首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The signaling lymphocytic activation molecule (SLAM) family of receptors is critically involved in the immune regulation of lymphocytes but has only been detected in mammals, with one member being present in Xenopus. Here, we describe the identification, cloning, and analysis of the chicken homologues to the mammalian SLAMF1 (CD150), SLAMF2 (CD48), and SLAMF4 (CD244, 2B4). Two additional chicken SLAM genes were identified and designated SLAMF3like and SLAM5like in order to stress that those two receptors have no clear mammalian counterpart but share some features with mammalian SLAMF3 and SLAMF5, respectively. Three of the chicken SLAM genes are located on chromosome 25, whereas two are currently not yet assigned. The mammalian and chicken receptors share a common structure with a V-like domain that lacks conserved cysteine residues and a C2-type Ig domain with four cysteines forming two disulfide bonds. Chicken SLAMF2, like its mammalian counterpart, lacks a transmembrane and cytoplasmic domain and thus represents a glycosyl-phosphatidyl-inositol-anchored protein. The cytoplasmic tails of SLAMF1 and SLAMF4 display two and four conserved immunoreceptor tyrosine-based switch motifs (ITSMs), respectively, whereas both chicken SLAMF3like and SLAMF5like have only a single ITSM. We have also identified the chicken homologues of the SLAM-associated protein family of adaptors (SAP), SAP and EAT-2. Chicken SAP shares about 70 % identity with mammalian SAP, and chicken EAT-2 is homologous to mouse EAT-2, whereas human EAT-2 is much shorter. The characterization of the chicken SLAM family of receptors and the SAP adaptors demonstrates the phylogenetic conservation of this family, in particular, its signaling capacities.  相似文献   

2.
The generation of an allergic immune response requires at least two signals for complete activation of T cells. Costimulatory molecules are integral to the second signal. In this review, we analyze the costimulatory molecule signaling lymphocytic activation molecule (SLAM) and other recently described SLAM family members. We highlight recent findings that position SLAM as critical for allergic inflammation and its role in modulation of cytokine secretion. Furthermore, a possible role of SLAM as a link between the adaptive and innate immune response is also discussed. Understanding the role of costimulatory molecules, including SLAM and SLAM family members, may elucidate mechanisms involved in the allergic immune response, and suggest potential therapeutic opportunities.  相似文献   

3.
Induction of Th1 cytokines, those associated with cell-mediated immunity, is critical for host defense against infection by intracellular pathogens, including mycobacteria. Signaling lymphocytic activation molecule (SLAM, CD150) is a transmembrane protein expressed on lymphocytes that promotes T cell proliferation and IFN-gamma production. The expression and role of SLAM in human infectious disease were investigated using leprosy as a model. We found that SLAM mRNA and protein were more strongly expressed in skin lesions of tuberculoid patients, those with measurable CMI to the pathogen, Mycobacterium leprae, compared with lepromatous patients, who have weak CMI against M. leprae. Peripheral blood T cells from tuberculoid patients showed a striking increase in the level of SLAM expression after stimulation with M. leprae, whereas the expression of SLAM on T cells from lepromatous patients show little change by M. leprae stimulation. Engagement of SLAM by an agonistic mAb up-regulated IFN-gamma production from tuberculoid patients and slightly increased the levels of IFN-gamma in lepromatous patients. In addition, IFN-gamma augmented SLAM expression on M. leprae-stimulated peripheral blood T cells from leprosy patients. Signaling through SLAM after IFN-gamma treatment of Ag-stimulated cells enhanced IFN-gamma production in lepromatous patients to the levels of tuberculoid patients. Our data suggest that the local release of IFN-gamma by M. leprae-activated T cells in tuberculoid leprosy lesions leads to up-regulation of SLAM expression. Ligation of SLAM augments IFN-gamma production in the local microenvironment, creating a positive feedback loop. Failure of T cells from lepromatous leprosy patients to produce IFN-gamma in response to M. leprae contributes to reduced expression of SLAM. Therefore, the activation of SLAM may promote the cell-mediated immune response to intracellular bacterial pathogens.  相似文献   

