首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Inflammation is involved in cholestasis-induced hepatic damage. Stearic acid has been shown to possess anti-inflammatory potential. We assessed whether stearic acid has protective effects against cholestasis-related liver damage. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3 weeks. Daily administration of stearic acid was started 2 weeks before injury and lasted for 5 weeks. In comparison with the control group, the BDL group showed hepatic damage as evidenced by elevation in serum biochemicals, ductular reaction, fibrosis, and inflammation. These pathophysiological changes were attenuated by chronic stearic acid supplementation. The anti-fibrotic effect of stearic acid was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and critical fibrogenic cytokine transforming growth factor beta-1 production. Stearic acid also attenuated BDL-induced leukocyte accumulation and NF-κB activation. The data indicate that stearic acid attenuates BDL-induced cholestatic liver injury. The hepatoprotective effect of stearic acid is associated with anti-inflammatory potential.  相似文献   

2.
AimsOxidative stress is involved in cholestasis-induced hepatic damage. Therefore, antioxidant therapy is a recommended therapeutic strategy. Studies have illustrated that chromium can enhance antioxidative capacity leading to a resolution of oxidative stress. The aim of this study was to assess whether chromium has protective effects against cholestasis-related liver damage.Main methodsCholestasis was produced by bile duct ligation (BDL) in male Sprague–Dawley rats for 3 weeks. Rats were randomly divided into four groups. Control and BDL groups were subjected to sham and BDL operation, respectively, and were supplemented with placebo for 3 weeks. The BDL-post Cr group was supplemented with chromium chloride for 3 weeks after BDL operation. The BDL-pre Cr group was supplemented with chromium chloride for 6 weeks starting from 3 weeks before BDL operation.Key findingsIn comparison with the control group, the BDL group showed hepatic damage as evidenced by elevation in serum biochemicals, ductular reaction, and fibrosis. These pathophysiological changes were attenuated in the BDL-Pre Cr and BDL-Post Cr groups. However, there was no significant difference between these two groups. The anti-fibrotic effect of chromium was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of transforming growth factor beta 1 (TGF-β1). In addition, chromium effectively attenuated BDL-induced hepatic oxidative stress.SignificanceThe data indicate that chromium attenuates BDL-induced cholestatic liver injury, bile duct proliferation, and fibrosis. The hepatoprotective effect of chromium is associated with antioxidative potential.  相似文献   

3.
The aim of this study was to evaluate the possible protective effects of caffeic acid phenethyl ester (CAPE) against cholestatic oxidative stress and liver damage in the common bile duct ligated rats. A total of 18 male Sprague–Dawley rats were divided into three groups: control, bile duct ligation (BDL) and BDL + received CAPE; each group contain 6 animals. The rats in CAPE treated groups were given CAPE (10 μmol/kg) once a day intraperitoneally (i.p) for 2 weeks starting just after BDL operation. The changes demonstrating the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, inflammatory cell infiltration into the widened portal areas were observed in BDL group. Treatment of BDL with CAPE attenuated alterations in liver histology. The proliferating cell nuclear antigen and the activity of TUNEL in the BDL were observed to be reduced with the QE treatment. The application of BDL clearly increased the tissue hydroxyproline (HP) content, malondialdehyde (MDA) levels and decreased the antioxidant enzyme (superoxide dismutase (SOD), glutathione peroxidase (GPx)) activities. CAPE treatment significantly decreased the elevated tissue HP content, and MDA levels and raised the reduced of SOD, and GPx enzymes in the tissues. The data indicate that CAPE attenuates BDL-induced cholestatic liver injury, bile duct proliferation, and fibrosis. The hepatoprotective effect of CAPE is associated with antioxidative potential.  相似文献   

