exit from mitosis, the Mcm4 subunit of the cytosolic interphase complex undergoes dephosphorylation, and the Mcm2, Mcm3, or Mcm6 subunits are then actively phosphorylated by kinase(s) other than cyclin-dependent kinases (Cdks) or Cdc7. The association of the Mcm complex with the pre-Rcs correlates with the formation of a transient interphase complex. This complex contains an intermediately phosphorylated Mcm4 subunit and is produced by partial dephosphorylation of the mitotic hyperphosphorylated Mcm4 protein. Complete dephosphorylation of the Mcm4 subunit inactivates the Mcm complex and prevents its binding to the chromatin. Once the Mcm complex is assembled on the chromatin the Mcm4 and the Mcm2 proteins are the only subunits phosphorylated during the activation of the pre-Rcs. These chromatin-associated phosphorylations require nuclear transport and are independent of Cdk2-cyclin E. These results suggest that the changes in Mcm4 phosphorylation regulate pre-Rc assembly and the function of the pre-Rcs on the chromatin.  相似文献   

4.

Background  

Mcm10 protein is essential for initiation and elongation phases of replication. Human cells proteolyze Mcm10 during mitosis, presumably to ensure a single round of replication. It has been proposed that anaphase promoting complex ubiquitinates Mcm10 in late M and early G1 phases.  相似文献   

5.
We report that during activation of the simian virus 40 (SV40) pre-replication complex, SV40 T antigen (Tag) helicase actively loads replication protein A (RPA) on emerging single-stranded DNA (ssDNA). This novel loading process requires physical interaction of Tag origin DNA-binding domain (OBD) with the RPA high-affinity ssDNA-binding domains (RPA70AB). Heteronuclear NMR chemical shift mapping revealed that Tag-OBD binds to RPA70AB at a site distal from the ssDNA-binding sites and that RPA70AB, Tag-OBD, and an 8-nucleotide ssDNA form a stable ternary complex. Intact RPA and Tag also interact stably in the presence of an 8-mer, but Tag dissociates from the complex when RPA binds to longer oligonucleotides. Together, our results imply that an allosteric change in RPA quaternary structure completes the loading reaction. A mechanistic model is proposed in which the ternary complex is a key intermediate that directly couples origin DNA unwinding to RPA loading on emerging ssDNA.  相似文献   

6.
7.
K. P. Gaffal 《Protoplasma》1988,143(2-3):118-129
Summary The results of this work clarify several structural and temporal aspects of biogenesis of the basal body-root complex inChlamydomonas reinhardtii. The two phases of basal body development (probasal body assembly and conversion of probasal body into mature basal body) occur at identical mitotic stages in successive mitoses during multiple fission, which indicates a tight coupling between basal body development and the mitotic cycle. The two steps of basal body development are separated from one another in time,i.e. immature probasal bodies originate during an interval lasting ca. 5 min between mid-metaphase and early telophase, but mature after a quasi-dormant period only during early prophase of the next mitotic round. The duration of the dormant period depends on the interval between two mitoses: during synchronized vegetative growth there is an interval of ca. 20 h (interphase growth) between two rounds of multiple fissions, but only a maximum interval of 1.5 h between the successive mitoses of one round of multiple fissions.The microtubular root system, which is bisected at the same time as the basal body apparatus in a plane perpendicular to the distal connecting fiber during prophase, and whose roots seem to be reduced in length, starts duplication at early metaphase with the successive origin of two short bud-like partner roots just opposite the remnants. These initial roots elongate during subsequent phases by unilateral and radial growth from the basal bodies and along the cell's periphery, but exactly where they terminate is not known. The two-stranded roots opposite each other appear to be again connected as early as anaphase.The striation pattern of the distal connecting fiber is lost during early prophase thus indicating a partial breakdown of the fiber.Dedicated to Prof. Dr. C.-G. Arnold (Erlangen) on the occasion of his 60th birthday.  相似文献   

8.
We have examined the behavior of pre-replication complex (pre-RC) proteins in relation to key cell cycle transitions in Chinese Hamster Ovary (CHO) cells. ORC1, ORC4 and Cdc6 were stable (T1/2 >2 h) and associated with a chromatin-containing fraction throughout the cell cycle. Green fluorescent protein-tagged ORC1 associated with chromatin throughout mitosis in living cells and co-localized with ORC4 in metaphase spreads. Association of Mcm proteins with chromatin took place during telophase, approximately 30 min after the destruction of geminin and cyclins A and B, and was coincident with the licensing of chromatin to replicate in geminin-supplemented Xenopus egg extracts. Neither Mcm recruitment nor licensing required protein synthesis throughout mitosis. Moreover, licensing could be uncoupled from origin specification in geminin-supplemented extracts; site-specific initiation within the dihydrofolate reductase locus required nuclei from cells that had passed through the origin decision point (ODP). These results demonstrate that mammalian pre-RC assembly takes place during telophase, mediated by post-translational modifications of pre-existing proteins, and is not sufficient to select specific origin sites. A subsequent, as yet undefined, step selects which pre-RCs will function as replication origins.  相似文献   