4.
Reversing the highly immunosuppressive tumor microenvironment (TME) is essential to achieve long-term efficacy with cancer immunotherapy. Despite the impressive clinical response to checkpoint blockade in multiple types of cancer, only a minority of patients benefit from this approach. Here, we report that the oncolytic virus M1 induces immunogenic tumor cell death and subsequently restores the ability of dendritic cells to prime antitumor T cells. Intravenous injection of M1 disrupts immune tolerance in the privileged TME, reprogramming immune-silent (cold) tumors into immune-inflamed (hot) tumors. M1 elicits potent CD8+ T cell-dependent therapeutic effects and establishes long-term antitumor immune memory in poorly immunogenic tumor models. Pretreatment with M1 sensitizes refractory tumors to subsequent checkpoint blockade by boosting T-cell recruitment and upregulating the expression of PD-L1. These findings reveal the antitumor immunological mechanism of the M1 virus and indicated that oncolytic viruses are ideal cotreatments for checkpoint blockade immunotherapy.Subject terms: Cancer microenvironment, Targeted therapies  相似文献   

5.
Altered T cell function in systemic lupus erythematosus (SLE) is determined by various molecular and cellular abnormalities, including increased IL-17 production. Recent evidence suggests a crucial role for signaling lymphocyte activation molecules (SLAMs) in the expression of autoimmunity. In this study, we demonstrate that SLAMF3 and SLAMF6 expression is increased on the surface of SLE T cells compared with normal cells. SLAM coengagement with CD3 under Th17 polarizing conditions results in increased IL-17 production. SLAMF3 and SLAMF6 T cell surface expression and IL-17 levels significantly correlate with disease activity in SLE patients. Both naive and memory CD4(+) T cells produce more IL-17 in response to SLAM costimulation as compared with CD28 costimulation. In naive CD4(+) cells, IL-17 production after CD28 costimulation peaks on day 3, whereas costimulation with anti-SLAMF3 and anti-SLAMF6 Abs results in a prolonged and yet increasing production during 6 d. Unlike costimulation with anti-CD28, SLAM costimulation requires the presence of the adaptor molecule SLAM-associated protein. Thus, engagement of SLAMF3 and SLAMF6 along with Ag-mediated CD3/TCR stimulation represents an important source of IL-17 production, and disruption of this interaction with decoy receptors or blocking Abs should mitigate disease expression in SLE and other autoimmune conditions.  相似文献   

6.
The signalling lymphocytic activation molecule (SLAM) family of receptors is expressed by a wide range of immune cells. Through their cytoplasmic domain, SLAM family receptors associate with SLAM-associated protein (SAP)-related molecules, a group of cytoplasmic adaptors composed almost exclusively of an SRC homology 2 domain. SAP, the prototype of the SAP family, is mutated in a human immunodeficiency named X-linked lymphoproliferative (XLP) disease. Recent observations indicate that SLAM family receptors, in association with SAP family adaptors, have crucial roles during normal immune reactions in innate and adaptive immune cells. The latest progress in this field is reviewed here.  相似文献   

7.
8.
Although hepatocellular carcinoma (HCC) is one of the most common malignancies and constitutes the third leading cause of cancer-related deaths, the underlying molecular mechanisms are not fully understood. In the present study, we demonstrate for the first time that hepatocytes express signalling lymphocytic activation molecule family member 3 (SLAMF3/CD229) but not other SLAMF members. We provide evidence to show that SLAMF3 is involved in the control of hepatocyte proliferation and in hepatocellular carcinogenesis. SLAMF3 expression is significantly lower in primary human HCC samples and HCC cell lines than in human healthy primary hepatocytes. In HCC cell lines, the restoration of high levels of SLAMF3 expression inhibited cell proliferation and migration and enhanced apoptosis. Furthermore, SLAMF3 expression was associated with inhibition of HCC xenograft progression in the nude mouse model. The restoration of SLAMF3 expression levels also decreased the phosphorylation of MAPK ERK1/2, JNK and mTOR. In samples from resected HCC patients, SLAMF3 expression levels were significantly lower in tumorous tissues than in peritumoral tissues. Our results identify SLAMF3 as a specific marker of normal hepatocytes and provide evidence for its potential role in the control of proliferation of HCC cells.  相似文献   