4.
Cholestatic liver disease is recognized by extreme collagen formation and deposition, which is mediated by free radicals. The aim of the current study was to investigate the probable hepatoprotective effects of hydroalcoholic extract of watercress (WC) against oxidative stress and liver injury in bile duct ligation (BDL)- induced cholestatic rats. A total of 32 male Wistar rats were divided into four groups; sham control (SC), BDL, SC + hydroalcoholic extract of WC and BDL + hydroalcoholic extract of WC. WC-treated rats received daily WC 500 mg/kg/day for 10 days. Biochemical tests, hepatic oxidative stress markers, and antioxidant enzymes activity were estimated. Further, liver hydroxyproline content was assayed and histological analysis was made. The BDL model markedly elevated the protein carbonyl (PCO) and hydroxyproline contents and decreased the glutathione peroxidase (GPx) activity. Hydroalcoholic extract of WC significantly decreased the surge in liver PCO and hydroxyproline levels and increased the reduced GPx enzyme activity contents in the hepatic tissue. As determined by hematoxylin and eosin staining, BDL considerably induced hepatocyte necrosis. Moreover, these changes were significantly attenuated by the hydroalcoholic extract of WC treatment. Our data indicate that the hydroalcoholic extract of WC extract attenuated liver damage in BDL rats by decreasing the hydroxyproline content and histopathological indexes. Also, it reduced oxidative stress by preventing the hepatic protein oxidation and enhancing the activity of the GPx enzyme via antioxidative effect and free-radical scavenging. Our findings suggest that hydroalcoholic extract of WC could be a beneficial new curative agent for cholestatic liver damage.  相似文献   

5.
The human amniotic membrane (hAM), thanks to its favorable properties, including anti-inflammatory, anti-fibrotic and pro-regenerative effects, is a well-known surgical material for many clinical applications, when used both freshly after isolation and after preservation. We have shown previously that hAM patching is a potential approach to counteract liver fibrosis. Indeed, when fresh hAM was used to cover the liver surface of rats with liver fibrosis induced by the bile duct ligation (BDL) procedure, the progression and severity of fibrosis were significantly reduced. Since cryopreservation enables safety and long-term storage of hAM but may influence its functional properties, here we compared the anti-fibrotic effects of fresh and cryopreserved hAM in rats with BDL-induced liver fibrosis. After BDL, the rat liver was covered with a piece of fresh or cryopreserved hAM, or left untreated. Six weeks later, the degree of liver fibrosis was assessed histologically using the Knodell and the METAVIR scoring systems. Digital image analysis was used to quantify the percentage of the areas of each liver section displaying ductular reaction, extracellular matrix (ECM) deposition, activated myofibroblasts and hepatic stellate cells (HSCs). Liver collagen content was also determined by spectrophotometric technique. The degree of liver fibrosis, ductular reaction, ECM deposition, and the number of activated myofibroblasts and HSCs were all significantly reduced in hAM-treated rats compared to control animals. Fresh and cryopreserved hAM produced the same anti-fibrotic effects. These findings indicate that cryopreservation maintains the anti-fibrotic properties of hAM when used as a patch to reduce the severity of liver fibrosis.  相似文献   

6.
Bile duct obstruction and subsequent cholestasis are associated with hepatocellular injury, cholangiocyte proliferation, stellate cell activation, Kupffer cell activation, oxidative stress, inflammation and fibrosis. Docosahexaenoic acid (DHA) is an essential polyunsaturated fatty acid that has been shown to possess health beneficial effects, including hepatoprotection. However, the molecular mechanism of DHA-mediated hepatoprotection is not fully understood. In the present study, we report the protective effect of DHA on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3 weeks. Daily administration of DHA was started 2 weeks before injury and lasted for 5 weeks. In comparison with the control group, the BDL group showed hepatic damage as evidenced by histological changes and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation and oxidative stress. These pathophysiological changes were attenuated by chronic DHA supplementation. DHA alleviated BDL-induced transforming growth factor beta-1 (TGF-β1), intereukin-1beta, connective tissue growth factor and collagen expression. The anti-fibrotic effect of DHA was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of TGF-β1. DHA also attenuated BDL-induced leukocyte accumulation and nuclear factor-κB (NF-κB) activation. Further studies demonstrated an inhibitory effect of DHA on redox-sensitive intracellular signaling molecule extracellular signal-regulated kinase (ERK). Taken together, the hepatoprotective, anti-inflammatory and anti-fibrotic effects of DHA seem to be multifactorial. The beneficial effects of chronic DHA supplementation are associated with anti-oxidative and anti-inflammatory potential as well as down-regulation of NF-κB and transforming growth factor beta/Smad signaling probably via interference with ERK activation.  相似文献   