9.
Mcm, which is composed of six structurally related subunits (Mcm2-7), is essential for eukaryotic DNA replication. A subassembly of Mcm, the Mcm4/6/7 double-trimeric complex, possesses DNA helicase activity, and it has been proposed that Mcm may function as a replicative helicase at replication forks. We show here that conserved ATPase motifs of Mcm7 are essential for ATPase and DNA helicase activities of the Mcm4/6/7 complex. Because uncomplexed Mcm7 displayed neither ATPase nor DNA helicase activity, Mcm7 contributes to the DNA helicase activity of the Mcm complex through interaction with other subunits. In contrast, the Mcm4/6/7 complex containing a zinc finger mutant of Mcm4 with partially impaired DNA binding activity exhibited elevated DNA helicase activity. The Mcm4/6/7 complex containing this Mcm4 mutant tended to dissociate into trimeric complexes, suggesting that the zinc finger of Mcm4 is involved in subunit interactions of trimers. The Mcm4 mutants lacking the N-terminal 35 or 112 amino acids could form hexameric Mcm4/6/7 complexes, but displayed very little DNA helicase activity. In conjunction with the previously reported essential role of Mcm6 in ATP binding (You, Z., Komamura, Y., and Ishimi, Y. (1999) Mol. Cell. Biol. 19, 8003-8015), our data indicate distinct roles of Mcm4, Mcm6, and Mcm7 subunits in activation of the DNA helicase activity of the Mcm4/6/7 complex.  相似文献   

10.
The eukaryotic pre-replication complex is assembled at replication origins in a reaction called licensing. Licensing involves the interactions of a variety of proteins including the origin recognition complex (ORC), Cdc6 and the Mcm2-7 helicase, homologues of which are also found in archaea. The euryarchaeote Archaeoglobus fulgidus encodes two genes with homology to Orc/Cdc6 and a single Mcm homologue. The A.fulgidus Mcm protein and one Orc/Cdc6 homologue have been purified and investigated in vitro. The Mcm protein is an ATP-dependent, hexameric helicase that can unwind between 200 and 400 bp of duplex DNA. Deletion of 112 amino acids from the N-terminus of A.f Mcm produced a protein, which was still capable of forming a hexamer, was competent in DNA binding and was able to unwind at least 1 kb of duplex DNA. The purified Orc/Cdc6 homologue was also able to bind DNA. Both Mcm and Orc/Cdc6 show a preference for specific DNA structures, namely molecules containing a single stranded bubble that mimics early replication intermediates. Nuclease protection showed that the binding sites for Mcm and Orc/Cdc6 overlap. The Orc/Cdc6 protein bound more tightly to these substrates and was able to displace pre-bound Mcm hexamer.  相似文献   

11.
The chromosomal passenger complex plays important roles in key mitotic events, including chromosome bi-orientation, the spindle assembly checkpoint, and cytokinesis. Two groups now report the identification of a novel component of the Incenp/survivin/auroraB complex (Gassmann et al., 2004; Sampath et al., 2004) and show that different subcomplexes may exist during mitosis. Exciting data support the involvement of the passenger complex in yet another key event, the assembly of the mitotic spindle.  相似文献   

12.
The ubiquitin-mediated protein degradation pathway has been emphasized for the regulation of numerous cellular mechanisms and the significance of deubiquitination, mediated by deubiquitinating (DUB) enzymes, has been emerging as an essential regulatory step to control these cellular mechanisms. Previously, we demonstrated a human DUB enzyme, HeLa DUB-1, expressed in human ovarian cancer cells. Here, we report human USP36, which has the extension of the C-terminal region of HeLa DUB-1 and has conserved amino acid domains as previously shown in other DUBs. Human USP36, encoding a DUB enzyme, was isolated from ovarian cancer cells using RT-PCR and characterized. We identified DUB enzyme activity of USP36 by analyzing its capability to cleave the ubiquitin. Interestingly, structural and immunoprecipitation analyses revealed for the first time that USP36 contains the PEST motif and is polyubiquitinated.  相似文献   