9.
Signaling lymphocytic activation molecule F7 (SLAMF7) is a receptor present on immune cells, including natural killer (NK) cells. It is also expressed on multiple myeloma (MM) cells. This led to development of an anti-SLAMF7 antibody, elotuzumab, showing efficacy against MM. SLAMF7 mediates activating or inhibitory effects in NK cells, depending on whether cells express or do not express the adaptor EAT-2. Since MM cells lack EAT-2, we elucidated the inhibitory effectors of SLAMF7 in EAT-2-negative NK cells and tested whether these effectors were triggered in MM cells. SLAMF7-mediated inhibition in NK cells lacking EAT-2 was mediated by SH2 domain-containing inositol phosphatase 1 (SHIP-1), which was recruited via tyrosine 261 of SLAMF7. Coupling of SLAMF7 to SHIP-1 required Src kinases, which phosphorylated SLAMF7. Although MM cells lack EAT-2, elotuzumab did not induce inhibitory signals in these cells. This was at least partly due to a lack of CD45, a phosphatase required for Src kinase activation. A defect in SLAMF7 function was also observed in CD45-deficient NK cells. Hence, SLAMF7-triggered inhibition is mediated by a mechanism involving Src kinases, CD45, and SHIP-1 that is defective in MM cells. This defect might explain why elotuzumab eliminates MM cells by an indirect mechanism involving the activation of NK cells.  相似文献   

10.
The foetus can be regarded as a half-allograft implanted into the maternal body. In a successful pregnancy, the mother does not reject the foetus because of the immune tolerance mechanism at the maternal-foetal interface. The innate immune cells are a large part of the decidual leukocytes contributing significantly to a successful pregnancy. Although the contributions have been recognized, their role in human pregnancy has not been completely elucidated. Additionally, the accumulated evidence demonstrates that the immune checkpoint molecules expressed on the immune cells are co-inhibitory receptors regulating their activation and biological function. Therefore, it is critical to understand the immune microenvironment and explore the function of the innate immune cells during pregnancy. This review summarizes the classic immune checkpoints such as PD-1, CTLA-4 and some novel molecules recently identified, including TIM-3, CD200, TIGIT and the Siglecs family on the decidual and peripheral innate immune cells during pregnancy. Furthermore, it emphasizes the role of the immune checkpoint molecules in pregnancy-associated complications and reproductive immunotherapy.  相似文献   

11.
In melanoma, immune cell infiltration into the tumor is associated with better patient outcomes and response to immunotherapy. T-cell non-inflamed tumors (cold tumors) are associated with tumor cell-intrinsic Wnt/β-catenin activation, and are typically resistant to anti-PD-1 alone or in combination with anti-CTLA-4 therapy. Reversal of the ‘cold tumor’ phenotype and identifying new effective immunotherapies are challenges. We sought to investigate the role of a newer immunotherapy agent, B7-H3, in this setting. RNA sequencing was used to identify co-targeting strategies upon B7-H3 inhibition in a well-defined preclinical melanoma model driven by β-catenin. We found that immune checkpoint molecule B7-H3 confers a suppressive tumor microenvironment by modulating antiviral signals and innate immunity. B7-H3 inhibition led to an inflamed microenvironment, up-regulation of CD47/SIRPa signaling, and together with blockade of the macrophage checkpoint CD47 resulted in additive antitumor responses. We found that the antitumor effects of the B7-H3/CD47 antibody combination were dependent on cytokine signaling pathways (CCR5/CCL5 and IL4).  相似文献   