7.
The aim of this study was to evaluate the possible protective effects of quercetin (QE) against cholestatic oxidative stress and liver damage in the common bile duct ligated rats. A total of 24 male Wistar albino rats were divided into three groups: control, bile duct ligation (BDL) and BDL + received QE; each group contain 8 animals. The rats in QE treated groups were given QE (15 mg/kg) once a day intraperitoneally for 4 weeks starting 3 days prior to BDL operation. The changes demonstrating the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells, and neutrophil infiltration into the widened portal areas were observed in BDL group. Treatment of BDL with QE attenuated alterations in liver histology. The alpha smooth muscle actin (α-SMA), transforming growth factor beta (TGF-β1) positive cells and the activity of TUNEL in the BDL were observed to be reduced with the QE treatment. The data indicate that QE attenuates BDL-induced cholestatic liver injury, bile duct proliferation, and fibrosis. The hepatoprotective effect of QE is associated with antioxidative potential.  相似文献   

8.
The aim of this study was to assess the antioxidant and antifibrotic effects of chronic administration of aqueous garlic extract on liver fibrosis induced by biliary obstruction in rats. Liver fibrosis was induced in male Wistar albino rats by bile duct ligation and scission (BDL). Aqueous garlic extract (AGE, 1 ml/kg, i.p., corresponding to 250 mg/kg) or saline was administered for 28 days. At the end of the experiment, rats were killed by decapitation. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels were determined to assess liver functions and tissue damage, respectively. Tumor necrosis factor-alpha (TNF-alpha) was also assayed in serum samples. Liver tissues were taken for determination of the free radicals, renal malondialdehyde (MDA) levels, an end product of lipid peroxidation; glutathione (GSH) levels, a key antioxidant; and myeloperoxidase (MPO) activity, as an indirect index of neutrophil infiltration. Hepatic collagen content, as a fibrosis marker was also determined. Serum AST, ALT, LDH, and TNF- alpha levels were elevated in the BDL group as compared to control group, while this increase was significantly decreased by AGE treatment. Hepatic GSH levels, significantly depressed by BDL, were elevated back to control levels in AGE-treated BDL group. Increases in tissue free radical and MDA levels and MPO activity due to BDL were reduced back to control levels by AGE treatment. Similarly, increased hepatic collagen content in the BDL rats was reduced to the level of the control group with AGE treatment. Since AGE administration alleviated the BDL-induced oxidative injury of the liver and improved the hepatic structure and function, it seems likely that AGE with its antioxidant and antifibrotic properties, may be of potential therapeutic value in protecting the liver fibrosis and oxidative injury due to biliary obstruction.  相似文献   

9.
Cholestatic liver fibrosis was achieved by bile duct ligation (BDL) in mice. Liver injury associated with BDL for 15 days included significant reactive oxygen/nitrogen species generation, liver inflammation, cell death and fibrosis. Administration of Epigallocatechin 3-Gallate (EGCG) in animals reduced liver fibrosis involving parenchymal cells in BDL model. EGCG attenuated BDL-induced gene expression of pro-fibrotic markers (Collagen, Fibronectin, alpha 2 smooth muscle actin or SMA and connective tissue growth factor or CTGF), mitochondrial oxidative stress, cell death marker (DNA fragmentation and PARP activity), NFκB activity and pro-inflammatory cytokines (TNFα, MIP1α, IL1β, and MIP2). EGCG also improved BDL induced damages of mitochondrial electron transport chain complexes and antioxidant defense enzymes such as glutathione peroxidase and manganese superoxide dismutase. EGCG also attenuated hydrogen peroxide induced cell death in hepatocytes in vitro and alleviate stellate cells mediated fibrosis through TIMP1, SMA, Collagen 1 and Fibronectin in vitro. In conclusion, the reactive oxygen/nitrogen species generated from mitochondria plays critical pathogenetic role in the progression of liver inflammation and fibrosis and this study indicate that EGCG might be beneficial for reducing liver inflammation and fibrosis.  相似文献   