13.
During oogenesis, maternal mRNAs are synthesised and stored in a translationally dormant form due to the presence of regulatory elements at the 3' untranslated regions (3'UTR). In Xenopus oocytes, several studies have described the presence of RNA-binding proteins capable to repress maternal-mRNA translation. The testis-brain RNA-binding protein (TB-RBP/Translin) is a single-stranded DNA- and RNA-binding protein which can bind the 3' UTR regions (Y and H elements) of stored mRNAs and can suppress in vitro translation of the mRNAs that contain these sequences. Here we report the cloning of the Xenopus homologue of the TB-RBP/Translin protein (X-translin) as well as its expression, its localisation, and its biochemical association with the protein named Translin associated factor X (Trax) in Xenopus oocytes. The fact that this protein is highly present in the cytoplasm from stage VI oocytes until 48 h embryos and that it has been described as capable to inhibit paternal mRNA translation, indicates that it could play an important role in maternal mRNA translation control during Xenopus oogenesis and embryogenesis. Moreover, we investigated X-translin localisation during cell cycle in XTC cells. In interphase, although a weak and diffuse nuclear staining was observed, X-translin was mostly present in the cytoplasm where it exhibited a prominent granular staining. Interestingly, part of X-translin underwent a remarkable redistribution throughout mitosis and associated with centrosomes, which may suggest a new unknown role for this protein in cell cycle.  相似文献   

14.
We have analyzed the role of single-stranded DNA (ssDNA) in the modulation of the ATPase activity of Mcm467 helicase of the yeast Saccharomyces cerevisiae. The ATPase activity of the Mcm467 complex is modulated in a sequence-specific manner and that the ssDNA sequences derived from the origin of DNA replication of S. cerevisiae autonomously replicating sequence 1 (ARS1) are the most effective stimulators. Synthetic oligonucleotides, such as oligo(dA) and oligo(dT), also stimulated the ATPase activity of the Mcm467 complex, where oligo(dT) was more effective than oligo(dA). However, the preference of a thymidine stretch appeared unimportant, because with yeast ARS1 derived sequences, the A-rich strand was as effective in stimulating the ATPase activity, as was the T-rich strand. Both of these strands were more effective stimulators than either oligo(dA)( )()or oligo(dT). The DNA helicase activity of Mcm467 complex is also significantly stimulated by the ARS1-derived sequences. These results indicate that the ssDNA sequences containing A and B1 motifs of ARS1, activate the Mcm467 complex and stimulate its ATPase and DNA helicase activities. Our results also indicate that the yeast replication protein A stimulated the ATPase activity of the Mcm467 complex.  相似文献   

15.
Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity   总被引:2,自引:0,他引:2  
Neurons polarize to form elaborate multiple dendrites and one long axon. The establishment and maintenance of axon/dendrite polarity are fundamentally important for neurons. Recent studies have demonstrated that the polarity complex PAR-3-PAR-6-atypical protein kinase C (aPKC) is involved in polarity determination in many tissues and cells. The function of the PAR-3-PAR-6-aPKC protein complex depends on its subcellular localization in polarized cells. PAR-3 accumulates at the tip of growing axons in cultured rat hippocampal neurons, but the molecular mechanism of this localization remains unknown. Here we identify a direct interaction between PAR-3 and KIF3A, a plus-end-directed microtubule motor protein, and show that aPKC can associate with KIF3A through its interaction with PAR-3. The expression of dominant-negative PAR-3 and KIF3A fragments that disrupt PAR-3-KIF3A binding inhibited the accumulation of PAR-3 and aPKC at the tip of the neurites and abolished neuronal polarity. These results suggest that PAR-3 is transported to the distal tip of the axon by KIF3A and that the proper localization of PAR-3 is required to establish neuronal polarity.  相似文献   

16.
Phosphorylation of histone H3 is a hallmark event in mitosis and is associated with chromosome condensation. Here, we use a combination of immobilized metal affinity chromatography and tandem mass spectrometry to characterize post-translational modifications associated with phosphorylation on the N-terminal tails of histone H3 variants purified from mitotically arrested HeLa cells. Modifications observed in vivo on lysine residues adjacent to phosphorylated Ser and Thr provide support for the existence of the "methyl/phos", binary-switch hypothesis [Fischle, W., Wang, Y., and Allis, C. D. (2003) Nature 425, 475-479]. ELISA with antibodies selective for H3 at Ser10, Ser28, and Thr3 show reduced activity when adjacent Lys residues are modified. When used together, mass spectrometry and immunoassay methods provide a powerful approach for elucidation of the histone code and identification of histone post-translational modifications that occur during mitosis and other specific cellular events.  相似文献   