12.
13.
In the tumor microenvironment, immune checkpoint ligands (ICLs) must be expressed in order to trigger the inhibitory signal via immune checkpoint receptors (ICRs). Although ICL expression frequently occurs in a manner intrinsic to tumor cells, extrinsic factors derived from the tumor microenvironment can fine-tune ICL expression by tumor cells or prompt non-tumor cells, including immune cells. Considering the extensive interaction between T cells and other immune cells within the tumor microenvironment, ICL expression on immune cells can be as significant as that of ICLs on tumor cells in promoting anti-tumor immune responses. Here, we introduce various regulators known to induce or suppress ICL expression in either tumor cells or immune cells, and concise mechanisms relevant to their induction. Finally, we focus on the clinical significance of understanding the mechanisms of ICLs for an optimized immunotherapy for individual cancer patients.  相似文献   

14.
Human EAT-2 (SH2D1B) and SLAM-associated protein (SAP) (SH2D1A) are single SH2-domain adapters, which bind to specific tyrosine residues in the cytoplasmic tail of six signaling lymphocytic activation molecule (SLAM) (SLAMF1)-related receptors. Here we report that, unlike in humans, the mouse and rat Eat2 genes are duplicated with an identical genomic organization. The coding regions of the mouse Eat2a and Eat2b genes share 91% identity at the nucleotide level and 84% at the protein level; similarly, segments of introns are highly conserved. Whereas expression of mouse Eat2a mRNA was detected in multiple tissues, Eat2b was only detectable in mouse natural killer cells, CD8+ T cells, and ovaries, suggesting a very restricted tissue expression of the latter. Both the EAT-2A and EAT-2B coimmunoprecipitated with mouse SLAM in transfected cells and augmented tyrosine phosphorylation of the cytoplasmic tail of SLAM. Both EAT-2A and EAT-2B bind to the Src-like kinases Fyn, Hck, Lyn, Lck, and Fgr, as determined by a yeast two-hybrid assay. However, unlike SAP, the EAT-2 proteins bind to their kinase domains and not to the SH3 domain of these kinases. Taken together, the data suggest that both EAT-2A and EAT-2B are adapters that recruit Src kinases to SLAM family receptors using a mechanism that is distinct from that of SAP. Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users. S. Calpe and E. Erdős contributed equally to this work  相似文献   

15.
《Genomics》2020,112(6):4304-4315
The cysteinyl aspartate protease (caspase, or CASP) gene family plays a significant role in programmed cell death, inflammation and immunity. However, the correlation between CASP family members and prognosis and tumor-infiltrating lymphocytes in different tumors has not been determined. We investigated the role of CASP genes in cancer prognosis and their relationship with clinicopathological parameters. We also evaluated the correlation between the expression of CASP family members and cancer immune infiltration and evaluated whether these molecules can be used as targets for immunotherapy. The CASP1/2/4/5/7/9 genes may represent prognostic factors and therapeutic targets for breast cancer, hepatocellular carcinoma and pancreatic cancer. Another finding is that the CASP1/4/5 genes help to regulate innate immunity and T cell immunity and may also have an important effect on tumor checkpoint inhibition. These findings may elucidate the roles played by CASP family members in cancer progression and identify strategies to promote collaborative activities in the context of immunotherapy.  相似文献   

16.
17.
The signaling lymphocytic activation molecule (SLAM) family of receptors and the SLAM-associated protein (SAP) family of intracellular adaptors are expressed in immune cells. By way of their cytoplasmic domain, SLAM-related receptors physically associate with SAP-related adaptors. Evidence is accumulating that the SLAM and SAP families play crucial roles in multiple immune cell types. Moreover, the prototype of the SAP family, that is SAP, is mutated in a human immunodeficiency, X-linked lymphoproliferative (XLP) disease. In the presence of SAP-family adaptors, the SLAM family usually mediates stimulatory signals that promote immune cell activation or differentiation. In the absence of SAP-family adaptors, though, the SLAM family undergoes a “switch-of-function,” thereby mediating inhibitory signals that suppress immune cell functions. The molecular basis and significance of this mechanism are discussed herein.Immune cells undergo differentiation and, once mature, are activated through the integrated actions of many molecules, including cell surface receptors and intracellular signaling effectors. Whereas some of these molecules have “primary” roles in the immune response, others have secondary, albeit still critical, functions in this process. For example, differentiation and activation of B cells are strictly dependent on the function of the B-cell receptor (BCR) and its intracellular effectors. Other receptors present on B cells, such as CD19 and CD40, influence B-cell functions in critical ways, by modulating BCR-triggered signals (Cambier et al. 1994).There is accumulating evidence that the signaling lymphocytic activation molecule (SLAM) family of receptors plays important roles in immunity (Schwartzberg et al. 2009; Ma et al. 2007; Veillette et al. 2007; Veillette 2006b; Veillette 2006a). This class of receptors provides key effects in multiple immune cell types. Recent data indicate that SLAM-family receptors can either promote or inhibit the functions of primary activating receptors (Cruz-Munoz et al. 2009; Dong et al. 2009). These alternative activities are controlled by whether or not SLAM-related receptors are coexpressed with members of the SLAM-associated protein (SAP) family of intracellular adaptor molecules. The functions and mechanisms of action of the SLAM and SAP families are reviewed herein.  相似文献   