10.
ProjectCholestasis liver fibrosis has been increasingly recognized as a cause of high morbidity and mortality in humans. The accumulation of toxic bile salts in a bile duct ligation (BDL) animal model plays a pivotal role in the induction of liver fibrosis. Cholestatic liver fibrosis is characterized by excessive collagen production and deposition, which is mediated by reactive oxygen species (ROS). Molybdenum is an essential micronutrient trace element which acts as a cofactor in many detoxification system enzymes. The aim of the present study was to evaluate the antifibrotic effect of sodium molybdate on liver cholestasis induced by bile duct ligation in rats.ProcedureAfter BDL, rats were given sodium molybdate (0.05 or 0.1 or 0.2 g/kg) or urosodeoxycholic acid (UDCA, 25 mg/kg) via intragastric gavage for 45 consecutive days (once per day).ResultsBDL drastically increased the serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin and direct bilirubin, whereas it reduced the levels of antioxidant enzymes, superoxide dismutase and catalase in the liver. Treatment of BDL rats with sodium molybdate significantly attenuated these changes. As determined by Masson's trichrome staining, BDL markedly induced the liver fibrosis. These alterations were also significantly attenuated by sodium molybdate administration.ConclusionsThe results of this study indicate the hepatoprotective and antifibrotic effect of sodium molybdate in the cholestatic liver. Sodium molybdate, by inhibiting the activation of Ito cells, decreases the collagen production in the liver. The antifibrotic effect of sodium molybdate is likely due to the antioxidative and free radical scavenging effects of this trace element.  相似文献   

11.
Tang LX  He RH  Yang G  Tan JJ  Zhou L  Meng XM  Huang XR  Lan HY 《PloS one》2012,7(2):e31350
Liver fibrosis is a major cause of liver failure, but treatment remains ineffective. In the present study, we investigated the mechanisms and anti-hepatofibrotic activities of asiatic acid (AA) in a rat model of liver fibrosis induced by carbon tetrachloride (CCl(4)) and in vitro in TGF-beta1-stimulated rat hepatic stellate cell line (HSC-T6). Treatment with AA significantly attenuated CCl(4)-induced liver fibrosis and functional impairment in a dosage-dependent manner, including blockade of the activation of HSC as determined by inhibiting de novo alpha smooth muscle actin (a-SMA) and collagen matrix expression, and an increase in ALT and AST (all p<0.01). The hepatoprotective effects of AA on fibrosis were associated with upregulation of hepatic Smad7, an inhibitor of TGF-beta signaling, thereby blocking upregulation of TGF-beta1 and CTGF and the activation of TGF-beta/Smad signaling. The anti-fibrosis activity and mechanisms of AA were further detected in vitro in HSC-T6. Addition of AA significantly induced Smad7 expression by HSC-T6 cells, thereby inhibiting TGF-beta1-induced Smad2/3 activation, myofibroblast transformation, and collagen matrix expression in a dosage-dependent manner. In contrast, knockdown of Smad7 in HSC-T6 cells prevented AA-induced inhibition of HSC-T6 cell activation and fibrosis in response to TGF-beta1, revealing an essential role for Smad7 in AA-induced anti-fibrotic activities during liver fibrosis in vivo and in vitro. In conclusion, AA may be a novel therapeutic agent for liver fibrosis. Induction of Smad7-dependent inhibition of TGF-beta/Smad-mediated fibrogenesis may be a central mechanism by which AA protects liver from injury.  相似文献   