17.
BACKGROUND: Many organisms undergo closed mitosis and locate tubulin and mitotic kinases to nuclei only during mitosis. How this is regulated is unknown. Interestingly, the NIMA kinase of Aspergillus nidulans interacts with two nuclear pore complex (NPC) proteins and NIMA is required for mitotic localization of the Cdk1 kinase to nuclei. Therefore, we wished to define the mechanism by which the NPC is regulated during A. nidulans' closed mitosis. RESULTS: The structural makeup of the NPC is dramatically changed during A. nidulans' mitosis. At least five NPC proteins disperse throughout the cell during mitosis while at least three structural components remain at the NPC. These modifications correlate with marked changes in the function of the NPC. Notably, during mitosis, An-RanGAP is not excluded from nuclei, and five other nuclear or cytoplasmic proteins investigated fail to locate as they do during interphase. Mitotic modification of the NPC requires NIMA and Cdk1 kinase activation. NIMA appears to be particularly important. Most strikingly, ectopic induction of NIMA promotes mitotic-like changes in NPC structure and function during S phase. Furthermore, NIMA locates to the NPC during entry into mitosis, and a dominant-negative version of NIMA that causes G2 delay dwells at the NPC. CONCLUSIONS: We conclude that partial NPC disassembly under control of NIMA and Cdk1 in A. nidulans may represent a new mechanism for regulating closed mitoses. We hypothesize that proteins locate by their relative binding affinities within the cell during A. nidulans' closed mitosis, analogous to what occurs during open mitosis.  相似文献   

18.
Cohesin is a multi-subunit, ring-shaped protein complex that holds sister chromatids together from the time of their synthesis in S phase until they are segregated in anaphase. In yeast, the loading of cohesin onto chromosomes requires the Scc2 protein. In vertebrates, cohesins first bind to chromosomes as cells exit mitosis, but the mechanism is unknown. Concurrent with cohesin binding, pre-replication complexes (pre-RCs) are assembled at origins of DNA replication through the sequential loading of the initiation factors ORC, Cdc6, Cdt1 and MCM2-7 (the 'licensing' reaction). In S phase, the protein kinase Cdk2 activates pre-RCs, causing origin unwinding and DNA replication. Here, we use Xenopus egg extracts to show that the recruitment of cohesins to chromosomes requires fully licensed chromatin and is dependent on ORC, Cdc6, Cdt1 and MCM2-7, but is independent of Cdk2. We further show that Xenopus Scc2 is required for cohesin loading and that binding of XScc2 to chromatin is MCM2-7 dependent. Our results define a novel pre-RC-dependent pathway for cohesin recruitment to chromosomes in a vertebrate model system.  相似文献   

19.
[35S]Sulfate incorporation was measured in populations of Chinese hamster ovary cells enriched for mitotics, early G1 cells, and interphase monolayers or suspensions. Incorporation was determined by biochemical analysis of extracts and quantitative autoradiography of thick sections. 90% of [35S]sulfate was incorporated into glycosaminoglycan (GAG). Incorporation was depressed fourfold in mitotics and stimulated by from two- to three-fold in early G1 cells relative to mixed interphase cells. GAG synthesis was maintained into late G2. Thus, the rate of GAG biosynthesis was correlated temporally with the detachment and reattachment of cells to substrate. Inhibitors of protein synthesis brought about the rapid arrest of GAG biosynthesis. However, xylosides, which bypass the requirement for core protein, did not bring oligosaccharide sulfation in mitotics to interphase levels. These observations indicate an inhibition of Golgi processing and are consistent with a generalized defect of membrane vesicle-mediated transport during mitosis.  相似文献   

20.
Previous work has demonstrated that dynamic actin arrays are important for axis establishment and polar growth in the fucoid zygote, Silvetia compressa. Transitions between these arrays are mediated by depolymerization of an existing array and polymerization of a new array. To begin to understand how polymerization of new arrays might be regulated, we investigated the role of the highly conserved, actin-nucleating, Actin-related protein 2/3 (Arp2/3) complex. Arp2, a subunit of the complex, was cloned and peptide antibodies were raised to the C-terminal domain. In immunolocalization studies of polarizing zygotes, actin and Arp2 colocalized around the nucleus and in a patch at the rhizoid pole. In germinated zygotes, a cone of Arp2 and actin extended from the nucleus to the subapex. Within the rhizoid tip, three structural zones were observed in the majority of zygotes: the extreme apex was devoid of label, the subapex was enriched for Arp2, and further back both actin and Arp2 were present. This zonation suggests that actin nucleation occurs at the leading edge of the cone, in the Arp2-enriched region. In two sets of experiments, we showed that tip zonation is important for growth. First, pharmacological treatments that disrupted Arp2/actin zonation arrested tip growth. Second, changes in the direction of tip growth during negative phototropism were preceded by a reorientation of the zonation in accordance with the new growth direction. This work represents the first investigation of Arp2/3 complex localization in tip-growing algal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号