18.
Colorectal cancer (CRC) is still considered as the third most frequent cancer in the world. Microsatellite instability (MSI), inflammation, and microRNAs have been demonstrated as the main contributing factors in CRC. Subtype 1 CRC is defined by NK cells infiltration, induction of Th1 lymphocyte and cytotoxic T cell responses as well as upregulation of immune checkpoint proteins including programmed cell death-1 (PD-1). Based on the diverse features of CRC, such as the stage and localization of the tumor, several treatment approaches are available. However, the efficiency of these treatments may be decreased due to the development of diverse resistance mechanisms. It has been proven that monoclonal antibodies (mAbs) can increase the effectiveness of CRC treatments. Nowadays, several mAbs including nivolumab and pembrolizumab have been approved for the treatment of CRC. Immune checkpoint receptors including PD-1 can be inhibited by these antibodies. Combination therapy gives an opportunity for advanced treatment for CRC patients. In this review, an update has been provided on the molecular mechanisms involved in MSI colorectal cancer immune microenvironment by focusing on PD-ligand 1 (PD-L1) and treatment of patients with advanced immunotherapy, which were examined in the different clinical trial phases. Considering induced expression of PD-L1 by conventional chemotherapeutics, we have summarized the role of PD-L1 in CRC, the chemotherapy effects on the PD-1/PD-L1 axis and novel combined approaches to enhance immunotherapy of CRC by focusing on PD-L1.  相似文献   

19.
20.
Inhibitory immune checkpoint (ICP) molecules are important immunosuppressive factors in a tumor microenvironment (TME). They can robustly suppress T-cell-mediated antitumor immune responses leading to cancer progression. Among the checkpoint molecules, cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) is one of the critical inhibitors of anticancer T-cell responses. Besides, the expression of adenosine receptor (A2AR) on tumor-infiltrating T cells potently reduces their function. We hypothesized that concomitant silencing of these molecules in T cells might lead to enhanced antitumor responses. To examine this assumption, we purified T cells from the tumor, spleen, and local lymph nodes of CT26 colon cancer-bearing mice and suppressed the expression of A2AR and CTLA-4 using the small interfering RNA (siRNA)-loaded polyethylene glycol-chitosan-alginate (PCA) nanoparticles. The appropriate physicochemical properties of the produced nanoparticles (NPs; size of 72 nm, polydispersive index [PDI] < 0.2, and zeta potential of 11 mV) resulted in their high efficiency in transfection and suppression of target gene expression. Following the silencing of checkpoint molecules, various T-cell functions, including proliferation, apoptosis, cytokine secretion, differentiation, and cytotoxicity were analyzed, ex vivo. The results showed that the generated nanoparticles had optimal physicochemical characteristics and significantly suppressed the expression of target molecules in T cells. Moreover, a concomitant blockade of A2AR and CTLA-4 in T cells could synergistically enhance antitumor responses through the downregulation of PKA, SHP2, and PP2Aα signaling pathways. Therefore, this combination therapy can be considered as a novel promising anticancer therapeutic strategy, which should be further investigated in subsequent studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号