12.
The hepatoprotective and antioxidant effect of Cassia fistula Linn. leaf extract on liver injury induced by diethylnitrosamine (DEN) was investigated. Wistar rats weighing 200+/-10g were administered a single dose of DEN (200mg/kg b.w., i.p.) and left for 30 days. For hepatoprotective studies, ethanolic leaf extract (ELE) of C. fistula Linn. (500mg/kg b.w., p.o.) was administered daily for 30 days. AST, ALT, ALP, LDH, gamma-GT and bilirubin were estimated in serum and liver tissue. Lipid peroxidation (LPO), SOD and CAT were also estimated in liver tissue as markers of oxidative stress. DEN induced hepatotoxicity in all the treated animals were evident by elevated serum ALT, AST, ALP and bilirubin levels and a simultaneous fall in their levels in the liver tissue after 30 days. Induction of oxidative stress in the liver was evidenced by increased LPO and fall in the activities of SOD and CAT. ELE administration for 30 days prevented the DEN induced hepatic injury and oxidative stress. In conclusion, it was observed that ELE of C. fistula Linn. protects the liver against DEN induced hepatic injury in rats.  相似文献   

13.
We previously reported that the mold Monascus anka, traditionally used for fermentation of food, showed antioxidant and hepatoprotective actions against chemically induced liver injuries. In the present study, the antioxidant component of M. anka was isolated and identified. The antioxidant was elucidated to be dimerumic acid. DPPH (1,1-diphenyl-2-picrylhydrazyl) radical was significantly scavenged by the antioxidant whereas hydroxyl radical and superoxide anion were moderately scavenged. When the antioxidant (12 mg/kg) was given to mice prior to carbon tetrachloride (CCl(4), 20 microl/kg, ip) treatment, the CCl(4)-induced liver toxicity in mice seen in an elevation of serum aspartate aminotransferase and alanine aminotransferase activities was depressed, suggesting the hepatoprotective action of the antioxidant. The liver microsomal glutathione S-transferase activity, which is known to be activated by oxidative stress or active metabolites, was increased by CCl(4) treatment and the increase was also depressed by pretreatment with the mold antioxidant. Thus these data confirmed that the dimerumic acid isolated from M. anka is the potential antioxidant and protective against CCl(4)-induced liver injury.  相似文献   

14.
L-arginine may aid in the liver detoxification and may benefit in the treatment of liver disorders such as liver injury. The present study was to investigate the possible protective and curative effects of L-arginine on carbon tetrachloride (CCl(4)) induced hepatotoxicity. Mice received a single dose of CCl(4). L-arginine treatment was given for 6 days prior or post to CCl(4) injection. CCl(4)-intoxication caused marked liver cell necrosis with inflammatory and apoptotic lesions. L-arginine treatment reduced hepatic necrosis and inflammation. CCl(4)-intoxication also enhanced hepatic lipid peroxidation, decreased hepatic GSH level and inhibited the activities of antioxidant enzymes. Pre-treatment and post-treatment with L-arginine decreased lipid peroxidation and restored the antioxidant status to near normal levels. These results suggest that L-arginine administration has hepatoprotective and hepatocurative effects against CCl(4) induced hepatotoxicity in mice.  相似文献   

15.
Liver growth factor (LGF), a mitogen for liver cells, behaves as an anti-fibrotic agent even in extrahepatic sites, but its mechanistic basis is unknown. We aimed to determine the intrahepatic expression pattern of key modulators of liver fibrosis in bile duct-ligated rats (BDL) after injection of LGF. BDL rats received either LGF (4.5 microg/ratXdose, two doses/week, at time 0 or 2 or 5w after operation, depending on the group (BDL+LGF groups, n=20) or saline (BDL+S groups, n=20). Groups were compared in terms of fibrosis (histomorphometry), liver function (aminopyrine breath test), matrix metalloproteinases MMP-2 and MMP-9, transforming growth factor beta 1 (TGF-beta1) and liver endoglin content (Western blotting), and serum tissue inhibitor of metalloproteinases 1 (TIMP-1) levels (ELISA). In BDL+LGF rats, the fibrotic index was significantly lower at 5w, p=0.006, and at 8w, p=0.04, than in BDL+S rats. Liver function values in BDL+LGF rats were higher than those obtained in BDL+S rats (80% at 5w and 79% at 8w, versus 38% and 29%, p<0.01, taking healthy controls as 100%). Notably, in BDL+LGF rats the intrahepatic expression levels of both MMPs were lower at 2w (MMP-2, p=0.03; MMP-9, p=0.05) and 5w (MMP-2, p=0.05, MMP-9, p=0.04). In addition, the hepatic TGF-beta1 level in BDL+LGF rats was lower at 2w (36%, p=0.008), 5w (50%) and 8wk (37%), whereas intrahepatic endoglin expression remained constant in all BDL rats studied. LGF ameliorates liver fibrosis and improves liver function in BDL rats. The LGF-induced anti-fibrotic effect is associated with a decreased hepatic level of MMP-2, MMP-9 and TGF-beta1 in fibrotic rats.  相似文献   

16.
Methanol and aqueous leaf extracts of L. hirta demonstrated hepatoprotective activity against carbon tetrachloride induced liver damage in rats. The parameters studied were serum total bilirubin, total protein, alanine transaminase, aspartate transaminase and alkaline phosphatase activities. The hepatoprotective activity was also supported by histopathological studies of liver tissue. Results of the biochemical studies of blood samples of CCl4 treated animals showed significant increase in the levels of serum markers and decrease in total protein level reflecting the liver injury caused by CCl4. Whereas blood samples from the animals treated with methanol and aqueous leaf extracts showed significant decrease in the levels of serum markers and increase in total protein indicating the protection of hepatic cells. The results revealed that methanol leaf extract followed by aqueous extract of L. hirta could afford significant protection against CCl4 induced hepatocellular injury.  相似文献   

17.
Diethylnitrosamine (DEN), found in many commonly consumed foods, is widely reported to induce cancer in animals and humans. The aim of the present study was to investigate the hepatoprotective and antioxidant activities of the leaf extract of the medicinal plant Cassia fistula Linn. against diethylnitrosamine induced liver injury in ethanol pretreated rats. Albino Wistar rats, pretreated with ethanol for 15 days, were administered a single dose of DEN. Thirty days after DEN administration, hepatotocellular damage was observed histologically, along with elevated levels of serum AST, ALT, ALP, LDH, γ-GT and bilirubin and a simultaneous fall in the levels of the marker enzymes in the liver tissue. Liver oxidative stress was confirmed by elevated levels of lipid peroxidation (LPO) and a decrease in enzymic and non-enzymic antioxidants activities. Oral administration of the ethanolic leaf extract (ELE) of Cassia fistula for 30 days to ethanol + DEN treated rats significantly improved the above alterations in the markers of hepatotoxicity and oxidative stress, resulting in the reversal of most of the parameters studied and were comparable to the standard hepatoprotective drug silymarin.  相似文献   

18.
Quiescent hepatic stellate cells (HSCs) store vitamin A as lipid droplets in the cytoplasm. When activated, these cells lose vitamin A and exhibit an increased capacity for proliferation, mobility, contractility, and the synthesis of collagen and other components of the extracellular matrix. Our previous work demonstrated that the lipid hydrolytic gene pancreatic lipase-related protein 2 (mPlrp2) is involved in the hydrolysis of retinyl esters (REs) in the liver. Here, we showed that bile duct ligation (BDL)-induced liver injury triggered the conditional expression of mPlrp2 in livers and describe evidence of a strong relationship between the expression of mPlrp2 and Acta-2, a marker for activated HSCs. RNA interference targeting mPlrp2 inhibited HSC activation and ameliorated hepatic fibrosis induced by BDL in mice. Liver BDL markedly reduced the adenosine level and increased the ratio between S-adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH). Chromatin immunoprecipitation (ChIP) analysis demonstrated an increase in trimethylated histone H3K4 at the mPlrp2 promoter in BDL mice, which was associated with the conditional expression of mPlrp2 in the liver. SAM, a well-known hepatoprotective substance, inhibited mPlrp2 expression and reduced RE hydrolysis in mice with hepatic fibrosis induced by chronic CCl4 treatment. Liver fibrosis induced by CCl4 or BDL was improved in Plrp2?/? mice. Our results reveal that mPlrp2 suppression is a potential approach for treating hepatic fibrosis.  相似文献   

19.
Liver damage involves oxidative stress and a progression from chronic hepatitis to hepatocellular carcinoma (HCC). The increased incidence of liver disease in Egypt and other countries in the last decade, coupled with poor prognosis, justify the critical need to introduce alternative chemopreventive agents that may protect against liver damage. The aim of this study was to evaluate the efficacy of exopolysaccharide-peptide (PSP) complex extracted from Pleurotus ostreatus as a hepatoprotective agent against diethylnitrosamine (DEN)/carbon tetrachloride (CCL4)-induced hepatocellular damage in rats. The levels of liver injury markers (ALT, AST and ALP) were substantially increased following DEN/CCl4 treatment. DEN/CCl4 - induced oxidative stress was confirmed by elevated levels of lipid peroxidation and decreased levels of superoxide dismutase, glutathione-S-transferase, and reduced glutathione. PSP reversed these alterations in the liver and serum, and provided protection evidenced by reversal of histopathological changes in the liver. The present study demonstrated that PSP extract from P. ostreatus exhibited hepatoprotective and antioxidant effects against DEN/CCl4-induced hepatocellular damage in rats. Given the high prevalence of HCV-related liver damage in Egypt, our results suggest further clinical evaluation of P. ostreatus extracts and their potential hepatoprotective effects in patients with liver disease.  相似文献   

20.
BACKGROUND: Reactive oxygen species and oxidative stress are implicated in hepatic stellate cell activation and liver fibrosis, which are initiated by recruitment of inflammatory cells and by activation of cytokines. OBJECTIVE: The possible anti-oxidant and anti-inflammatory effects of ghrelin were evaluated in a hepatic fibrosis model in rats with bile duct ligation (BDL). METHODS: Under anesthesia, bile ducts of Sprague Dawley rats were ligated, and half of the rats were subcutaneously administered with ghrelin (10 ng/kg/day) and the rest with saline for 28 days. Sham-operated control groups were administered saline or ghrelin. On the 28th day of the study, rats were decapitated and malondialdehyde (MDA) content--an index of lipid peroxidation, and myeloperoxidase (MPO) activity--an index of neutrophil infiltration--were determined in the liver tissues. Oxidant-induced tissue fibrosis was determined by collagen contents, while the hepatic injury was analyzed microscopically. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels and lactate dehydrogenase (LDH) levels were determined to assess liver function and tissue damage, respectively. Pro-inflammatory cytokines; TNF-alpha, IL-1beta and IL-6 were also assayed in plasma samples. RESULTS: In the saline-treated BDL group, hepatic MDA levels, MPO activity and collagen content were increased (p<0.001), suggesting oxidative organ damage, as confirmed histologically. In the ghrelin-treated BDL group, however, all of the oxidant responses were reversed significantly (p<0.05-p<0.001). Serum AST, ALT, LDH levels, and cytokines were elevated in the BDL group as compared to the control group, while this increase was significantly decreased by ghrelin treatment. CONCLUSION: Owing to the anti-inflammatory and anti-oxidant effect as demonstrated in our study, it is possible to speculate that exogenously administered ghrelin may possess an antifibrotic effect against biliary obstruction-induced liver fibrosis. Thus, it seems likely that ghrelin may be of potential therapeutic value in protecting the liver fibrosis and oxidative injury due to biliary obstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号